# | Line 1 | Line 1 | |
---|---|---|
1 | < | #include <cmath> |
1 | > | #include <math.h> |
2 | #include "Atom.hpp" | |
3 | #include "SRI.hpp" | |
4 | #include "AbstractClasses.hpp" | |
# | Line 9 | Line 9 | |
9 | #include "Integrator.hpp" | |
10 | #include "simError.h" | |
11 | ||
12 | + | #ifdef IS_MPI |
13 | + | #include "mpiSimulation.hpp" |
14 | + | #endif |
15 | ||
16 | // Basic non-isotropic thermostating and barostating via the Melchionna | |
17 | // modification of the Hoover algorithm: | |
# | Line 20 | Line 23 | |
23 | // | |
24 | // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | |
25 | ||
26 | < | NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 | < | Integrator( theInfo, the_ff ) |
26 | > | template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 | > | T( theInfo, the_ff ) |
28 | { | |
29 | < | int i, j; |
30 | < | chi = 0.0; |
29 | > | |
30 | > | int i,j; |
31 | > | |
32 | > | for(i = 0; i < 3; i++){ |
33 | > | for (j = 0; j < 3; j++){ |
34 | > | |
35 | > | eta[i][j] = 0.0; |
36 | > | oldEta[i][j] = 0.0; |
37 | > | } |
38 | > | } |
39 | > | } |
40 | ||
41 | < | for(i = 0; i < 3; i++) |
42 | < | for (j = 0; j < 3; j++) |
41 | > | template<typename T> NPTf<T>::~NPTf() { |
42 | > | |
43 | > | // empty for now |
44 | > | } |
45 | > | |
46 | > | template<typename T> void NPTf<T>::resetIntegrator() { |
47 | > | |
48 | > | int i, j; |
49 | > | |
50 | > | for(i = 0; i < 3; i++) |
51 | > | for (j = 0; j < 3; j++) |
52 | eta[i][j] = 0.0; | |
53 | + | |
54 | + | T::resetIntegrator(); |
55 | + | } |
56 | ||
57 | < | have_tau_thermostat = 0; |
58 | < | have_tau_barostat = 0; |
59 | < | have_target_temp = 0; |
60 | < | have_target_pressure = 0; |
57 | > | template<typename T> void NPTf<T>::evolveEtaA() { |
58 | > | |
59 | > | int i, j; |
60 | > | |
61 | > | for(i = 0; i < 3; i ++){ |
62 | > | for(j = 0; j < 3; j++){ |
63 | > | if( i == j) |
64 | > | eta[i][j] += dt2 * instaVol * |
65 | > | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
66 | > | else |
67 | > | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
68 | > | } |
69 | > | } |
70 | > | |
71 | > | for(i = 0; i < 3; i++) |
72 | > | for (j = 0; j < 3; j++) |
73 | > | oldEta[i][j] = eta[i][j]; |
74 | } | |
75 | ||
76 | < | void NPTf::moveA() { |
76 | > | template<typename T> void NPTf<T>::evolveEtaB() { |
77 | ||
78 | < | int i, j, k; |
42 | < | DirectionalAtom* dAtom; |
43 | < | double Tb[3], ji[3]; |
44 | < | double A[3][3], I[3][3]; |
45 | < | double angle, mass; |
46 | < | double vel[3], pos[3], frc[3]; |
78 | > | int i,j; |
79 | ||
80 | < | double rj[3]; |
81 | < | double instaTemp, instaPress, instaVol; |
82 | < | double tt2, tb2; |
51 | < | double sc[3]; |
52 | < | double eta2ij; |
53 | < | double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
54 | < | double bigScale, smallScale, offDiagMax; |
80 | > | for(i = 0; i < 3; i++) |
81 | > | for (j = 0; j < 3; j++) |
82 | > | prevEta[i][j] = eta[i][j]; |
83 | ||
84 | < | tt2 = tauThermostat * tauThermostat; |
85 | < | tb2 = tauBarostat * tauBarostat; |
84 | > | for(i = 0; i < 3; i ++){ |
85 | > | for(j = 0; j < 3; j++){ |
86 | > | if( i == j) { |
87 | > | eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
88 | > | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
89 | > | } else { |
90 | > | eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
91 | > | } |
92 | > | } |
93 | > | } |
94 | > | } |
95 | ||
96 | < | instaTemp = tStats->getTemperature(); |
97 | < | tStats->getPressureTensor(press); |
98 | < | instaVol = tStats->getVolume(); |
62 | < | |
63 | < | // first evolve chi a half step |
64 | < | |
65 | < | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
96 | > | template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
97 | > | int i,j; |
98 | > | double vScale[3][3]; |
99 | ||
100 | for (i = 0; i < 3; i++ ) { | |
101 | for (j = 0; j < 3; j++ ) { | |
102 | + | vScale[i][j] = eta[i][j]; |
103 | + | |
104 | if (i == j) { | |
105 | < | |
106 | < | eta[i][j] += dt2 * instaVol * |
72 | < | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
73 | < | |
74 | < | vScale[i][j] = eta[i][j] + chi; |
75 | < | |
76 | < | } else { |
77 | < | |
78 | < | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
79 | < | |
80 | < | vScale[i][j] = eta[i][j]; |
81 | < | |
82 | < | } |
105 | > | vScale[i][j] += chi; |
106 | > | } |
107 | } | |
108 | } | |
109 | + | |
110 | + | info->matVecMul3( vScale, vel, sc ); |
111 | + | } |
112 | ||
113 | < | for( i=0; i<nAtoms; i++ ){ |
113 | > | template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
114 | > | int i,j; |
115 | > | double myVel[3]; |
116 | > | double vScale[3][3]; |
117 | ||
118 | < | atoms[i]->getVel( vel ); |
119 | < | atoms[i]->getPos( pos ); |
120 | < | atoms[i]->getFrc( frc ); |
121 | < | |
122 | < | mass = atoms[i]->getMass(); |
123 | < | |
124 | < | // velocity half step |
95 | < | |
96 | < | info->matVecMul3( vScale, vel, sc ); |
97 | < | |
98 | < | for (j = 0; j < 3; j++) { |
99 | < | vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
100 | < | rj[j] = pos[j]; |
118 | > | for (i = 0; i < 3; i++ ) { |
119 | > | for (j = 0; j < 3; j++ ) { |
120 | > | vScale[i][j] = eta[i][j]; |
121 | > | |
122 | > | if (i == j) { |
123 | > | vScale[i][j] += chi; |
124 | > | } |
125 | } | |
126 | + | } |
127 | + | |
128 | + | for (j = 0; j < 3; j++) |
129 | + | myVel[j] = oldVel[3*index + j]; |
130 | ||
131 | < | atoms[i]->setVel( vel ); |
131 | > | info->matVecMul3( vScale, myVel, sc ); |
132 | > | } |
133 | ||
134 | < | // position whole step |
134 | > | template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
135 | > | int index, double sc[3]){ |
136 | > | int j; |
137 | > | double rj[3]; |
138 | ||
139 | < | info->wrapVector(rj); |
139 | > | for(j=0; j<3; j++) |
140 | > | rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
141 | ||
142 | < | info->matVecMul3( eta, rj, sc ); |
142 | > | info->matVecMul3( eta, rj, sc ); |
143 | > | } |
144 | ||
145 | < | for (j = 0; j < 3; j++ ) |
112 | < | pos[j] += dt * (vel[j] + sc[j]); |
145 | > | template<typename T> void NPTf<T>::scaleSimBox( void ){ |
146 | ||
147 | < | atoms[i]->setPos( pos ); |
148 | < | |
149 | < | if( atoms[i]->isDirectional() ){ |
147 | > | int i,j,k; |
148 | > | double scaleMat[3][3]; |
149 | > | double eta2ij; |
150 | > | double bigScale, smallScale, offDiagMax; |
151 | > | double hm[3][3], hmnew[3][3]; |
152 | > | |
153 | ||
118 | – | dAtom = (DirectionalAtom *)atoms[i]; |
119 | – | |
120 | – | // get and convert the torque to body frame |
121 | – | |
122 | – | dAtom->getTrq( Tb ); |
123 | – | dAtom->lab2Body( Tb ); |
124 | – | |
125 | – | // get the angular momentum, and propagate a half step |
154 | ||
127 | – | dAtom->getJ( ji ); |
128 | – | |
129 | – | for (j=0; j < 3; j++) |
130 | – | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
131 | – | |
132 | – | // use the angular velocities to propagate the rotation matrix a |
133 | – | // full time step |
134 | – | |
135 | – | dAtom->getA(A); |
136 | – | dAtom->getI(I); |
137 | – | |
138 | – | // rotate about the x-axis |
139 | – | angle = dt2 * ji[0] / I[0][0]; |
140 | – | this->rotate( 1, 2, angle, ji, A ); |
141 | – | |
142 | – | // rotate about the y-axis |
143 | – | angle = dt2 * ji[1] / I[1][1]; |
144 | – | this->rotate( 2, 0, angle, ji, A ); |
145 | – | |
146 | – | // rotate about the z-axis |
147 | – | angle = dt * ji[2] / I[2][2]; |
148 | – | this->rotate( 0, 1, angle, ji, A); |
149 | – | |
150 | – | // rotate about the y-axis |
151 | – | angle = dt2 * ji[1] / I[1][1]; |
152 | – | this->rotate( 2, 0, angle, ji, A ); |
153 | – | |
154 | – | // rotate about the x-axis |
155 | – | angle = dt2 * ji[0] / I[0][0]; |
156 | – | this->rotate( 1, 2, angle, ji, A ); |
157 | – | |
158 | – | dAtom->setJ( ji ); |
159 | – | dAtom->setA( A ); |
160 | – | } |
161 | – | } |
162 | – | |
155 | // Scale the box after all the positions have been moved: | |
156 | ||
157 | // Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) | |
# | Line 189 | Line 181 | void NPTf::moveA() { | |
181 | if (i != j) | |
182 | if (fabs(scaleMat[i][j]) > offDiagMax) | |
183 | offDiagMax = fabs(scaleMat[i][j]); | |
192 | – | |
184 | } | |
185 | ||
186 | if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; | |
# | Line 225 | Line 216 | void NPTf::moveA() { | |
216 | info->matMul3(hm, scaleMat, hmnew); | |
217 | info->setBoxM(hmnew); | |
218 | } | |
228 | – | |
219 | } | |
220 | ||
221 | < | void NPTf::moveB( void ){ |
221 | > | template<typename T> bool NPTf<T>::etaConverged() { |
222 | > | int i; |
223 | > | double diffEta, sumEta; |
224 | ||
225 | < | int i, j; |
226 | < | DirectionalAtom* dAtom; |
227 | < | double Tb[3], ji[3]; |
236 | < | double vel[3], frc[3]; |
237 | < | double mass; |
238 | < | |
239 | < | double instaTemp, instaPress, instaVol; |
240 | < | double tt2, tb2; |
241 | < | double sc[3]; |
242 | < | double press[3][3], vScale[3][3]; |
225 | > | sumEta = 0; |
226 | > | for(i = 0; i < 3; i++) |
227 | > | sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
228 | ||
229 | < | tt2 = tauThermostat * tauThermostat; |
230 | < | tb2 = tauBarostat * tauBarostat; |
229 | > | diffEta = sqrt( sumEta / 3.0 ); |
230 | > | |
231 | > | return ( diffEta <= etaTolerance ); |
232 | > | } |
233 | ||
234 | < | instaTemp = tStats->getTemperature(); |
248 | < | tStats->getPressureTensor(press); |
249 | < | instaVol = tStats->getVolume(); |
250 | < | |
251 | < | // first evolve chi a half step |
234 | > | template<typename T> double NPTf<T>::getConservedQuantity(void){ |
235 | ||
236 | < | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
237 | < | |
238 | < | for (i = 0; i < 3; i++ ) { |
239 | < | for (j = 0; j < 3; j++ ) { |
240 | < | if (i == j) { |
236 | > | double conservedQuantity; |
237 | > | double totalEnergy; |
238 | > | double thermostat_kinetic; |
239 | > | double thermostat_potential; |
240 | > | double barostat_kinetic; |
241 | > | double barostat_potential; |
242 | > | double trEta; |
243 | > | double a[3][3], b[3][3]; |
244 | ||
245 | < | eta[i][j] += dt2 * instaVol * |
260 | < | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
245 | > | totalEnergy = tStats->getTotalE(); |
246 | ||
247 | < | vScale[i][j] = eta[i][j] + chi; |
248 | < | |
264 | < | } else { |
265 | < | |
266 | < | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
247 | > | thermostat_kinetic = fkBT * tt2 * chi * chi / |
248 | > | (2.0 * eConvert); |
249 | ||
250 | < | vScale[i][j] = eta[i][j]; |
269 | < | |
270 | < | } |
271 | < | } |
272 | < | } |
250 | > | thermostat_potential = fkBT* integralOfChidt / eConvert; |
251 | ||
252 | < | for( i=0; i<nAtoms; i++ ){ |
252 | > | info->transposeMat3(eta, a); |
253 | > | info->matMul3(a, eta, b); |
254 | > | trEta = info->matTrace3(b); |
255 | ||
256 | < | atoms[i]->getVel( vel ); |
257 | < | atoms[i]->getFrc( frc ); |
278 | < | |
279 | < | mass = atoms[i]->getMass(); |
280 | < | |
281 | < | // velocity half step |
282 | < | |
283 | < | info->matVecMul3( vScale, vel, sc ); |
284 | < | |
285 | < | for (j = 0; j < 3; j++) { |
286 | < | vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
287 | < | } |
288 | < | |
289 | < | atoms[i]->setVel( vel ); |
290 | < | |
291 | < | if( atoms[i]->isDirectional() ){ |
292 | < | |
293 | < | dAtom = (DirectionalAtom *)atoms[i]; |
294 | < | |
295 | < | // get and convert the torque to body frame |
296 | < | |
297 | < | dAtom->getTrq( Tb ); |
298 | < | dAtom->lab2Body( Tb ); |
299 | < | |
300 | < | // get the angular momentum, and propagate a half step |
301 | < | |
302 | < | dAtom->getJ( ji ); |
303 | < | |
304 | < | for (j=0; j < 3; j++) |
305 | < | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
306 | < | |
307 | < | dAtom->setJ( ji ); |
308 | < | |
309 | < | } |
310 | < | } |
311 | < | } |
312 | < | |
313 | < | int NPTf::readyCheck() { |
314 | < | |
315 | < | // First check to see if we have a target temperature. |
316 | < | // Not having one is fatal. |
256 | > | barostat_kinetic = NkBT * tb2 * trEta / |
257 | > | (2.0 * eConvert); |
258 | ||
259 | < | if (!have_target_temp) { |
260 | < | sprintf( painCave.errMsg, |
320 | < | "NPTf error: You can't use the NPTf integrator\n" |
321 | < | " without a targetTemp!\n" |
322 | < | ); |
323 | < | painCave.isFatal = 1; |
324 | < | simError(); |
325 | < | return -1; |
326 | < | } |
259 | > | barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
260 | > | eConvert; |
261 | ||
262 | < | if (!have_target_pressure) { |
263 | < | sprintf( painCave.errMsg, |
330 | < | "NPTf error: You can't use the NPTf integrator\n" |
331 | < | " without a targetPressure!\n" |
332 | < | ); |
333 | < | painCave.isFatal = 1; |
334 | < | simError(); |
335 | < | return -1; |
336 | < | } |
262 | > | conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
263 | > | barostat_kinetic + barostat_potential; |
264 | ||
265 | < | // We must set tauThermostat. |
266 | < | |
340 | < | if (!have_tau_thermostat) { |
341 | < | sprintf( painCave.errMsg, |
342 | < | "NPTf error: If you use the NPTf\n" |
343 | < | " integrator, you must set tauThermostat.\n"); |
344 | < | painCave.isFatal = 1; |
345 | < | simError(); |
346 | < | return -1; |
347 | < | } |
265 | > | // cout.width(8); |
266 | > | // cout.precision(8); |
267 | ||
268 | < | // We must set tauBarostat. |
269 | < | |
270 | < | if (!have_tau_barostat) { |
352 | < | sprintf( painCave.errMsg, |
353 | < | "NPTf error: If you use the NPTf\n" |
354 | < | " integrator, you must set tauBarostat.\n"); |
355 | < | painCave.isFatal = 1; |
356 | < | simError(); |
357 | < | return -1; |
358 | < | } |
268 | > | // cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
269 | > | // "\t" << thermostat_potential << "\t" << barostat_kinetic << |
270 | > | // "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
271 | ||
272 | < | // We need NkBT a lot, so just set it here: |
273 | < | |
362 | < | NkBT = (double)info->ndf * kB * targetTemp; |
363 | < | |
364 | < | return 1; |
272 | > | return conservedQuantity; |
273 | > | |
274 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |