# | Line 1 | Line 1 | |
---|---|---|
1 | #include <cstdlib> | |
2 | #include <cstring> | |
3 | + | #include <cmath> |
4 | ||
5 | + | #include <iostream> |
6 | + | using namespace std; |
7 | ||
8 | #include "SimInfo.hpp" | |
9 | #define __C | |
# | Line 9 | Line 12 | |
12 | ||
13 | #include "fortranWrappers.hpp" | |
14 | ||
15 | + | #ifdef IS_MPI |
16 | + | #include "mpiSimulation.hpp" |
17 | + | #endif |
18 | + | |
19 | + | inline double roundMe( double x ){ |
20 | + | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
21 | + | } |
22 | + | |
23 | + | |
24 | SimInfo* currentInfo; | |
25 | ||
26 | SimInfo::SimInfo(){ | |
# | Line 16 | Line 28 | SimInfo::SimInfo(){ | |
28 | n_constraints = 0; | |
29 | n_oriented = 0; | |
30 | n_dipoles = 0; | |
31 | + | ndf = 0; |
32 | + | ndfRaw = 0; |
33 | the_integrator = NULL; | |
34 | setTemp = 0; | |
35 | thermalTime = 0.0; | |
# | Line 29 | Line 43 | SimInfo::SimInfo(){ | |
43 | useGB = 0; | |
44 | useEAM = 0; | |
45 | ||
46 | + | wrapMeSimInfo( this ); |
47 | + | } |
48 | ||
49 | + | void SimInfo::setBox(double newBox[3]) { |
50 | + | |
51 | + | int i, j; |
52 | + | double tempMat[3][3]; |
53 | ||
54 | < | wrapMeSimInfo( this ); |
54 | > | for(i=0; i<3; i++) |
55 | > | for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
56 | > | |
57 | > | tempMat[0][0] = newBox[0]; |
58 | > | tempMat[1][1] = newBox[1]; |
59 | > | tempMat[2][2] = newBox[2]; |
60 | > | |
61 | > | setBoxM( tempMat ); |
62 | > | |
63 | > | } |
64 | > | |
65 | > | void SimInfo::setBoxM( double theBox[3][3] ){ |
66 | > | |
67 | > | int i, j, status; |
68 | > | double smallestBoxL, maxCutoff; |
69 | > | double FortranHmat[9]; // to preserve compatibility with Fortran the |
70 | > | // ordering in the array is as follows: |
71 | > | // [ 0 3 6 ] |
72 | > | // [ 1 4 7 ] |
73 | > | // [ 2 5 8 ] |
74 | > | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
75 | > | |
76 | > | |
77 | > | for(i=0; i < 3; i++) |
78 | > | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
79 | > | |
80 | > | cerr |
81 | > | << "setting Hmat ->\n" |
82 | > | << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n" |
83 | > | << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n" |
84 | > | << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n"; |
85 | > | |
86 | > | calcBoxL(); |
87 | > | calcHmatInv(); |
88 | > | |
89 | > | for(i=0; i < 3; i++) { |
90 | > | for (j=0; j < 3; j++) { |
91 | > | FortranHmat[3*j + i] = Hmat[i][j]; |
92 | > | FortranHmatInv[3*j + i] = HmatInv[i][j]; |
93 | > | } |
94 | > | } |
95 | > | |
96 | > | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
97 | > | |
98 | > | smallestBoxL = boxLx; |
99 | > | if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
100 | > | if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
101 | > | |
102 | > | maxCutoff = smallestBoxL / 2.0; |
103 | > | |
104 | > | if (rList > maxCutoff) { |
105 | > | sprintf( painCave.errMsg, |
106 | > | "New Box size is forcing neighborlist radius down to %lf\n", |
107 | > | maxCutoff ); |
108 | > | painCave.isFatal = 0; |
109 | > | simError(); |
110 | > | |
111 | > | rList = maxCutoff; |
112 | > | |
113 | > | sprintf( painCave.errMsg, |
114 | > | "New Box size is forcing cutoff radius down to %lf\n", |
115 | > | maxCutoff - 1.0 ); |
116 | > | painCave.isFatal = 0; |
117 | > | simError(); |
118 | > | |
119 | > | rCut = rList - 1.0; |
120 | > | |
121 | > | // list radius changed so we have to refresh the simulation structure. |
122 | > | refreshSim(); |
123 | > | } |
124 | > | |
125 | > | if (rCut > maxCutoff) { |
126 | > | sprintf( painCave.errMsg, |
127 | > | "New Box size is forcing cutoff radius down to %lf\n", |
128 | > | maxCutoff ); |
129 | > | painCave.isFatal = 0; |
130 | > | simError(); |
131 | > | |
132 | > | status = 0; |
133 | > | LJ_new_rcut(&rCut, &status); |
134 | > | if (status != 0) { |
135 | > | sprintf( painCave.errMsg, |
136 | > | "Error in recomputing LJ shifts based on new rcut\n"); |
137 | > | painCave.isFatal = 1; |
138 | > | simError(); |
139 | > | } |
140 | > | } |
141 | > | } |
142 | > | |
143 | > | |
144 | > | void SimInfo::getBoxM (double theBox[3][3]) { |
145 | > | |
146 | > | int i, j; |
147 | > | for(i=0; i<3; i++) |
148 | > | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
149 | > | } |
150 | > | |
151 | > | |
152 | > | void SimInfo::scaleBox(double scale) { |
153 | > | double theBox[3][3]; |
154 | > | int i, j; |
155 | > | |
156 | > | cerr << "Scaling box by " << scale << "\n"; |
157 | > | |
158 | > | for(i=0; i<3; i++) |
159 | > | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
160 | > | |
161 | > | setBoxM(theBox); |
162 | > | |
163 | > | } |
164 | > | |
165 | > | void SimInfo::calcHmatInv( void ) { |
166 | > | |
167 | > | int i,j; |
168 | > | double smallDiag; |
169 | > | double tol; |
170 | > | double sanity[3][3]; |
171 | > | |
172 | > | invertMat3( Hmat, HmatInv ); |
173 | > | |
174 | > | // Check the inverse to make sure it is sane: |
175 | > | |
176 | > | matMul3( Hmat, HmatInv, sanity ); |
177 | > | |
178 | > | // check to see if Hmat is orthorhombic |
179 | > | |
180 | > | smallDiag = Hmat[0][0]; |
181 | > | if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; |
182 | > | if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; |
183 | > | tol = smallDiag * 1E-6; |
184 | > | |
185 | > | orthoRhombic = 1; |
186 | > | |
187 | > | for (i = 0; i < 3; i++ ) { |
188 | > | for (j = 0 ; j < 3; j++) { |
189 | > | if (i != j) { |
190 | > | if (orthoRhombic) { |
191 | > | if (Hmat[i][j] >= tol) orthoRhombic = 0; |
192 | > | } |
193 | > | } |
194 | > | } |
195 | > | } |
196 | > | } |
197 | > | |
198 | > | double SimInfo::matDet3(double a[3][3]) { |
199 | > | int i, j, k; |
200 | > | double determinant; |
201 | > | |
202 | > | determinant = 0.0; |
203 | > | |
204 | > | for(i = 0; i < 3; i++) { |
205 | > | j = (i+1)%3; |
206 | > | k = (i+2)%3; |
207 | > | |
208 | > | determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); |
209 | > | } |
210 | > | |
211 | > | return determinant; |
212 | > | } |
213 | > | |
214 | > | void SimInfo::invertMat3(double a[3][3], double b[3][3]) { |
215 | > | |
216 | > | int i, j, k, l, m, n; |
217 | > | double determinant; |
218 | > | |
219 | > | determinant = matDet3( a ); |
220 | > | |
221 | > | if (determinant == 0.0) { |
222 | > | sprintf( painCave.errMsg, |
223 | > | "Can't invert a matrix with a zero determinant!\n"); |
224 | > | painCave.isFatal = 1; |
225 | > | simError(); |
226 | > | } |
227 | > | |
228 | > | for (i=0; i < 3; i++) { |
229 | > | j = (i+1)%3; |
230 | > | k = (i+2)%3; |
231 | > | for(l = 0; l < 3; l++) { |
232 | > | m = (l+1)%3; |
233 | > | n = (l+2)%3; |
234 | > | |
235 | > | b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; |
236 | > | } |
237 | > | } |
238 | } | |
239 | ||
240 | + | void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { |
241 | + | double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
242 | + | |
243 | + | r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
244 | + | r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
245 | + | r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; |
246 | + | |
247 | + | r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; |
248 | + | r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; |
249 | + | r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; |
250 | + | |
251 | + | r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; |
252 | + | r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; |
253 | + | r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; |
254 | + | |
255 | + | c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; |
256 | + | c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; |
257 | + | c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
258 | + | } |
259 | + | |
260 | + | void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { |
261 | + | double a0, a1, a2; |
262 | + | |
263 | + | a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
264 | + | |
265 | + | outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; |
266 | + | outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; |
267 | + | outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
268 | + | } |
269 | + | |
270 | + | void SimInfo::calcBoxL( void ){ |
271 | + | |
272 | + | double dx, dy, dz, dsq; |
273 | + | int i; |
274 | + | |
275 | + | // boxVol = Determinant of Hmat |
276 | + | |
277 | + | boxVol = matDet3( Hmat ); |
278 | + | |
279 | + | // boxLx |
280 | + | |
281 | + | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
282 | + | dsq = dx*dx + dy*dy + dz*dz; |
283 | + | boxLx = sqrt( dsq ); |
284 | + | |
285 | + | // boxLy |
286 | + | |
287 | + | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
288 | + | dsq = dx*dx + dy*dy + dz*dz; |
289 | + | boxLy = sqrt( dsq ); |
290 | + | |
291 | + | // boxLz |
292 | + | |
293 | + | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
294 | + | dsq = dx*dx + dy*dy + dz*dz; |
295 | + | boxLz = sqrt( dsq ); |
296 | + | |
297 | + | } |
298 | + | |
299 | + | |
300 | + | void SimInfo::wrapVector( double thePos[3] ){ |
301 | + | |
302 | + | int i, j, k; |
303 | + | double scaled[3]; |
304 | + | |
305 | + | if( !orthoRhombic ){ |
306 | + | // calc the scaled coordinates. |
307 | + | |
308 | + | |
309 | + | matVecMul3(HmatInv, thePos, scaled); |
310 | + | |
311 | + | for(i=0; i<3; i++) |
312 | + | scaled[i] -= roundMe(scaled[i]); |
313 | + | |
314 | + | // calc the wrapped real coordinates from the wrapped scaled coordinates |
315 | + | |
316 | + | matVecMul3(Hmat, scaled, thePos); |
317 | + | |
318 | + | } |
319 | + | else{ |
320 | + | // calc the scaled coordinates. |
321 | + | |
322 | + | for(i=0; i<3; i++) |
323 | + | scaled[i] = thePos[i]*HmatInv[i][i]; |
324 | + | |
325 | + | // wrap the scaled coordinates |
326 | + | |
327 | + | for(i=0; i<3; i++) |
328 | + | scaled[i] -= roundMe(scaled[i]); |
329 | + | |
330 | + | // calc the wrapped real coordinates from the wrapped scaled coordinates |
331 | + | |
332 | + | for(i=0; i<3; i++) |
333 | + | thePos[i] = scaled[i]*Hmat[i][i]; |
334 | + | } |
335 | + | |
336 | + | } |
337 | + | |
338 | + | |
339 | + | int SimInfo::getNDF(){ |
340 | + | int ndf_local, ndf; |
341 | + | |
342 | + | ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
343 | + | |
344 | + | #ifdef IS_MPI |
345 | + | MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
346 | + | #else |
347 | + | ndf = ndf_local; |
348 | + | #endif |
349 | + | |
350 | + | ndf = ndf - 3; |
351 | + | |
352 | + | return ndf; |
353 | + | } |
354 | + | |
355 | + | int SimInfo::getNDFraw() { |
356 | + | int ndfRaw_local, ndfRaw; |
357 | + | |
358 | + | // Raw degrees of freedom that we have to set |
359 | + | ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
360 | + | |
361 | + | #ifdef IS_MPI |
362 | + | MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
363 | + | #else |
364 | + | ndfRaw = ndfRaw_local; |
365 | + | #endif |
366 | + | |
367 | + | return ndfRaw; |
368 | + | } |
369 | + | |
370 | void SimInfo::refreshSim(){ | |
371 | ||
372 | simtype fInfo; | |
373 | int isError; | |
374 | + | int n_global; |
375 | int* excl; | |
376 | + | |
377 | + | fInfo.rrf = 0.0; |
378 | + | fInfo.rt = 0.0; |
379 | + | fInfo.dielect = 0.0; |
380 | ||
43 | – | fInfo.box[0] = box_x; |
44 | – | fInfo.box[1] = box_y; |
45 | – | fInfo.box[2] = box_z; |
46 | – | |
381 | fInfo.rlist = rList; | |
382 | fInfo.rcut = rCut; | |
49 | – | fInfo.rrf = ecr; |
50 | – | fInfo.rt = ecr - est; |
51 | – | fInfo.dielect = dielectric; |
383 | ||
384 | + | if( useDipole ){ |
385 | + | fInfo.rrf = ecr; |
386 | + | fInfo.rt = ecr - est; |
387 | + | if( useReactionField )fInfo.dielect = dielectric; |
388 | + | } |
389 | + | |
390 | fInfo.SIM_uses_PBC = usePBC; | |
391 | + | //fInfo.SIM_uses_LJ = 0; |
392 | fInfo.SIM_uses_LJ = useLJ; | |
393 | < | |
394 | < | //fInfo.SIM_uses_sticky = useSticky; |
57 | < | fInfo.SIM_uses_sticky = 0; |
393 | > | fInfo.SIM_uses_sticky = useSticky; |
394 | > | //fInfo.SIM_uses_sticky = 0; |
395 | fInfo.SIM_uses_dipoles = useDipole; | |
396 | //fInfo.SIM_uses_dipoles = 0; | |
397 | < | fInfo.SIM_uses_RF = useReactionField; |
397 | > | //fInfo.SIM_uses_RF = useReactionField; |
398 | > | fInfo.SIM_uses_RF = 0; |
399 | fInfo.SIM_uses_GB = useGB; | |
400 | fInfo.SIM_uses_EAM = useEAM; | |
401 | ||
402 | excl = Exclude::getArray(); | |
403 | ||
404 | + | #ifdef IS_MPI |
405 | + | n_global = mpiSim->getTotAtoms(); |
406 | + | #else |
407 | + | n_global = n_atoms; |
408 | + | #endif |
409 | + | |
410 | isError = 0; | |
411 | ||
412 | < | fInfo; |
413 | < | n_atoms; |
414 | < | identArray; |
71 | < | n_exclude; |
72 | < | excludes; |
73 | < | nGlobalExcludes; |
74 | < | globalExcludes; |
75 | < | isError; |
412 | > | setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
413 | > | &nGlobalExcludes, globalExcludes, molMembershipArray, |
414 | > | &isError ); |
415 | ||
77 | – | setFsimulation( &fInfo, &n_atoms, identArray, &n_exclude, excl, |
78 | – | &nGlobalExcludes, globalExcludes, &isError ); |
79 | – | |
416 | if( isError ){ | |
417 | ||
418 | sprintf( painCave.errMsg, | |
# | Line 90 | Line 426 | void SimInfo::refreshSim(){ | |
426 | "succesfully sent the simulation information to fortran.\n"); | |
427 | MPIcheckPoint(); | |
428 | #endif // is_mpi | |
429 | + | |
430 | + | this->ndf = this->getNDF(); |
431 | + | this->ndfRaw = this->getNDFraw(); |
432 | + | |
433 | } | |
434 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |