# | Line 4 | Line 4 | using namespace std; | |
---|---|---|
4 | ||
5 | #ifdef IS_MPI | |
6 | #include <mpi.h> | |
7 | – | #include <mpi++.h> |
7 | #endif //is_mpi | |
8 | ||
9 | #include "Thermo.hpp" | |
# | Line 73 | Line 72 | double Thermo::getKinetic(){ | |
72 | } | |
73 | } | |
74 | #ifdef IS_MPI | |
75 | < | MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM); |
75 | > | MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
76 | > | MPI_SUM, MPI_COMM_WORLD); |
77 | kinetic = kinetic_global; | |
78 | #endif //is_mpi | |
79 | ||
# | Line 100 | Line 100 | double Thermo::getPotential(){ | |
100 | potential_local += molecules[el].getPotential(); | |
101 | } | |
102 | ||
103 | – | #ifdef IS_MPI |
104 | – | /* |
105 | – | std::cerr << "node " << worldRank << ": before LONG RANGE pot = " << entry_plug->lrPot |
106 | – | << "; pot_local = " << potential_local |
107 | – | << "; pot = " << potential << "\n"; |
108 | – | */ |
109 | – | #endif |
110 | – | |
103 | // Get total potential for entire system from MPI. | |
104 | #ifdef IS_MPI | |
105 | < | MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM); |
105 | > | MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, |
106 | > | MPI_SUM, MPI_COMM_WORLD); |
107 | #else | |
108 | potential = potential_local; | |
109 | #endif // is_mpi | |
# | Line 136 | Line 129 | double Thermo::getTemperature(){ | |
129 | ||
130 | const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) | |
131 | double temperature; | |
139 | – | int ndf_local, ndf; |
132 | ||
133 | < | ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
134 | < | - entry_plug->n_constraints; |
133 | > | temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb ); |
134 | > | return temperature; |
135 | > | } |
136 | ||
137 | < | #ifdef IS_MPI |
138 | < | MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); |
139 | < | #else |
147 | < | ndf = ndf_local; |
148 | < | #endif |
149 | < | |
150 | < | ndf = ndf - 3; |
137 | > | double Thermo::getPressure() { |
138 | > | // returns the pressure in units of atm |
139 | > | // Relies on the calculation of the full molecular pressure tensor |
140 | ||
141 | < | temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); |
142 | < | return temperature; |
141 | > | const double p_convert = 1.63882576e8; |
142 | > | double press[9]; |
143 | > | double pressure; |
144 | > | |
145 | > | this->getPressureTensor(press); |
146 | > | |
147 | > | pressure = p_convert * (press[0] + press[4] + press[8]) / 3.0; |
148 | > | |
149 | > | return pressure; |
150 | } | |
151 | ||
156 | – | double Thermo::getPressure(){ |
152 | ||
153 | < | // const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm |
154 | < | // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa |
155 | < | // const double conv_A_m = 1.0E-10; //convert A -> m |
153 | > | void Thermo::getPressureTensor(double press[9]){ |
154 | > | // returns pressure tensor in units amu*fs^-2*Ang^-1 |
155 | > | // routine derived via viral theorem description in: |
156 | > | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
157 | ||
158 | < | return 0.0; |
158 | > | const double e_convert = 4.184e-4; |
159 | > | |
160 | > | double molmass, volume; |
161 | > | double vcom[3]; |
162 | > | double p_local[9], p_global[9]; |
163 | > | double theBox[3]; |
164 | > | double* tau; |
165 | > | int i, nMols; |
166 | > | Molecule* molecules; |
167 | > | |
168 | > | nMols = entry_plug->n_mol; |
169 | > | molecules = entry_plug->molecules; |
170 | > | tau = entry_plug->tau; |
171 | > | |
172 | > | // use velocities of molecular centers of mass and molecular masses: |
173 | > | for (i=0; i < 9; i++) { |
174 | > | p_local[i] = 0.0; |
175 | > | p_global[i] = 0.0; |
176 | > | } |
177 | > | |
178 | > | for (i=0; i < nMols; i++) { |
179 | > | molmass = molecules[i].getCOMvel(vcom); |
180 | > | |
181 | > | p_local[0] += molmass * (vcom[0] * vcom[0]); |
182 | > | p_local[1] += molmass * (vcom[0] * vcom[1]); |
183 | > | p_local[2] += molmass * (vcom[0] * vcom[2]); |
184 | > | p_local[3] += molmass * (vcom[1] * vcom[0]); |
185 | > | p_local[4] += molmass * (vcom[1] * vcom[1]); |
186 | > | p_local[5] += molmass * (vcom[1] * vcom[2]); |
187 | > | p_local[6] += molmass * (vcom[2] * vcom[0]); |
188 | > | p_local[7] += molmass * (vcom[2] * vcom[1]); |
189 | > | p_local[8] += molmass * (vcom[2] * vcom[2]); |
190 | > | } |
191 | > | |
192 | > | // Get total for entire system from MPI. |
193 | > | |
194 | > | #ifdef IS_MPI |
195 | > | MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
196 | > | #else |
197 | > | for (i=0; i<9; i++) { |
198 | > | p_global[i] = p_local[i]; |
199 | > | } |
200 | > | #endif // is_mpi |
201 | > | |
202 | > | entry_plug->getBox(theBox); |
203 | > | |
204 | > | volume = theBox[0] * theBox[1] * theBox[2]; |
205 | > | |
206 | > | for(i=0; i<9; i++) { |
207 | > | press[i] = (p_global[i] - tau[i]*e_convert) / volume; |
208 | > | } |
209 | } | |
210 | ||
211 | void Thermo::velocitize() { | |
# | Line 173 | Line 219 | void Thermo::velocitize() { | |
219 | const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | |
220 | double av2; | |
221 | double kebar; | |
176 | – | int ndf, ndf_local; // number of degrees of freedom |
177 | – | int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom |
222 | int n_atoms; | |
223 | Atom** atoms; | |
224 | DirectionalAtom* dAtom; | |
# | Line 188 | Line 232 | void Thermo::velocitize() { | |
232 | n_oriented = entry_plug->n_oriented; | |
233 | n_constraints = entry_plug->n_constraints; | |
234 | ||
235 | < | // Raw degrees of freedom that we have to set |
236 | < | ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented; |
193 | < | |
194 | < | // Degrees of freedom that can contain kinetic energy |
195 | < | ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
196 | < | - entry_plug->n_constraints; |
235 | > | kebar = kb * temperature * (double)entry_plug->ndf / |
236 | > | ( 2.0 * (double)entry_plug->ndfRaw ); |
237 | ||
198 | – | #ifdef IS_MPI |
199 | – | MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); |
200 | – | MPI::COMM_WORLD.Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM); |
201 | – | #else |
202 | – | ndfRaw = ndfRaw_local; |
203 | – | ndf = ndf_local; |
204 | – | #endif |
205 | – | ndf = ndf - 3; |
206 | – | |
207 | – | kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); |
208 | – | |
238 | for(vr = 0; vr < n_atoms; vr++){ | |
239 | ||
240 | // uses equipartition theory to solve for vbar in angstrom/fs | |
# | Line 261 | Line 290 | void Thermo::velocitize() { | |
290 | ||
291 | vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); | |
292 | jy = vbar * gaussStream->getGaussian(); | |
293 | < | |
293 | > | |
294 | vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); | |
295 | jz = vbar * gaussStream->getGaussian(); | |
296 | ||
# | Line 301 | Line 330 | void Thermo::getCOMVel(double vdrift[3]){ | |
330 | } | |
331 | ||
332 | #ifdef IS_MPI | |
333 | < | MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM); |
334 | < | MPI::COMM_WORLD.Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM); |
333 | > | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
334 | > | MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
335 | #else | |
336 | mtot = mtot_local; | |
337 | for(vd = 0; vd < 3; vd++) { |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |