# | Line 4 | Line 4 | using namespace std; | |
---|---|---|
4 | ||
5 | #ifdef IS_MPI | |
6 | #include <mpi.h> | |
7 | – | #include <mpi++.h> |
7 | #endif //is_mpi | |
8 | ||
9 | #include "Thermo.hpp" | |
10 | #include "SRI.hpp" | |
11 | #include "Integrator.hpp" | |
12 | + | #include "simError.h" |
13 | ||
14 | #ifdef IS_MPI | |
15 | #define __C | |
# | Line 72 | Line 72 | double Thermo::getKinetic(){ | |
72 | } | |
73 | } | |
74 | #ifdef IS_MPI | |
75 | < | MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM); |
75 | > | MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
76 | > | MPI_SUM, MPI_COMM_WORLD); |
77 | kinetic = kinetic_global; | |
78 | #endif //is_mpi | |
79 | ||
# | Line 86 | Line 87 | double Thermo::getPotential(){ | |
87 | double potential_local; | |
88 | double potential; | |
89 | int el, nSRI; | |
90 | < | SRI** sris; |
90 | > | Molecule* molecules; |
91 | ||
92 | < | sris = entry_plug->sr_interactions; |
92 | > | molecules = entry_plug->molecules; |
93 | nSRI = entry_plug->n_SRI; | |
94 | ||
95 | potential_local = 0.0; | |
96 | + | potential = 0.0; |
97 | potential_local += entry_plug->lrPot; | |
98 | ||
99 | < | for( el=0; el<nSRI; el++ ){ |
100 | < | potential_local += sris[el]->get_potential(); |
99 | > | for( el=0; el<entry_plug->n_mol; el++ ){ |
100 | > | potential_local += molecules[el].getPotential(); |
101 | } | |
102 | ||
103 | // Get total potential for entire system from MPI. | |
104 | #ifdef IS_MPI | |
105 | < | MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM); |
105 | > | MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, |
106 | > | MPI_SUM, MPI_COMM_WORLD); |
107 | #else | |
108 | potential = potential_local; | |
109 | #endif // is_mpi | |
110 | ||
111 | + | #ifdef IS_MPI |
112 | + | /* |
113 | + | std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; |
114 | + | */ |
115 | + | #endif |
116 | + | |
117 | return potential; | |
118 | } | |
119 | ||
# | Line 120 | Line 129 | double Thermo::getTemperature(){ | |
129 | ||
130 | const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) | |
131 | double temperature; | |
123 | – | int ndf_local, ndf; |
132 | ||
133 | < | ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
126 | < | - entry_plug->n_constraints; |
127 | < | |
128 | < | #ifdef IS_MPI |
129 | < | MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); |
130 | < | #else |
131 | < | ndf = ndf_local; |
132 | < | #endif |
133 | < | |
134 | < | ndf = ndf - 3; |
135 | < | |
136 | < | temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); |
133 | > | temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb ); |
134 | return temperature; | |
135 | } | |
136 | ||
137 | double Thermo::getPressure(){ | |
138 | + | // returns pressure in units amu*fs^-2*Ang^-1 |
139 | + | // routine derived via viral theorem description in: |
140 | + | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
141 | ||
142 | < | // const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm |
143 | < | // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa |
144 | < | // const double conv_A_m = 1.0E-10; //convert A -> m |
142 | > | const double e_convert = 4.184e-4; |
143 | > | const double p_convert = 1.63882576e8; |
144 | > | double molmass; |
145 | > | double vcom[3]; |
146 | > | double p_local, p_sum, p_mol, virial; |
147 | > | double theBox[3]; |
148 | > | double* tau; |
149 | > | int i, nMols; |
150 | > | Molecule* molecules; |
151 | ||
152 | < | return 0.0; |
152 | > | nMols = entry_plug->n_mol; |
153 | > | molecules = entry_plug->molecules; |
154 | > | tau = entry_plug->tau; |
155 | > | |
156 | > | // use velocities of molecular centers of mass and molecular masses: |
157 | > | p_local = 0.0; |
158 | > | |
159 | > | for (i=0; i < nMols; i++) { |
160 | > | molmass = molecules[i].getCOMvel(vcom); |
161 | > | p_local += (vcom[0]*vcom[0] + vcom[1]*vcom[1] + vcom[2]*vcom[2]) * molmass; |
162 | > | } |
163 | > | |
164 | > | // Get total for entire system from MPI. |
165 | > | #ifdef IS_MPI |
166 | > | MPI_Allreduce(&p_local,&p_sum,1,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
167 | > | #else |
168 | > | p_sum = p_local; |
169 | > | #endif // is_mpi |
170 | > | |
171 | > | virial = tau[0] + tau[4] + tau[8]; |
172 | > | entry_plug->getBox(theBox); |
173 | > | |
174 | > | p_mol = p_convert * (p_sum - virial*e_convert) / |
175 | > | (3.0 * theBox[0] * theBox[1]* theBox[2]); |
176 | > | |
177 | > | return p_mol; |
178 | } | |
179 | ||
180 | void Thermo::velocitize() { | |
# | Line 157 | Line 188 | void Thermo::velocitize() { | |
188 | const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | |
189 | double av2; | |
190 | double kebar; | |
160 | – | int ndf, ndf_local; // number of degrees of freedom |
161 | – | int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom |
191 | int n_atoms; | |
192 | Atom** atoms; | |
193 | DirectionalAtom* dAtom; | |
# | Line 172 | Line 201 | void Thermo::velocitize() { | |
201 | n_oriented = entry_plug->n_oriented; | |
202 | n_constraints = entry_plug->n_constraints; | |
203 | ||
204 | < | // Raw degrees of freedom that we have to set |
205 | < | ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented; |
177 | < | |
178 | < | // Degrees of freedom that can contain kinetic energy |
179 | < | ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
180 | < | - entry_plug->n_constraints; |
204 | > | kebar = kb * temperature * (double)entry_plug->ndf / |
205 | > | ( 2.0 * (double)entry_plug->ndfRaw ); |
206 | ||
182 | – | #ifdef IS_MPI |
183 | – | MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); |
184 | – | MPI::COMM_WORLD.Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM); |
185 | – | #else |
186 | – | ndfRaw = ndfRaw_local; |
187 | – | ndf = ndf_local; |
188 | – | #endif |
189 | – | ndf = ndf - 3; |
190 | – | |
191 | – | kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); |
192 | – | |
207 | for(vr = 0; vr < n_atoms; vr++){ | |
208 | ||
209 | // uses equipartition theory to solve for vbar in angstrom/fs | |
210 | ||
211 | av2 = 2.0 * kebar / atoms[vr]->getMass(); | |
212 | vbar = sqrt( av2 ); | |
213 | < | |
213 | > | |
214 | // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); | |
215 | ||
216 | // picks random velocities from a gaussian distribution | |
# | Line 245 | Line 259 | void Thermo::velocitize() { | |
259 | ||
260 | vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); | |
261 | jy = vbar * gaussStream->getGaussian(); | |
262 | < | |
262 | > | |
263 | vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); | |
264 | jz = vbar * gaussStream->getGaussian(); | |
265 | ||
# | Line 285 | Line 299 | void Thermo::getCOMVel(double vdrift[3]){ | |
299 | } | |
300 | ||
301 | #ifdef IS_MPI | |
302 | < | MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM); |
303 | < | MPI::COMM_WORLD.Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM); |
302 | > | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
303 | > | MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
304 | #else | |
305 | mtot = mtot_local; | |
306 | for(vd = 0; vd < 3; vd++) { |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |