# | Line 1 | Line 1 | |
---|---|---|
1 | + | #include <cmath> |
2 | #include "Atom.hpp" | |
3 | #include "SRI.hpp" | |
4 | #include "AbstractClasses.hpp" | |
# | Line 8 | Line 9 | |
9 | #include "Integrator.hpp" | |
10 | #include "simError.h" | |
11 | ||
12 | + | #ifdef IS_MPI |
13 | + | #include "mpiSimulation.hpp" |
14 | + | #endif |
15 | ||
16 | + | |
17 | // Basic isotropic thermostating and barostating via the Melchionna | |
18 | // modification of the Hoover algorithm: | |
19 | // | |
# | Line 19 | Line 24 | |
24 | // | |
25 | // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | |
26 | ||
27 | < | NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff): |
28 | < | Integrator( theInfo, the_ff ) |
27 | > | template<typename T> NPTi<T>::NPTi ( SimInfo *theInfo, ForceFields* the_ff): |
28 | > | T( theInfo, the_ff ) |
29 | { | |
30 | chi = 0.0; | |
31 | eta = 0.0; | |
32 | + | integralOfChidt = 0.0; |
33 | have_tau_thermostat = 0; | |
34 | have_tau_barostat = 0; | |
35 | have_target_temp = 0; | |
36 | have_target_pressure = 0; | |
37 | + | have_chi_tolerance = 0; |
38 | + | have_eta_tolerance = 0; |
39 | + | have_pos_iter_tolerance = 0; |
40 | + | |
41 | + | oldPos = new double[3*nAtoms]; |
42 | + | oldVel = new double[3*nAtoms]; |
43 | + | oldJi = new double[3*nAtoms]; |
44 | + | #ifdef IS_MPI |
45 | + | Nparticles = mpiSim->getTotAtoms(); |
46 | + | #else |
47 | + | Nparticles = theInfo->n_atoms; |
48 | + | #endif |
49 | + | |
50 | } | |
51 | ||
52 | < | void NPTi::moveA() { |
53 | < | |
54 | < | int i,j,k; |
55 | < | int atomIndex, aMatIndex; |
52 | > | template<typename T> NPTi<T>::~NPTi() { |
53 | > | delete[] oldPos; |
54 | > | delete[] oldVel; |
55 | > | delete[] oldJi; |
56 | > | } |
57 | > | |
58 | > | template<typename T> void NPTi<T>::moveA() { |
59 | > | |
60 | > | //new version of NPTi |
61 | > | int i, j, k; |
62 | DirectionalAtom* dAtom; | |
63 | < | double Tb[3]; |
64 | < | double ji[3]; |
63 | > | double Tb[3], ji[3]; |
64 | > | double A[3][3], I[3][3]; |
65 | > | double angle, mass; |
66 | > | double vel[3], pos[3], frc[3]; |
67 | > | |
68 | double rj[3]; | |
69 | double instaTemp, instaPress, instaVol; | |
70 | < | double tt2, tb2; |
71 | < | double angle; |
70 | > | double tt2, tb2, scaleFactor; |
71 | > | double COM[3]; |
72 | ||
73 | tt2 = tauThermostat * tauThermostat; | |
74 | tb2 = tauBarostat * tauBarostat; | |
# | Line 48 | Line 76 | void NPTi::moveA() { | |
76 | instaTemp = tStats->getTemperature(); | |
77 | instaPress = tStats->getPressure(); | |
78 | instaVol = tStats->getVolume(); | |
51 | – | |
52 | – | // first evolve chi a half step |
79 | ||
80 | < | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
81 | < | eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); |
82 | < | |
80 | > | tStats->getCOM(COM); |
81 | > | |
82 | > | //evolve velocity half step |
83 | for( i=0; i<nAtoms; i++ ){ | |
58 | – | atomIndex = i * 3; |
59 | – | aMatIndex = i * 9; |
60 | – | |
61 | – | // velocity half step |
62 | – | for( j=atomIndex; j<(atomIndex+3); j++ ) |
63 | – | vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
64 | – | - vel[j]*(chi+eta)); |
84 | ||
85 | < | // position whole step |
85 | > | atoms[i]->getVel( vel ); |
86 | > | atoms[i]->getFrc( frc ); |
87 | ||
88 | < | for( j=atomIndex; j<(atomIndex+3); j=j+3 ) { |
69 | < | rj[0] = pos[j]; |
70 | < | rj[1] = pos[j+1]; |
71 | < | rj[2] = pos[j+2]; |
88 | > | mass = atoms[i]->getMass(); |
89 | ||
90 | < | info->wrapVector(rj); |
91 | < | |
92 | < | pos[j] += dt * (vel[j] + eta*rj[0]); |
93 | < | pos[j+1] += dt * (vel[j+1] + eta*rj[1]); |
77 | < | pos[j+2] += dt * (vel[j+2] + eta*rj[2]); |
90 | > | for (j=0; j < 3; j++) { |
91 | > | // velocity half step (use chi from previous step here): |
92 | > | vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi + eta)); |
93 | > | |
94 | } | |
95 | ||
96 | < | // Scale the box after all the positions have been moved: |
81 | < | |
82 | < | info->scaleBox(dt*eta); |
96 | > | atoms[i]->setVel( vel ); |
97 | ||
98 | if( atoms[i]->isDirectional() ){ | |
99 | ||
100 | dAtom = (DirectionalAtom *)atoms[i]; | |
101 | < | |
101 | > | |
102 | // get and convert the torque to body frame | |
103 | ||
104 | < | Tb[0] = dAtom->getTx(); |
91 | < | Tb[1] = dAtom->getTy(); |
92 | < | Tb[2] = dAtom->getTz(); |
93 | < | |
104 | > | dAtom->getTrq( Tb ); |
105 | dAtom->lab2Body( Tb ); | |
106 | ||
107 | // get the angular momentum, and propagate a half step | |
108 | ||
109 | < | ji[0] = dAtom->getJx(); |
110 | < | ji[1] = dAtom->getJy(); |
111 | < | ji[2] = dAtom->getJz(); |
109 | > | dAtom->getJ( ji ); |
110 | > | |
111 | > | for (j=0; j < 3; j++) |
112 | > | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
113 | ||
102 | – | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
103 | – | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
104 | – | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
105 | – | |
114 | // use the angular velocities to propagate the rotation matrix a | |
115 | // full time step | |
116 | < | |
116 | > | |
117 | > | dAtom->getA(A); |
118 | > | dAtom->getI(I); |
119 | > | |
120 | // rotate about the x-axis | |
121 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
122 | < | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
123 | < | |
121 | > | angle = dt2 * ji[0] / I[0][0]; |
122 | > | this->rotate( 1, 2, angle, ji, A ); |
123 | > | |
124 | // rotate about the y-axis | |
125 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
126 | < | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
125 | > | angle = dt2 * ji[1] / I[1][1]; |
126 | > | this->rotate( 2, 0, angle, ji, A ); |
127 | ||
128 | // rotate about the z-axis | |
129 | < | angle = dt * ji[2] / dAtom->getIzz(); |
130 | < | this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
129 | > | angle = dt * ji[2] / I[2][2]; |
130 | > | this->rotate( 0, 1, angle, ji, A); |
131 | ||
132 | // rotate about the y-axis | |
133 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
134 | < | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
133 | > | angle = dt2 * ji[1] / I[1][1]; |
134 | > | this->rotate( 2, 0, angle, ji, A ); |
135 | ||
136 | // rotate about the x-axis | |
137 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
138 | < | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
137 | > | angle = dt2 * ji[0] / I[0][0]; |
138 | > | this->rotate( 1, 2, angle, ji, A ); |
139 | ||
140 | < | dAtom->setJx( ji[0] ); |
141 | < | dAtom->setJy( ji[1] ); |
142 | < | dAtom->setJz( ji[2] ); |
140 | > | dAtom->setJ( ji ); |
141 | > | dAtom->setA( A ); |
142 | > | } |
143 | > | } |
144 | > | |
145 | > | // evolve chi and eta half step |
146 | > | |
147 | > | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
148 | > | eta += dt2 * ( instaVol * (instaPress - targetPressure) / (p_convert*NkBT*tb2)); |
149 | > | |
150 | > | //calculate the integral of chidt |
151 | > | integralOfChidt += dt2*chi; |
152 | > | |
153 | > | //save the old positions |
154 | > | for(i = 0; i < nAtoms; i++){ |
155 | > | atoms[i]->getPos(pos); |
156 | > | for(j = 0; j < 3; j++) |
157 | > | oldPos[i*3 + j] = pos[j]; |
158 | > | } |
159 | > | |
160 | > | //the first estimation of r(t+dt) is equal to r(t) |
161 | > | |
162 | > | for(k = 0; k < 4; k ++){ |
163 | > | |
164 | > | for(i =0 ; i < nAtoms; i++){ |
165 | > | |
166 | > | atoms[i]->getVel(vel); |
167 | > | atoms[i]->getPos(pos); |
168 | > | |
169 | > | for(j = 0; j < 3; j++) |
170 | > | rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j]; |
171 | > | |
172 | > | for(j = 0; j < 3; j++) |
173 | > | pos[j] = oldPos[i*3 + j] + dt*(vel[j] + eta*rj[j]); |
174 | > | |
175 | > | atoms[i]->setPos( pos ); |
176 | } | |
177 | ||
178 | + | if (nConstrained){ |
179 | + | constrainA(); |
180 | + | } |
181 | } | |
182 | + | |
183 | + | |
184 | + | // Scale the box after all the positions have been moved: |
185 | + | |
186 | + | scaleFactor = exp(dt*eta); |
187 | + | |
188 | + | if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { |
189 | + | sprintf( painCave.errMsg, |
190 | + | "NPTi error: Attempting a Box scaling of more than 10 percent" |
191 | + | " check your tauBarostat, as it is probably too small!\n" |
192 | + | " eta = %lf, scaleFactor = %lf\n", eta, scaleFactor |
193 | + | ); |
194 | + | painCave.isFatal = 1; |
195 | + | simError(); |
196 | + | } else { |
197 | + | info->scaleBox(scaleFactor); |
198 | + | } |
199 | + | |
200 | } | |
201 | ||
202 | < | void NPTi::moveB( void ){ |
203 | < | int i,j,k; |
204 | < | int atomIndex; |
202 | > | template<typename T> void NPTi<T>::moveB( void ){ |
203 | > | |
204 | > | //new version of NPTi |
205 | > | int i, j, k; |
206 | DirectionalAtom* dAtom; | |
207 | < | double Tb[3]; |
208 | < | double ji[3]; |
209 | < | double instaTemp, instaPress, instaVol; |
207 | > | double Tb[3], ji[3]; |
208 | > | double vel[3], frc[3]; |
209 | > | double mass; |
210 | > | |
211 | > | double instTemp, instPress, instVol; |
212 | double tt2, tb2; | |
213 | + | double oldChi, prevChi; |
214 | + | double oldEta, preEta; |
215 | ||
216 | tt2 = tauThermostat * tauThermostat; | |
217 | tb2 = tauBarostat * tauBarostat; | |
218 | ||
149 | – | instaTemp = tStats->getTemperature(); |
150 | – | instaPress = tStats->getPressure(); |
151 | – | instaVol = tStats->getVolume(); |
219 | ||
220 | < | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
221 | < | eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); |
222 | < | |
220 | > | // Set things up for the iteration: |
221 | > | |
222 | > | oldChi = chi; |
223 | > | oldEta = eta; |
224 | > | |
225 | for( i=0; i<nAtoms; i++ ){ | |
226 | < | atomIndex = i * 3; |
227 | < | |
228 | < | // velocity half step |
229 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
230 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
231 | < | vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
163 | < | - vel[j]*(chi+eta)); |
164 | < | |
226 | > | |
227 | > | atoms[i]->getVel( vel ); |
228 | > | |
229 | > | for (j=0; j < 3; j++) |
230 | > | oldVel[3*i + j] = vel[j]; |
231 | > | |
232 | if( atoms[i]->isDirectional() ){ | |
233 | < | |
233 | > | |
234 | dAtom = (DirectionalAtom *)atoms[i]; | |
235 | + | |
236 | + | dAtom->getJ( ji ); |
237 | + | |
238 | + | for (j=0; j < 3; j++) |
239 | + | oldJi[3*i + j] = ji[j]; |
240 | + | |
241 | + | } |
242 | + | } |
243 | + | |
244 | + | // do the iteration: |
245 | + | |
246 | + | instVol = tStats->getVolume(); |
247 | + | |
248 | + | for (k=0; k < 4; k++) { |
249 | + | |
250 | + | instTemp = tStats->getTemperature(); |
251 | + | instPress = tStats->getPressure(); |
252 | + | |
253 | + | // evolve chi another half step using the temperature at t + dt/2 |
254 | + | |
255 | + | prevChi = chi; |
256 | + | chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) / |
257 | + | (tauThermostat*tauThermostat); |
258 | + | |
259 | + | preEta = eta; |
260 | + | eta = oldEta + dt2 * ( instVol * (instPress - targetPressure) / |
261 | + | (p_convert*NkBT*tb2)); |
262 | + | |
263 | + | |
264 | + | for( i=0; i<nAtoms; i++ ){ |
265 | + | |
266 | + | atoms[i]->getFrc( frc ); |
267 | + | atoms[i]->getVel(vel); |
268 | ||
269 | < | // get and convert the torque to body frame |
269 | > | mass = atoms[i]->getMass(); |
270 | ||
271 | < | Tb[0] = dAtom->getTx(); |
272 | < | Tb[1] = dAtom->getTy(); |
273 | < | Tb[2] = dAtom->getTz(); |
271 | > | // velocity half step |
272 | > | for (j=0; j < 3; j++) |
273 | > | vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*(chi + eta)); |
274 | ||
275 | < | dAtom->lab2Body( Tb ); |
275 | > | atoms[i]->setVel( vel ); |
276 | ||
277 | < | // get the angular momentum, and complete the angular momentum |
278 | < | // half step |
277 | > | if( atoms[i]->isDirectional() ){ |
278 | > | |
279 | > | dAtom = (DirectionalAtom *)atoms[i]; |
280 | > | |
281 | > | // get and convert the torque to body frame |
282 | > | |
283 | > | dAtom->getTrq( Tb ); |
284 | > | dAtom->lab2Body( Tb ); |
285 | > | |
286 | > | for (j=0; j < 3; j++) |
287 | > | ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
288 | ||
289 | < | ji[0] = dAtom->getJx(); |
290 | < | ji[1] = dAtom->getJy(); |
182 | < | ji[2] = dAtom->getJz(); |
183 | < | |
184 | < | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
185 | < | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
186 | < | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
187 | < | |
188 | < | dAtom->setJx( ji[0] ); |
189 | < | dAtom->setJy( ji[1] ); |
190 | < | dAtom->setJz( ji[2] ); |
289 | > | dAtom->setJ( ji ); |
290 | > | } |
291 | } | |
292 | + | |
293 | + | if (nConstrained){ |
294 | + | constrainB(); |
295 | + | } |
296 | + | |
297 | + | if (fabs(prevChi - chi) <= |
298 | + | chiTolerance && fabs(preEta -eta) <= etaTolerance) |
299 | + | break; |
300 | } | |
301 | + | |
302 | + | //calculate integral of chida |
303 | + | integralOfChidt += dt2*chi; |
304 | + | |
305 | + | |
306 | } | |
307 | ||
308 | < | int NPTi::readyCheck() { |
308 | > | template<typename T> void NPTi<T>::resetIntegrator() { |
309 | > | chi = 0.0; |
310 | > | eta = 0.0; |
311 | > | } |
312 | > | |
313 | > | template<typename T> int NPTi<T>::readyCheck() { |
314 | > | |
315 | > | //check parent's readyCheck() first |
316 | > | if (T::readyCheck() == -1) |
317 | > | return -1; |
318 | ||
319 | // First check to see if we have a target temperature. | |
320 | // Not having one is fatal. | |
# | Line 239 | Line 361 | int NPTi::readyCheck() { | |
361 | return -1; | |
362 | } | |
363 | ||
364 | + | if (!have_chi_tolerance) { |
365 | + | sprintf( painCave.errMsg, |
366 | + | "NPTi warning: setting chi tolerance to 1e-6\n"); |
367 | + | chiTolerance = 1e-6; |
368 | + | have_chi_tolerance = 1; |
369 | + | painCave.isFatal = 0; |
370 | + | simError(); |
371 | + | } |
372 | + | |
373 | + | if (!have_eta_tolerance) { |
374 | + | sprintf( painCave.errMsg, |
375 | + | "NPTi warning: setting eta tolerance to 1e-6\n"); |
376 | + | etaTolerance = 1e-6; |
377 | + | have_eta_tolerance = 1; |
378 | + | painCave.isFatal = 0; |
379 | + | simError(); |
380 | + | } |
381 | // We need NkBT a lot, so just set it here: | |
382 | ||
383 | < | NkBT = (double)info->ndf * kB * targetTemp; |
383 | > | NkBT = (double)Nparticles * kB * targetTemp; |
384 | > | fkBT = (double)info->ndf * kB * targetTemp; |
385 | ||
386 | return 1; | |
387 | } | |
388 | + | |
389 | + | template<typename T> double NPTi<T>::getConservedQuantity(void){ |
390 | + | |
391 | + | double conservedQuantity; |
392 | + | double tb2; |
393 | + | double eta2; |
394 | + | double E_NPT; |
395 | + | double U; |
396 | + | double TS; |
397 | + | double PV; |
398 | + | double extra; |
399 | + | |
400 | + | U = tStats->getTotalE(); |
401 | + | |
402 | + | TS = fkBT * |
403 | + | (integralOfChidt + tauThermostat * tauThermostat * chi * chi / 2.0) / eConvert; |
404 | + | |
405 | + | PV = (targetPressure * tStats->getVolume() / p_convert) / eConvert; |
406 | + | |
407 | + | tb2 = tauBarostat * tauBarostat; |
408 | + | eta2 = eta * eta; |
409 | + | |
410 | + | |
411 | + | extra = ((double)info->ndfTrans * kB * targetTemp * tb2 * eta2 / 2.0) / eConvert; |
412 | + | |
413 | + | cout.width(8); |
414 | + | cout.precision(8); |
415 | + | |
416 | + | |
417 | + | // cout << info->getTime() << "\t" |
418 | + | // << chi << "\t" |
419 | + | // << eta << "\t" |
420 | + | // << U << "\t" |
421 | + | // << TS << "\t" |
422 | + | // << PV << "\t" |
423 | + | // << extra << "\t" |
424 | + | // << U+TS+PV+extra << endl; |
425 | + | |
426 | + | conservedQuantity = U+TS+PV+extra; |
427 | + | return conservedQuantity; |
428 | + | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |