# | Line 1 | Line 1 | |
---|---|---|
1 | #include <cstdlib> | |
2 | #include <cstring> | |
3 | + | #include <cmath> |
4 | ||
5 | ||
6 | #include "SimInfo.hpp" | |
# | Line 9 | Line 10 | |
10 | ||
11 | #include "fortranWrappers.hpp" | |
12 | ||
13 | + | #ifdef IS_MPI |
14 | + | #include "mpiSimulation.hpp" |
15 | + | #endif |
16 | + | |
17 | SimInfo* currentInfo; | |
18 | ||
19 | SimInfo::SimInfo(){ | |
# | Line 35 | Line 40 | void SimInfo::setBox(double newBox[3]) { | |
40 | } | |
41 | ||
42 | void SimInfo::setBox(double newBox[3]) { | |
43 | < | double smallestBox, maxCutoff; |
43 | > | |
44 | > | double smallestBoxL, maxCutoff; |
45 | int status; | |
46 | < | box_x = newBox[0]; |
41 | < | box_y = newBox[1]; |
42 | < | box_z = newBox[2]; |
43 | < | setFortranBoxSize(newBox); |
46 | > | int i; |
47 | ||
48 | < | smallestBox = box_x; |
46 | < | if (box_y < smallestBox) smallestBox = box_y; |
47 | < | if (box_z < smallestBox) smallestBox = box_z; |
48 | > | for(i=0; i<9; i++) Hmat[i] = 0.0;; |
49 | ||
50 | < | maxCutoff = smallestBox / 2.0; |
50 | > | Hmat[0] = newBox[0]; |
51 | > | Hmat[4] = newBox[1]; |
52 | > | Hmat[8] = newBox[2]; |
53 | ||
54 | + | calcHmatI(); |
55 | + | calcBoxL(); |
56 | + | |
57 | + | setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
58 | + | |
59 | + | smallestBoxL = boxLx; |
60 | + | if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
61 | + | if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
62 | + | |
63 | + | maxCutoff = smallestBoxL / 2.0; |
64 | + | |
65 | if (rList > maxCutoff) { | |
66 | sprintf( painCave.errMsg, | |
67 | "New Box size is forcing neighborlist radius down to %lf\n", | |
# | Line 87 | Line 101 | void SimInfo::setBox(double newBox[3]) { | |
101 | } | |
102 | } | |
103 | ||
104 | < | void SimInfo::getBox(double theBox[3]) { |
105 | < | theBox[0] = box_x; |
106 | < | theBox[1] = box_y; |
107 | < | theBox[2] = box_z; |
104 | > | void SimInfo::setBoxM( double theBox[9] ){ |
105 | > | |
106 | > | int i, status; |
107 | > | double smallestBoxL, maxCutoff; |
108 | > | |
109 | > | for(i=0; i<9; i++) Hmat[i] = theBox[i]; |
110 | > | calcHmatI(); |
111 | > | calcBoxL(); |
112 | > | |
113 | > | setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
114 | > | |
115 | > | smallestBoxL = boxLx; |
116 | > | if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
117 | > | if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
118 | > | |
119 | > | maxCutoff = smallestBoxL / 2.0; |
120 | > | |
121 | > | if (rList > maxCutoff) { |
122 | > | sprintf( painCave.errMsg, |
123 | > | "New Box size is forcing neighborlist radius down to %lf\n", |
124 | > | maxCutoff ); |
125 | > | painCave.isFatal = 0; |
126 | > | simError(); |
127 | > | |
128 | > | rList = maxCutoff; |
129 | > | |
130 | > | sprintf( painCave.errMsg, |
131 | > | "New Box size is forcing cutoff radius down to %lf\n", |
132 | > | maxCutoff - 1.0 ); |
133 | > | painCave.isFatal = 0; |
134 | > | simError(); |
135 | > | |
136 | > | rCut = rList - 1.0; |
137 | > | |
138 | > | // list radius changed so we have to refresh the simulation structure. |
139 | > | refreshSim(); |
140 | > | } |
141 | > | |
142 | > | if (rCut > maxCutoff) { |
143 | > | sprintf( painCave.errMsg, |
144 | > | "New Box size is forcing cutoff radius down to %lf\n", |
145 | > | maxCutoff ); |
146 | > | painCave.isFatal = 0; |
147 | > | simError(); |
148 | > | |
149 | > | status = 0; |
150 | > | LJ_new_rcut(&rCut, &status); |
151 | > | if (status != 0) { |
152 | > | sprintf( painCave.errMsg, |
153 | > | "Error in recomputing LJ shifts based on new rcut\n"); |
154 | > | painCave.isFatal = 1; |
155 | > | simError(); |
156 | > | } |
157 | > | } |
158 | } | |
159 | ||
160 | + | |
161 | + | void SimInfo::getBox(double theBox[9]) { |
162 | + | |
163 | + | int i; |
164 | + | for(i=0; i<9; i++) theBox[i] = Hmat[i]; |
165 | + | } |
166 | + | |
167 | + | |
168 | + | void SimInfo::calcHmatI( void ) { |
169 | + | |
170 | + | double C[3][3]; |
171 | + | double detHmat; |
172 | + | int i, j, k; |
173 | + | double smallDiag; |
174 | + | double tol; |
175 | + | double sanity[3][3]; |
176 | + | |
177 | + | // calculate the adjunct of Hmat; |
178 | + | |
179 | + | C[0][0] = ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); |
180 | + | C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); |
181 | + | C[2][0] = ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); |
182 | + | |
183 | + | C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); |
184 | + | C[1][1] = ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); |
185 | + | C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); |
186 | + | |
187 | + | C[0][2] = ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); |
188 | + | C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); |
189 | + | C[2][2] = ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); |
190 | + | |
191 | + | // calcutlate the determinant of Hmat |
192 | + | |
193 | + | detHmat = 0.0; |
194 | + | for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; |
195 | + | |
196 | + | |
197 | + | // H^-1 = C^T / det(H) |
198 | + | |
199 | + | i=0; |
200 | + | for(j=0; j<3; j++){ |
201 | + | for(k=0; k<3; k++){ |
202 | + | |
203 | + | HmatI[i] = C[j][k] / detHmat; |
204 | + | i++; |
205 | + | } |
206 | + | } |
207 | + | |
208 | + | // sanity check |
209 | + | |
210 | + | for(i=0; i<3; i++){ |
211 | + | for(j=0; j<3; j++){ |
212 | + | |
213 | + | sanity[i][j] = 0.0; |
214 | + | for(k=0; k<3; k++){ |
215 | + | sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; |
216 | + | } |
217 | + | } |
218 | + | } |
219 | + | |
220 | + | cerr << "sanity => \n" |
221 | + | << sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" |
222 | + | << sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" |
223 | + | << sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2] |
224 | + | << "\n"; |
225 | + | |
226 | + | |
227 | + | // check to see if Hmat is orthorhombic |
228 | + | |
229 | + | smallDiag = Hmat[0]; |
230 | + | if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; |
231 | + | if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; |
232 | + | tol = smallDiag * 1E-6; |
233 | + | |
234 | + | orthoRhombic = 1; |
235 | + | for(i=0; (i<9) && orthoRhombic; i++){ |
236 | + | |
237 | + | if( (i%4) ){ // ignore the diagonals (0, 4, and 8) |
238 | + | orthoRhombic = (Hmat[i] <= tol); |
239 | + | } |
240 | + | } |
241 | + | |
242 | + | } |
243 | + | |
244 | + | void SimInfo::calcBoxL( void ){ |
245 | + | |
246 | + | double dx, dy, dz, dsq; |
247 | + | int i; |
248 | + | |
249 | + | // boxVol = h1 (dot) h2 (cross) h3 |
250 | + | |
251 | + | boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
252 | + | + Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
253 | + | + Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
254 | + | |
255 | + | |
256 | + | // boxLx |
257 | + | |
258 | + | dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; |
259 | + | dsq = dx*dx + dy*dy + dz*dz; |
260 | + | boxLx = sqrt( dsq ); |
261 | + | |
262 | + | // boxLy |
263 | + | |
264 | + | dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; |
265 | + | dsq = dx*dx + dy*dy + dz*dz; |
266 | + | boxLy = sqrt( dsq ); |
267 | + | |
268 | + | // boxLz |
269 | + | |
270 | + | dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; |
271 | + | dsq = dx*dx + dy*dy + dz*dz; |
272 | + | boxLz = sqrt( dsq ); |
273 | + | |
274 | + | } |
275 | + | |
276 | + | |
277 | + | void SimInfo::wrapVector( double thePos[3] ){ |
278 | + | |
279 | + | int i, j, k; |
280 | + | double scaled[3]; |
281 | + | |
282 | + | if( !orthoRhombic ){ |
283 | + | // calc the scaled coordinates. |
284 | + | |
285 | + | for(i=0; i<3; i++) |
286 | + | scaled[i] = |
287 | + | thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; |
288 | + | |
289 | + | // wrap the scaled coordinates |
290 | + | |
291 | + | for(i=0; i<3; i++) |
292 | + | scaled[i] -= round(scaled[i]); |
293 | + | |
294 | + | // calc the wrapped real coordinates from the wrapped scaled coordinates |
295 | + | |
296 | + | for(i=0; i<3; i++) |
297 | + | thePos[i] = |
298 | + | scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[3]*Hmat[i+6]; |
299 | + | } |
300 | + | else{ |
301 | + | // calc the scaled coordinates. |
302 | + | |
303 | + | for(i=0; i<3; i++) |
304 | + | scaled[i] = thePos[i]*HmatI[i*4]; |
305 | + | |
306 | + | // wrap the scaled coordinates |
307 | + | |
308 | + | for(i=0; i<3; i++) |
309 | + | scaled[i] -= round(scaled[i]); |
310 | + | |
311 | + | // calc the wrapped real coordinates from the wrapped scaled coordinates |
312 | + | |
313 | + | for(i=0; i<3; i++) |
314 | + | thePos[i] = scaled[i]*Hmat[i*4]; |
315 | + | } |
316 | + | |
317 | + | |
318 | + | } |
319 | + | |
320 | + | |
321 | int SimInfo::getNDF(){ | |
322 | int ndf_local, ndf; | |
323 | ||
# | Line 128 | Line 353 | void SimInfo::refreshSim(){ | |
353 | ||
354 | simtype fInfo; | |
355 | int isError; | |
356 | + | int n_global; |
357 | int* excl; | |
358 | ||
359 | fInfo.rrf = 0.0; | |
# | Line 161 | Line 387 | void SimInfo::refreshSim(){ | |
387 | ||
388 | excl = Exclude::getArray(); | |
389 | ||
390 | + | #ifdef IS_MPI |
391 | + | n_global = mpiSim->getTotAtoms(); |
392 | + | #else |
393 | + | n_global = n_atoms; |
394 | + | #endif |
395 | + | |
396 | isError = 0; | |
397 | ||
398 | < | // fInfo; |
399 | < | // n_atoms; |
400 | < | // identArray; |
169 | < | // n_exclude; |
170 | < | // excludes; |
171 | < | // nGlobalExcludes; |
172 | < | // globalExcludes; |
173 | < | // isError; |
398 | > | setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
399 | > | &nGlobalExcludes, globalExcludes, molMembershipArray, |
400 | > | &isError ); |
401 | ||
175 | – | setFsimulation( &fInfo, &n_atoms, identArray, &n_exclude, excl, |
176 | – | &nGlobalExcludes, globalExcludes, &isError ); |
177 | – | |
402 | if( isError ){ | |
403 | ||
404 | sprintf( painCave.errMsg, |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |