ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.bib
Revision: 3755
Committed: Fri Jul 29 15:45:14 2011 UTC (12 years, 11 months ago) by skuang
File size: 121237 byte(s)
Log Message:
new edits

File Contents

# User Rev Content
1 skuang 3719 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3755 %% Created for Shenyu Kuang at 2011-07-29 10:10:06 -0400
6 skuang 3719
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3755 @article{doi:10.1080/0026897031000068578,
13     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
14     Author = {BARRAT, JEAN-LOUIS and CHIARUTTINI, FRAN{\c C}OIS},
15     Date-Added = {2011-07-29 10:04:36 -0400},
16     Date-Modified = {2011-07-29 10:04:36 -0400},
17     Doi = {10.1080/0026897031000068578},
18     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
19     Journal = {Molecular Physics},
20     Number = {11},
21     Pages = {1605-1610},
22     Title = {Kapitza resistance at the liquid---solid interface},
23     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
24     Volume = {101},
25     Year = {2003},
26     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
27     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
28    
29     @article{doi:10.1021/jp020581+,
30     Abstract = { The rate of energy dissipation from Au nanoparticles to their surroundings has been examined by pump−probe spectroscopy. These experiments were performed for particles suspended in aqueous solution, with average sizes ranging from 4 to 50 nm in diameter. The results show that energy relaxation is a very nonexponential process. Fitting the data to a stretched exponential function yields a characteristic time scale for relaxation that varies from ca. 10 ps for the smallest particles examined (∼4 nm diameter) to almost 400 ps for the 50 nm diameter particles. The relaxation times are proportional to the square of the radius, but do not depend on the initial temperature of the particles (i.e., the pump laser power). For very small particles, the time scale for energy dissipation is comparable to the time scale for electron−phonon coupling, which implies that significant energy loss occurs before the electrons and phonons reach thermal equilibrium within the particle. },
31     Author = {Hu, Min and Hartland, Gregory V.},
32     Date-Added = {2011-07-28 17:46:33 -0400},
33     Date-Modified = {2011-07-28 17:46:33 -0400},
34     Doi = {10.1021/jp020581+},
35     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp020581%2B},
36     Journal = {The Journal of Physical Chemistry B},
37     Number = {28},
38     Pages = {7029-7033},
39     Title = {Heat Dissipation for Au Particles in Aqueous Solution:  Relaxation Time versus Size},
40     Url = {http://pubs.acs.org/doi/abs/10.1021/jp020581%2B},
41     Volume = {106},
42     Year = {2002},
43     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp020581+},
44     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp020581+}}
45    
46     @article{PhysRevLett.96.186101,
47     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
48     Date-Added = {2011-07-28 15:41:43 -0400},
49     Date-Modified = {2011-07-28 15:41:43 -0400},
50     Doi = {10.1103/PhysRevLett.96.186101},
51     Journal = {Phys. Rev. Lett.},
52     Month = {May},
53     Number = {18},
54     Numpages = {4},
55     Pages = {186101},
56     Publisher = {American Physical Society},
57     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
58     Volume = {96},
59     Year = {2006},
60     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
61    
62     @article{doi:10.1021/jp048375k,
63     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
64     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
65     Date-Added = {2011-07-28 15:41:14 -0400},
66     Date-Modified = {2011-07-28 15:59:32 -0400},
67     Doi = {10.1021/jp048375k},
68     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
69     Journal = {J. Phys. Chem. B},
70     Number = {49},
71     Pages = {18870-18875},
72     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
73     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
74     Volume = {108},
75     Year = {2004},
76     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
77     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
78    
79     @article{PhysRevB.67.054302,
80     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
81     Date-Added = {2011-07-28 15:40:29 -0400},
82     Date-Modified = {2011-07-28 15:40:29 -0400},
83     Doi = {10.1103/PhysRevB.67.054302},
84     Journal = {Phys. Rev. B},
85     Month = {Feb},
86     Number = {5},
87     Numpages = {5},
88     Pages = {054302},
89     Publisher = {American Physical Society},
90     Title = {Thermal conductance of epitaxial interfaces},
91     Volume = {67},
92     Year = {2003},
93     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
94    
95 skuang 3750 @article{garde:nl2005,
96     Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
97     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
98     Date-Added = {2011-07-26 13:56:59 -0400},
99     Date-Modified = {2011-07-26 13:57:47 -0400},
100     Doi = {10.1021/nl051526q},
101     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
102 skuang 3755 Journal = {Nano Lett.},
103 skuang 3750 Note = {PMID: 16277458},
104     Number = {11},
105     Pages = {2225-2231},
106     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
107     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
108     Volume = {5},
109     Year = {2005},
110     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
111     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
112    
113     @article{garde:PhysRevLett2009,
114     Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
115     Date-Added = {2011-07-25 16:06:12 -0400},
116     Date-Modified = {2011-07-26 13:58:33 -0400},
117     Doi = {10.1103/PhysRevLett.102.156101},
118     Journal = {Phys. Rev. Lett.},
119     Month = {Apr},
120     Number = {15},
121     Numpages = {4},
122     Pages = {156101},
123     Publisher = {American Physical Society},
124     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
125     Volume = {102},
126     Year = {2009},
127     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
128    
129 skuang 3749 @article{doi:10.1021/cr9801317,
130     Author = {Takano, Hajime and Kenseth, Jeremy R. and Wong, Sze-Shun and O'Brie, Janese C. and Porter, Marc D.},
131     Date-Added = {2011-07-25 14:50:24 -0400},
132     Date-Modified = {2011-07-25 14:50:24 -0400},
133     Doi = {10.1021/cr9801317},
134     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/cr9801317},
135 skuang 3755 Journal = {Chem. Rev.},
136 skuang 3749 Number = {10},
137     Pages = {2845-2890},
138     Title = {Chemical and Biochemical Analysis Using Scanning Force Microscopy},
139     Url = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
140     Volume = {99},
141     Year = {1999},
142     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
143     Bdsk-Url-2 = {http://dx.doi.org/10.1021/cr9801317}}
144    
145     @article{doi:10.1021/ja00008a001,
146     Author = {Widrig, Cindra A. and Alves, Carla A. and Porter, Marc D.},
147     Date-Added = {2011-07-25 14:49:37 -0400},
148     Date-Modified = {2011-07-25 14:49:37 -0400},
149     Doi = {10.1021/ja00008a001},
150     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00008a001},
151 skuang 3755 Journal = {J. Am. Chem. Soc.},
152 skuang 3749 Number = {8},
153     Pages = {2805-2810},
154     Title = {Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously absorbed at gold surfaces},
155     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
156     Volume = {113},
157     Year = {1991},
158     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
159     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00008a001}}
160    
161 skuang 3737 @article{doi:10.1021/la026493y,
162     Abstract = { We have studied butanethiol self-assembled monolayers on Au(100) using cyclic voltammetry and in situ scanning tunneling microscopy (STM). The butanethiol adlayer shows ordered domains with a striped structure, the stripes running parallel to the main crystallographic axes of the substrate. After modification the surface reveals a 50% coverage of monoatomic high gold islands, but no vacancy islands were observed. Reductive and oxidative desorption of the film, previously studied by electrochemistry, were monitored by STM. },
163     Author = {Loglio, F. and Schweizer, M. and Kolb, D. M.},
164     Date-Added = {2011-07-12 17:52:01 -0400},
165     Date-Modified = {2011-07-12 17:52:01 -0400},
166     Doi = {10.1021/la026493y},
167     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la026493y},
168     Journal = {Langmuir},
169     Number = {3},
170     Pages = {830-834},
171     Title = {In Situ Characterization of Self-Assembled Butanethiol Monolayers on Au(100) Electrodes},
172     Url = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
173     Volume = {19},
174     Year = {2003},
175     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
176     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la026493y}}
177    
178     @article{doi:10.1021/j100035a033,
179     Author = {McDermott, Christie A. and McDermott, Mark T. and Green, John-Bruce and Porter, Marc D.},
180     Date-Added = {2011-07-12 17:51:55 -0400},
181     Date-Modified = {2011-07-12 17:51:55 -0400},
182     Doi = {10.1021/j100035a033},
183     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/j100035a033},
184 skuang 3755 Journal = {J. Phys. Chem.},
185 skuang 3737 Number = {35},
186     Pages = {13257-13267},
187     Title = {Structural Origins of the Surface Depressions at Alkanethiolate Monolayers on Au(111): A Scanning Tunneling and Atomic Force Microscopic Investigation},
188     Url = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
189     Volume = {99},
190     Year = {1995},
191     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
192     Bdsk-Url-2 = {http://dx.doi.org/10.1021/j100035a033}}
193    
194 skuang 3736 @article{hautman:4994,
195     Author = {Joseph Hautman and Michael L. Klein},
196     Date-Added = {2011-07-11 18:27:57 -0400},
197     Date-Modified = {2011-07-11 18:27:57 -0400},
198     Doi = {10.1063/1.457621},
199 skuang 3755 Journal = {J. Chem. Phys.},
200 skuang 3736 Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
201     Number = {8},
202     Pages = {4994-5001},
203     Publisher = {AIP},
204     Title = {Simulation of a monolayer of alkyl thiol chains},
205     Url = {http://link.aip.org/link/?JCP/91/4994/1},
206     Volume = {91},
207     Year = {1989},
208     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
209     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
210    
211     @article{landman:1998,
212     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
213     Author = {Luedtke, W. D. and Landman, Uzi},
214     Date-Added = {2011-07-11 18:22:20 -0400},
215     Date-Modified = {2011-07-11 18:22:54 -0400},
216     Doi = {10.1021/jp981745i},
217     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
218 skuang 3755 Journal = {J. Phys. Chem. B},
219 skuang 3736 Number = {34},
220     Pages = {6566-6572},
221     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
222     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
223     Volume = {102},
224     Year = {1998},
225     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
226     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
227    
228     @article{hase:2010,
229     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
230     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
231     Date-Added = {2011-07-11 16:02:11 -0400},
232     Date-Modified = {2011-07-11 16:06:39 -0400},
233     Doi = {10.1039/B923858C},
234     Issue = {17},
235     Journal = {Phys. Chem. Chem. Phys.},
236     Pages = {4435-4445},
237     Publisher = {The Royal Society of Chemistry},
238     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
239     Url = {http://dx.doi.org/10.1039/B923858C},
240     Volume = {12},
241     Year = {2010},
242     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
243    
244     @article{jiang:2002,
245 skuang 3733 Abstract = { A review is presented of this group's recent molecular simulation studies of self-assembled monolayers (SAMs) of alkanethiols on Au(111) surfaces. SAMs are very useful for the systematic alteration of the chemical and structural properties of a surface by varying chain length, tail group and composition. The scientific and technological importance of SAMs cannot be overestimated. The present work has been centred on studies of atomic scale surface properties of SAMs. First, configurational-bias Monte Carlo simulations were performed in both semigrand canonical and canonical ensembles to investigate the preferential adsorption and phase behaviour of mixed SAMs on Au(111) surfaces. Second, a novel hybrid molecular simulation technique was developed to simulate atomic force microscopy (AFM) over experimental timescales. The method combines a dynamic element model for the tip-cantilever system in AFM and a molecular dynamics relaxation approach for the sample. The hybrid simulation technique was applied to investigate atomic scale friction and adhesion properties of SAMs as a function of chain length. Third, dual-control-volume grand canonical molecular dynamics (DCV-GCMD) simulations were performed of transport diffusion of liquid water and methanol through a slit pore with both inner walls consisting of Au(111) surfaces covered by SAMs under a chemical potential gradient. Surface hydrophobicity was adjusted by varying the terminal group of CH3 (hydrophobic) or OH (hydrophilic) of the SAMs. Finally, ab initio quantum chemical calculations were performed on both clusters and periodic systems of methylthiols on Au(111) surfaces. Based on the ab initio results, an accurate force field capable of predicting c(4×2) superlattice structures over a wide range of temepratures for alkanethiols on Au(111) was developed. The extension of current work is discussed briefly. },
246     Author = {JIANG, SHAOYI},
247     Date-Added = {2011-07-08 17:51:59 -0400},
248 skuang 3736 Date-Modified = {2011-07-11 16:11:38 -0400},
249 skuang 3733 Doi = {10.1080/00268970210130948},
250     Eprint = {http://www.tandfonline.com/doi/pdf/10.1080/00268970210130948},
251     Journal = {Molecular Physics},
252     Number = {14},
253     Pages = {2261-2275},
254     Title = {Molecular simulation studies of self-assembled monolayers of alkanethiols on Au(111)},
255     Url = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
256     Volume = {100},
257     Year = {2002},
258     Bdsk-Url-1 = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
259     Bdsk-Url-2 = {http://dx.doi.org/10.1080/00268970210130948}}
260    
261     @article{doi:10.1021/la904855s,
262     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
263     Date-Added = {2011-07-08 17:18:53 -0400},
264     Date-Modified = {2011-07-08 17:18:53 -0400},
265     Doi = {10.1021/la904855s},
266     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
267     Journal = {Langmuir},
268     Note = {PMID: 20166728},
269     Number = {6},
270     Pages = {3786-3789},
271     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
272     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
273     Volume = {26},
274     Year = {2010},
275     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
276     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
277    
278     @article{doi:10.1021/jp8051888,
279     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
280     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
281     Date-Added = {2011-07-08 17:04:34 -0400},
282     Date-Modified = {2011-07-08 17:04:34 -0400},
283     Doi = {10.1021/jp8051888},
284     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
285 skuang 3755 Journal = {J. Phys. Chem. C},
286 skuang 3733 Number = {35},
287     Pages = {13320-13323},
288     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
289     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
290     Volume = {112},
291     Year = {2008},
292     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
293     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
294    
295     @article{PhysRevB.80.195406,
296     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
297     Date-Added = {2011-07-08 16:36:39 -0400},
298     Date-Modified = {2011-07-08 16:36:39 -0400},
299     Doi = {10.1103/PhysRevB.80.195406},
300     Journal = {Phys. Rev. B},
301     Month = {Nov},
302     Number = {19},
303     Numpages = {6},
304     Pages = {195406},
305     Publisher = {American Physical Society},
306     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
307     Volume = {80},
308     Year = {2009},
309     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
310    
311     @article{Wang10082007,
312     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
313     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
314     Date-Added = {2011-07-08 16:20:05 -0400},
315     Date-Modified = {2011-07-08 16:20:05 -0400},
316     Doi = {10.1126/science.1145220},
317     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
318     Journal = {Science},
319     Number = {5839},
320     Pages = {787-790},
321     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
322     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
323     Volume = {317},
324     Year = {2007},
325     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
326     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
327    
328 skuang 3736 @article{hase:2011,
329 skuang 3733 Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
330     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
331     Date-Added = {2011-07-08 13:36:39 -0400},
332 skuang 3736 Date-Modified = {2011-07-11 16:07:01 -0400},
333 skuang 3733 Doi = {10.1021/jp200672e},
334     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
335 skuang 3755 Journal = {J. Phys. Chem. C},
336 skuang 3733 Number = {19},
337     Pages = {9622-9628},
338     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
339     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
340     Volume = {115},
341     Year = {2011},
342     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
343     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
344    
345 skuang 3752 @article{UFF.rappe92,
346 skuang 3729 Author = {Rappe, A. K. and Casewit, C. J. and Colwell, K. S. and Goddard, W. A. and Skiff, W. M.},
347     Date-Added = {2011-06-29 14:04:33 -0400},
348 skuang 3752 Date-Modified = {2011-07-26 18:53:04 -0400},
349 skuang 3729 Doi = {10.1021/ja00051a040},
350     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00051a040},
351     Journal = {Journal of the American Chemical Society},
352     Number = {25},
353     Pages = {10024-10035},
354     Title = {UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations},
355     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
356     Volume = {114},
357     Year = {1992},
358     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
359     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00051a040}}
360    
361 skuang 3724 @article{doi:10.1021/jp034405s,
362     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
363 skuang 3755 Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
364 skuang 3724 Date-Added = {2011-04-28 11:23:28 -0400},
365     Date-Modified = {2011-04-28 11:23:28 -0400},
366     Doi = {10.1021/jp034405s},
367     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
368 skuang 3755 Journal = {J. Phys. Chem. B},
369 skuang 3724 Number = {43},
370     Pages = {11940-11950},
371     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
372     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
373     Volume = {107},
374     Year = {2003},
375     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
376     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
377    
378 skuang 3721 @article{OPLSAA,
379     Abstract = {null},
380     Annote = {doi: 10.1021/ja9621760},
381     Author = {Jorgensen, William L. and Maxwell, David S. and Tirado-Rives, Julian},
382     Date = {1996/01/01},
383     Date-Added = {2011-02-04 18:54:58 -0500},
384     Date-Modified = {2011-02-04 18:54:58 -0500},
385     Do = {10.1021/ja9621760},
386     Isbn = {0002-7863},
387 skuang 3755 Journal = {J. Am. Chem. Soc.},
388 skuang 3721 M3 = {doi: 10.1021/ja9621760},
389     Month = {01},
390     Number = {45},
391     Pages = {11225--11236},
392     Publisher = {American Chemical Society},
393     Title = {Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids},
394     Ty = {JOUR},
395     Url = {http://dx.doi.org/10.1021/ja9621760},
396     Volume = {118},
397     Year = {1996},
398     Year1 = {1996/01/01},
399     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja9621760}}
400    
401     @article{TraPPE-UA.alkylbenzenes,
402     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
403     Date-Added = {2011-02-04 18:31:46 -0500},
404     Date-Modified = {2011-02-04 18:32:22 -0500},
405     Doi = {10.1021/jp001044x},
406     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
407 skuang 3755 Journal = {J. Phys. Chem. B},
408 skuang 3721 Number = {33},
409     Pages = {8008-8016},
410     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
411     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
412     Volume = {104},
413     Year = {2000},
414     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
415     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
416    
417     @article{TraPPE-UA.alkanes,
418     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
419     Date-Added = {2011-02-04 18:01:31 -0500},
420     Date-Modified = {2011-02-04 18:02:19 -0500},
421     Doi = {10.1021/jp972543+},
422     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
423 skuang 3755 Journal = {J. Phys. Chem. B},
424 skuang 3721 Number = {14},
425     Pages = {2569-2577},
426     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
427     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
428     Volume = {102},
429     Year = {1998},
430     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
431     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+}}
432    
433     @article{TraPPE-UA.thiols,
434     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
435     Date-Added = {2011-02-04 17:51:03 -0500},
436     Date-Modified = {2011-02-04 17:54:20 -0500},
437     Doi = {10.1021/jp0549125},
438     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
439 skuang 3755 Journal = {J. Phys. Chem. B},
440 skuang 3721 Number = {50},
441     Pages = {24100-24107},
442     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
443     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
444     Volume = {109},
445     Year = {2005},
446     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
447     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
448    
449     @article{vlugt:cpc2007154,
450     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
451     Date-Added = {2011-02-01 16:00:11 -0500},
452     Date-Modified = {2011-02-04 18:21:59 -0500},
453     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
454     Issn = {0010-4655},
455 skuang 3755 Journal = {Comput. Phys. Commun.},
456 skuang 3721 Keywords = {Gold nanocrystals},
457     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
458     Number = {1-2},
459     Pages = {154 - 157},
460     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
461     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
462     Volume = {177},
463     Year = {2007},
464     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
465     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
466    
467     @article{packmol,
468     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
469     Bibsource = {DBLP, http://dblp.uni-trier.de},
470     Date-Added = {2011-02-01 15:13:02 -0500},
471     Date-Modified = {2011-02-01 15:14:25 -0500},
472     Ee = {http://dx.doi.org/10.1002/jcc.21224},
473 skuang 3755 Journal = {J. Comput. Chem.},
474 skuang 3721 Number = {13},
475     Pages = {2157-2164},
476     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
477     Volume = {30},
478     Year = {2009}}
479    
480     @article{kuang:164101,
481     Author = {Shenyu Kuang and J. Daniel Gezelter},
482     Date-Added = {2011-01-31 17:12:35 -0500},
483     Date-Modified = {2011-01-31 17:12:35 -0500},
484     Doi = {10.1063/1.3499947},
485     Eid = {164101},
486 skuang 3755 Journal = {J. Chem. Phys.},
487 skuang 3721 Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
488     Number = {16},
489     Numpages = {9},
490     Pages = {164101},
491     Publisher = {AIP},
492     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
493     Url = {http://link.aip.org/link/?JCP/133/164101/1},
494     Volume = {133},
495     Year = {2010},
496     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/133/164101/1},
497     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3499947}}
498    
499 skuang 3719 @article{muller:014102,
500     Author = {Thomas J. Muller and Michael Al-Samman and Florian Muller-Plathe},
501     Date-Added = {2010-09-16 19:19:25 -0400},
502     Date-Modified = {2010-09-16 19:19:25 -0400},
503     Doi = {10.1063/1.2943312},
504     Eid = {014102},
505     Journal = {The Journal of Chemical Physics},
506     Keywords = {intramolecular mechanics; Lennard-Jones potential; molecular dynamics method; thermostats; viscosity},
507     Number = {1},
508     Numpages = {8},
509     Pages = {014102},
510     Publisher = {AIP},
511     Title = {The influence of thermostats and manostats on reverse nonequilibrium molecular dynamics calculations of fluid viscosities},
512     Url = {http://link.aip.org/link/?JCP/129/014102/1},
513     Volume = {129},
514     Year = {2008},
515     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/129/014102/1},
516     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2943312}}
517    
518     @article{wolf:8254,
519     Author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
520     Date-Added = {2010-09-16 19:01:51 -0400},
521     Date-Modified = {2010-09-16 19:01:51 -0400},
522     Doi = {10.1063/1.478738},
523     Journal = {J. Chem. Phys.},
524     Keywords = {POTENTIAL ENERGY; COULOMB FIELD; COULOMB ENERGY; LATTICE PARAMETERS; potential energy functions; lattice dynamics; lattice energy},
525     Number = {17},
526     Pages = {8254-8282},
527     Publisher = {AIP},
528     Title = {Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup -1] summation},
529     Url = {http://link.aip.org/link/?JCP/110/8254/1},
530     Volume = {110},
531     Year = {1999},
532     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/110/8254/1},
533     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.478738}}
534    
535     @article{HeX:1993,
536     Abstract = {A recently developed non-equilibrium molecular dynamics algorithm for
537     heat conduction is used to compute the thermal conductivity, thermal
538     diffusion factor, and heat of transfer in binary Lennard-Jones
539     mixtures. An internal energy flux is established with local source and
540     sink terms for kinetic energy.
541     Simulations of isotope mixtures covering a range of densities and mass
542     ratios show that the lighter component prefers the hot side of the
543     system at stationary state. This implies a positive thermal diffusion
544     factor in the definition we have adopted here. The molecular basis for
545     the Soret effect is studied by analysing the energy flux through the
546     system. In all cases we found that there is a difference in the
547     relative contributions when we compare the hot and cold sides of the
548     system. The contribution from the lighter component is predominantly
549     flux of kinetic energy, and this contribution increases from the cold
550     to the hot side. The contribution from the heavier component is
551     predominantly energy transfer through molecular interactions, and it
552     increases from the hot to the cold side. This explains why the thermal
553     diffusion factor is positive; heal is conducted more effectively
554     through the system if the lighter component is enriched at the hot
555     side. Even for very large heat fluxes, we find a linear or almost
556     linear temperature profile through the system, and a constant thermal
557     conductivity. The entropy production per unit volume and unit time
558     increases from the hot to the cold side.},
559     Author = {Hafskjold, B and Ikeshoji, T and Ratkje, SK},
560     Date-Added = {2010-09-15 16:52:45 -0400},
561     Date-Modified = {2010-09-15 16:54:23 -0400},
562     Issn = {{0026-8976}},
563     Journal = {Mol. Phys.},
564     Month = {DEC},
565     Number = {6},
566     Pages = {1389-1412},
567     Title = {ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS},
568     Unique-Id = {ISI:A1993MQ34500009},
569     Volume = {80},
570 skuang 3721 Year = {1993}}
571 skuang 3719
572     @article{HeX:1994,
573     Abstract = {This paper presents a new algorithm for non-equilibrium molecular
574     dynamics, where a temperature gradient is established in a system with
575     periodic boundary conditions. At each time step in the simulation, a
576     fixed amount of energy is supplied to a hot region by scaling the
577     velocity of each particle in it, subject to conservation of total
578     momentum. An equal amount of energy is likewise withdrawn from a cold
579     region at each time step. Between the hot and cold regions is a region
580     through which an energy flux is established. Two configurations of hot
581     and cold regions are proposed. Using a stacked layer structure, the
582     instantaneous local energy flux for a 128-particle Lennard-Jones system
583     in liquid was found to be in good agreement with the macroscopic theory
584     of heat conduction at stationary state, except in and near the hot and
585     cold regions. Thermal conductivity calculated for the 128-particle
586     system was about 10\% smaller than the literature value obtained by
587     molecular dynamics calculations. One run with a 1024-particle system
588     showed an agreement with the literature value within statistical error
589     (1-2\%). Using a unit cell with a cold spherical region at the centre
590     and a hot region in the perimeter of the cube, an initial gaseous state
591     of argon was separated into gas and liquid phases. Energy fluxes due to
592     intermolecular energy transfer and transport of kinetic energy dominate
593     in the liquid and gas phases, respectively.},
594     Author = {Ikeshoji, T and Hafskjold, B},
595     Date-Added = {2010-09-15 16:52:45 -0400},
596     Date-Modified = {2010-09-15 16:54:37 -0400},
597     Issn = {0026-8976},
598     Journal = {Mol. Phys.},
599     Month = {FEB},
600     Number = {2},
601     Pages = {251-261},
602     Title = {NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE},
603     Unique-Id = {ISI:A1994MY17400001},
604     Volume = {81},
605 skuang 3721 Year = {1994}}
606 skuang 3719
607     @article{plech:195423,
608     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
609     Date-Added = {2010-08-12 11:34:55 -0400},
610     Date-Modified = {2010-08-12 11:34:55 -0400},
611     Eid = {195423},
612     Journal = {Phys. Rev. B},
613     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
614     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
615     Number = {19},
616     Numpages = {7},
617     Pages = {195423},
618     Publisher = {APS},
619     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
620     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
621     Volume = {70},
622     Year = {2004},
623     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
624    
625     @article{Wilson:2002uq,
626     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
627     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
628     Date-Added = {2010-08-12 11:31:02 -0400},
629     Date-Modified = {2010-08-12 11:31:02 -0400},
630     Doi = {ARTN 224301},
631     Journal = {Phys. Rev. B},
632     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
633 skuang 3755 Pages = {224301},
634 skuang 3719 Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
635     Volume = {66},
636     Year = {2002},
637     Bdsk-Url-1 = {http://dx.doi.org/224301}}
638    
639     @article{RevModPhys.61.605,
640     Author = {Swartz, E. T. and Pohl, R. O.},
641     Date-Added = {2010-08-06 17:03:01 -0400},
642     Date-Modified = {2010-08-06 17:03:01 -0400},
643     Doi = {10.1103/RevModPhys.61.605},
644     Journal = {Rev. Mod. Phys.},
645     Month = {Jul},
646     Number = {3},
647     Numpages = {63},
648     Pages = {605--668},
649     Publisher = {American Physical Society},
650     Title = {Thermal boundary resistance},
651     Volume = {61},
652     Year = {1989},
653     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
654    
655     @article{cahill:793,
656     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
657     Date-Added = {2010-08-06 17:02:22 -0400},
658     Date-Modified = {2010-08-06 17:02:22 -0400},
659     Doi = {10.1063/1.1524305},
660 skuang 3755 Journal = {J. Appl. Phys.},
661 skuang 3719 Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
662     Number = {2},
663     Pages = {793-818},
664     Publisher = {AIP},
665     Title = {Nanoscale thermal transport},
666     Url = {http://link.aip.org/link/?JAP/93/793/1},
667     Volume = {93},
668     Year = {2003},
669     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
670     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
671    
672     @inbook{Hoffman:2001sf,
673     Address = {New York},
674     Annote = {LDR 01107cam 2200253 a 4500
675     001 12358442
676     005 20070910074423.0
677     008 010326s2001 nyua b 001 0 eng
678     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
679     925 0 $aacquire$b2 shelf copies$xpolicy default
680     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
681     010 $a 2001028633
682     020 $a0824704436 (acid-free paper)
683     040 $aDLC$cDLC$dDLC
684     050 00 $aQA297$b.H588 2001
685     082 00 $a519.4$221
686     100 1 $aHoffman, Joe D.,$d1934-
687     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
688     250 $a2nd ed., rev. and expanded.
689     260 $aNew York :$bMarcel Dekker,$cc2001.
690     300 $axi, 823 p. :$bill. ;$c26 cm.
691     504 $aIncludes bibliographical references (p. 775-777) and index.
692     650 0 $aNumerical analysis.
693     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
694     },
695     Author = {Hoffman, Joe D.},
696     Call-Number = {QA297},
697     Date-Added = {2010-07-15 16:32:02 -0400},
698     Date-Modified = {2010-07-19 16:49:37 -0400},
699     Dewey-Call-Number = {519.4},
700     Edition = {2nd ed., rev. and expanded},
701     Genre = {Numerical analysis},
702     Isbn = {0824704436 (acid-free paper)},
703     Library-Id = {2001028633},
704     Pages = {157},
705     Publisher = {Marcel Dekker},
706     Title = {Numerical methods for engineers and scientists},
707     Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
708     Year = {2001},
709     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
710    
711     @article{Vardeman:2008fk,
712     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
713     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
714     Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
715     Date-Added = {2010-07-13 11:48:22 -0400},
716     Date-Modified = {2010-07-19 16:20:01 -0400},
717     Doi = {DOI 10.1021/jp710063g},
718     Isi = {000253512400021},
719     Isi-Recid = {160903603},
720     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
721     Journal = {J. Phys. Chem. C},
722     Month = mar,
723     Number = {9},
724     Pages = {3283-3293},
725     Publisher = {AMER CHEMICAL SOC},
726     Times-Cited = {0},
727     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
728     Volume = {112},
729     Year = {2008},
730     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
731    
732     @article{PhysRevB.59.3527,
733     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
734     Date-Added = {2010-07-13 11:44:08 -0400},
735     Date-Modified = {2010-07-13 11:44:08 -0400},
736     Doi = {10.1103/PhysRevB.59.3527},
737     Journal = {Phys. Rev. B},
738     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
739     Month = {Feb},
740     Number = {5},
741     Numpages = {6},
742     Pages = {3527-3533},
743     Publisher = {American Physical Society},
744     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
745     Volume = {59},
746     Year = {1999},
747     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
748    
749     @article{Medasani:2007uq,
750     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
751     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
752     Date-Added = {2010-07-13 11:43:15 -0400},
753     Date-Modified = {2010-07-13 11:43:15 -0400},
754     Doi = {ARTN 235436},
755     Journal = {Phys. Rev. B},
756     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
757     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
758     Volume = {75},
759     Year = {2007},
760     Bdsk-Url-1 = {http://dx.doi.org/235436}}
761    
762     @article{Wang:2005qy,
763     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
764     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
765     Date-Added = {2010-07-13 11:42:50 -0400},
766     Date-Modified = {2010-07-13 11:42:50 -0400},
767     Doi = {DOI 10.1021/jp050116n},
768     Journal = {J. Phys. Chem. B},
769     Pages = {11683-11692},
770     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
771     Volume = {109},
772     Year = {2005},
773     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
774    
775     @article{Chui:2003fk,
776     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
777     Author = {Chui, YH and Chan, KY},
778     Date-Added = {2010-07-13 11:42:32 -0400},
779     Date-Modified = {2010-07-13 11:42:32 -0400},
780     Doi = {DOI 10.1039/b302122j},
781     Journal = {Phys. Chem. Chem. Phys.},
782     Pages = {2869-2874},
783     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
784     Volume = {5},
785     Year = {2003},
786     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
787    
788     @article{Sankaranarayanan:2005lr,
789     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
790     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
791     Date-Added = {2010-07-13 11:42:13 -0400},
792     Date-Modified = {2010-07-13 11:42:13 -0400},
793     Doi = {ARTN 195415},
794     Journal = {Phys. Rev. B},
795     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
796     Volume = {71},
797     Year = {2005},
798     Bdsk-Url-1 = {http://dx.doi.org/195415}}
799    
800     @article{Vardeman-II:2001jn,
801     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
802     Date-Added = {2010-07-13 11:41:50 -0400},
803     Date-Modified = {2010-07-13 11:41:50 -0400},
804     Journal = {J. Phys. Chem. A},
805     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
806     Number = {12},
807     Pages = {2568},
808     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
809     Volume = {105},
810     Year = {2001}}
811    
812     @article{ShibataT._ja026764r,
813     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
814     Date-Added = {2010-07-13 11:41:36 -0400},
815     Date-Modified = {2010-07-13 11:41:36 -0400},
816     Journal = {J. Amer. Chem. Soc.},
817     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
818     Number = {40},
819     Pages = {11989-11996},
820     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
821     Url = {http://dx.doi.org/10.1021/ja026764r},
822     Volume = {124},
823     Year = {2002},
824     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
825    
826     @article{Chen90,
827     Author = {A.~P. Sutton and J. Chen},
828     Date-Added = {2010-07-13 11:40:48 -0400},
829     Date-Modified = {2010-07-13 11:40:48 -0400},
830 skuang 3755 Journal = {Philos. Mag. Lett.},
831 skuang 3719 Pages = {139-146},
832     Title = {Long-Range Finnis Sinclair Potentials},
833     Volume = 61,
834     Year = {1990}}
835    
836     @article{PhysRevB.33.7983,
837     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
838     Date-Added = {2010-07-13 11:40:28 -0400},
839     Date-Modified = {2010-07-13 11:40:28 -0400},
840     Doi = {10.1103/PhysRevB.33.7983},
841     Journal = {Phys. Rev. B},
842     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
843     Month = {Jun},
844     Number = {12},
845     Numpages = {8},
846     Pages = {7983-7991},
847     Publisher = {American Physical Society},
848     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
849     Volume = {33},
850     Year = {1986},
851     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
852    
853     @article{hoover85,
854     Author = {W.~G. Hoover},
855     Date-Added = {2010-07-13 11:24:30 -0400},
856     Date-Modified = {2010-07-13 11:24:30 -0400},
857     Journal = pra,
858     Pages = 1695,
859     Title = {Canonical dynamics: Equilibrium phase-space distributions},
860     Volume = 31,
861     Year = 1985}
862    
863     @article{melchionna93,
864     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
865     Date-Added = {2010-07-13 11:22:17 -0400},
866     Date-Modified = {2010-07-13 11:22:17 -0400},
867     Journal = {Mol. Phys.},
868     Pages = {533-544},
869     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
870     Volume = 78,
871     Year = 1993}
872    
873     @misc{openmd,
874     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
875     Date-Added = {2010-07-13 11:16:00 -0400},
876     Date-Modified = {2010-07-19 16:27:45 -0400},
877     Howpublished = {Available at {\tt http://openmd.net}},
878     Title = {{OpenMD, an open source engine for molecular dynamics}}}
879    
880     @inbook{AshcroftMermin,
881 skuang 3721 Address = {Belmont, CA},
882 skuang 3719 Author = {Neil W. Ashcroft and N.~David Mermin},
883     Date-Added = {2010-07-12 14:26:49 -0400},
884     Date-Modified = {2010-07-22 13:37:20 -0400},
885     Pages = {21},
886     Publisher = {Brooks Cole},
887     Title = {Solid State Physics},
888 skuang 3721 Year = {1976}}
889 skuang 3719
890     @book{WagnerKruse,
891     Address = {Berlin},
892     Author = {W. Wagner and A. Kruse},
893     Date-Added = {2010-07-12 14:10:29 -0400},
894     Date-Modified = {2010-07-12 14:13:44 -0400},
895     Publisher = {Springer-Verlag},
896     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
897 skuang 3721 Year = {1998}}
898 skuang 3719
899     @article{ISI:000266247600008,
900     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
901     hexafluorophosphate is investigated by non-equilibrium molecular
902     dynamics simulations with cosine-modulated force in the temperature
903     range from 360 to 480K. It is shown that this method is able to
904     correctly predict the shear viscosity. The simulation setting and
905     choice of the force field are discussed in detail. The all-atom force
906     field exhibits a bad convergence and the shear viscosity is
907     overestimated, while the simple united atom model predicts the kinetics
908     very well. The results are compared with the equilibrium molecular
909     dynamics simulations. The relationship between the diffusion
910     coefficient and viscosity is examined by means of the hydrodynamic
911     radii calculated from the Stokes-Einstein equation and the solvation
912     properties are discussed.},
913     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
914     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
915     Author = {Picalek, Jan and Kolafa, Jiri},
916     Author-Email = {jiri.kolafa@vscht.cz},
917     Date-Added = {2010-04-16 13:19:12 -0400},
918     Date-Modified = {2010-04-16 13:19:12 -0400},
919     Doc-Delivery-Number = {448FD},
920     Doi = {10.1080/08927020802680703},
921     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
922     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
923     Issn = {0892-7022},
924     Journal = {Mol. Simul.},
925     Journal-Iso = {Mol. Simul.},
926     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
927     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
928     Language = {English},
929     Number = {8},
930     Number-Of-Cited-References = {50},
931     Pages = {685-690},
932     Publisher = {TAYLOR \& FRANCIS LTD},
933     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
934     Times-Cited = {2},
935     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
936     Type = {Article},
937     Unique-Id = {ISI:000266247600008},
938     Volume = {35},
939     Year = {2009},
940     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
941    
942     @article{Vasquez:2004fk,
943     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
944     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
945     Date = {2004/11/02/},
946     Date-Added = {2010-04-16 13:18:48 -0400},
947     Date-Modified = {2010-04-16 13:18:48 -0400},
948     Day = {02},
949     Journal = {Int. J. Thermophys.},
950     M3 = {10.1007/s10765-004-7736-3},
951     Month = {11},
952     Number = {6},
953     Pages = {1799--1818},
954     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
955     Ty = {JOUR},
956     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
957     Volume = {25},
958     Year = {2004},
959     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
960    
961     @article{hess:209,
962     Author = {Berk Hess},
963     Date-Added = {2010-04-16 12:37:37 -0400},
964     Date-Modified = {2010-04-16 12:37:37 -0400},
965     Doi = {10.1063/1.1421362},
966     Journal = {J. Chem. Phys.},
967     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
968     Number = {1},
969     Pages = {209-217},
970     Publisher = {AIP},
971     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
972     Url = {http://link.aip.org/link/?JCP/116/209/1},
973     Volume = {116},
974     Year = {2002},
975     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
976     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
977    
978     @article{backer:154503,
979     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
980     Date-Added = {2010-04-16 12:37:37 -0400},
981     Date-Modified = {2010-04-16 12:37:37 -0400},
982     Doi = {10.1063/1.1883163},
983     Eid = {154503},
984     Journal = {J. Chem. Phys.},
985     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
986     Number = {15},
987     Numpages = {6},
988     Pages = {154503},
989     Publisher = {AIP},
990     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
991     Url = {http://link.aip.org/link/?JCP/122/154503/1},
992     Volume = {122},
993     Year = {2005},
994     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
995     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
996    
997     @article{daivis:541,
998     Author = {Peter J. Daivis and Denis J. Evans},
999     Date-Added = {2010-04-16 12:05:36 -0400},
1000     Date-Modified = {2010-04-16 12:05:36 -0400},
1001     Doi = {10.1063/1.466970},
1002     Journal = {J. Chem. Phys.},
1003     Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
1004     Number = {1},
1005     Pages = {541-547},
1006     Publisher = {AIP},
1007     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
1008     Url = {http://link.aip.org/link/?JCP/100/541/1},
1009     Volume = {100},
1010     Year = {1994},
1011     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
1012     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
1013    
1014     @article{mondello:9327,
1015     Author = {Maurizio Mondello and Gary S. Grest},
1016     Date-Added = {2010-04-16 12:05:36 -0400},
1017     Date-Modified = {2010-04-16 12:05:36 -0400},
1018     Doi = {10.1063/1.474002},
1019     Journal = {J. Chem. Phys.},
1020     Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
1021     Number = {22},
1022     Pages = {9327-9336},
1023     Publisher = {AIP},
1024     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
1025     Url = {http://link.aip.org/link/?JCP/106/9327/1},
1026     Volume = {106},
1027     Year = {1997},
1028     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
1029     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
1030    
1031     @article{ISI:A1988Q205300014,
1032     Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
1033     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
1034     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
1035     Date-Added = {2010-04-14 16:20:24 -0400},
1036     Date-Modified = {2010-04-14 16:20:24 -0400},
1037     Doc-Delivery-Number = {Q2053},
1038     Issn = {0026-8976},
1039     Journal = {Mol. Phys.},
1040     Journal-Iso = {Mol. Phys.},
1041     Language = {English},
1042     Month = {AUG 20},
1043     Number = {6},
1044     Number-Of-Cited-References = {14},
1045     Pages = {1203-1213},
1046     Publisher = {TAYLOR \& FRANCIS LTD},
1047     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1048     Times-Cited = {12},
1049     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
1050     Type = {Article},
1051     Unique-Id = {ISI:A1988Q205300014},
1052     Volume = {64},
1053     Year = {1988}}
1054    
1055     @article{ISI:000261835100054,
1056     Abstract = {Transport properties of liquid methanol and ethanol are predicted by
1057     molecular dynamics simulation. The molecular models for the alcohols
1058     are rigid, nonpolarizable, and of united-atom type. They were developed
1059     in preceding work using experimental vapor-liquid equilibrium data
1060     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
1061     shear viscosity of methanol, ethanol, and their binary mixture are
1062     determined using equilibrium molecular dynamics and the Green-Kubo
1063     formalism. Nonequilibrium molecular dynamics is used for predicting the
1064     thermal conductivity of the two pure substances. The transport
1065     properties of the fluids are calculated over a wide temperature range
1066     at ambient pressure and compared with experimental and simulation data
1067     from the literature. Overall, a very good agreement with the experiment
1068     is found. For instance, the self-diffusion coefficient and the shear
1069     viscosity are predicted with average deviations of less than 8\% for
1070     the pure alcohols and 12\% for the mixture. The predicted thermal
1071     conductivity agrees on average within 5\% with the experimental data.
1072     Additionally, some velocity and shear viscosity autocorrelation
1073     functions are presented and discussed. Radial distribution functions
1074     for ethanol are also presented. The predicted excess volume, excess
1075     enthalpy, and the vapor-liquid equilibrium of the binary mixture
1076     methanol + ethanol are assessed and agree well with experimental data.},
1077     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1078     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
1079     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
1080     Author-Email = {vrabec@itt.uni-stuttgart.de},
1081     Date-Added = {2010-04-14 15:43:29 -0400},
1082     Date-Modified = {2010-04-14 15:43:29 -0400},
1083     Doc-Delivery-Number = {385SY},
1084     Doi = {10.1021/jp805584d},
1085     Issn = {1520-6106},
1086     Journal = {J. Phys. Chem. B},
1087     Journal-Iso = {J. Phys. Chem. B},
1088     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
1089     Language = {English},
1090     Month = {DEC 25},
1091     Number = {51},
1092     Number-Of-Cited-References = {86},
1093     Pages = {16664-16674},
1094     Publisher = {AMER CHEMICAL SOC},
1095     Subject-Category = {Chemistry, Physical},
1096     Times-Cited = {5},
1097     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
1098     Type = {Article},
1099     Unique-Id = {ISI:000261835100054},
1100     Volume = {112},
1101     Year = {2008},
1102     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
1103    
1104     @article{ISI:000258460400020,
1105     Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
1106     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
1107     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
1108     9549) force fields have been employed to calculate the thermal
1109     conductivity and other associated properties of methane hydrate over a
1110     temperature range from 30 to 260 K. The calculated results are compared
1111     to experimental data over this same range. The values of the thermal
1112     conductivity calculated with the COS/G2 model are closer to the
1113     experimental values than are those calculated with the nonpolarizable
1114     SPC/E model. The calculations match the temperature trend in the
1115     experimental data at temperatures below 50 K; however, they exhibit a
1116     slight decrease in thermal conductivity at higher temperatures in
1117     comparison to an opposite trend in the experimental data. The
1118     calculated thermal conductivity values are found to be relatively
1119     insensitive to the occupancy of the cages except at low (T <= 50 K)
1120     temperatures, which indicates that the differences between the two
1121     lattice structures may have a more dominant role than generally thought
1122     in explaining the low thermal conductivity of methane hydrate compared
1123     to ice Ih. The introduction of defects into the water lattice is found
1124     to cause a reduction in the thermal conductivity but to have a
1125     negligible impact on its temperature dependence.},
1126     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1127     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
1128     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
1129     Date-Added = {2010-04-14 15:38:14 -0400},
1130     Date-Modified = {2010-04-14 15:38:14 -0400},
1131     Doc-Delivery-Number = {337UG},
1132     Doi = {10.1021/jp802942v},
1133     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
1134     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
1135     Issn = {1520-6106},
1136     Journal = {J. Phys. Chem. B},
1137     Journal-Iso = {J. Phys. Chem. B},
1138     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
1139     Language = {English},
1140     Month = {AUG 21},
1141     Number = {33},
1142     Number-Of-Cited-References = {51},
1143     Pages = {10207-10216},
1144     Publisher = {AMER CHEMICAL SOC},
1145     Subject-Category = {Chemistry, Physical},
1146     Times-Cited = {8},
1147     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
1148     Type = {Article},
1149     Unique-Id = {ISI:000258460400020},
1150     Volume = {112},
1151     Year = {2008},
1152     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
1153    
1154     @article{ISI:000184808400018,
1155     Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
1156     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
1157     6082), for the non-equilibrium simulation of heat transport maintaining
1158     fixed the total momentum as well as the total energy of the system. The
1159     presented scheme preserves these properties but, unlike the original
1160     algorithm, is able to deal with multicomponent systems, that is with
1161     particles of different mass independently of their relative
1162     concentration. The main idea behind the new procedure is to consider an
1163     exchange of momentum and energy between the particles in the hot and
1164     cold regions, to maintain the non-equilibrium conditions, as if they
1165     undergo a hypothetical elastic collision. The new algorithm can also be
1166     employed in multicomponent systems for molecular fluids and in a wide
1167     range of thermodynamic conditions.},
1168     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1169     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
1170     Author = {Nieto-Draghi, C and Avalos, JB},
1171     Date-Added = {2010-04-14 12:48:08 -0400},
1172     Date-Modified = {2010-04-14 12:48:08 -0400},
1173     Doc-Delivery-Number = {712QM},
1174     Doi = {10.1080/0026897031000154338},
1175     Issn = {0026-8976},
1176     Journal = {Mol. Phys.},
1177     Journal-Iso = {Mol. Phys.},
1178     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
1179     Language = {English},
1180     Month = {JUL 20},
1181     Number = {14},
1182     Number-Of-Cited-References = {20},
1183     Pages = {2303-2307},
1184     Publisher = {TAYLOR \& FRANCIS LTD},
1185     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1186     Times-Cited = {13},
1187     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
1188     Type = {Article},
1189     Unique-Id = {ISI:000184808400018},
1190     Volume = {101},
1191     Year = {2003},
1192     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
1193    
1194     @article{Bedrov:2000-1,
1195     Abstract = {The thermal conductivity of liquid
1196     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
1197     determined from imposed heat flux non-equilibrium molecular dynamics
1198     (NEMD) simulations using a previously published quantum chemistry-based
1199     atomistic potential. The thermal conductivity was determined in the
1200     temperature domain 550 less than or equal to T less than or equal to
1201     800 K, which corresponds approximately to the existence limits of the
1202     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
1203     which comprise the first reported values for thermal conductivity of
1204     HMX liquid, were found to be consistent with measured values for
1205     crystalline HMX. The thermal conductivity of liquid HMX was found to
1206     exhibit a much weaker temperature dependence than the shear viscosity
1207     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
1208     rights reserved.},
1209     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
1210     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
1211     Author = {Bedrov, D and Smith, GD and Sewell, TD},
1212     Date-Added = {2010-04-14 12:26:59 -0400},
1213     Date-Modified = {2010-04-14 12:27:52 -0400},
1214     Doc-Delivery-Number = {330PF},
1215     Issn = {0009-2614},
1216     Journal = {Chem. Phys. Lett.},
1217     Journal-Iso = {Chem. Phys. Lett.},
1218     Keywords-Plus = {FORCE-FIELD},
1219     Language = {English},
1220     Month = {JUN 30},
1221     Number = {1-3},
1222     Number-Of-Cited-References = {17},
1223     Pages = {64-68},
1224     Publisher = {ELSEVIER SCIENCE BV},
1225     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1226     Times-Cited = {19},
1227     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
1228     Type = {Article},
1229     Unique-Id = {ISI:000087969900011},
1230     Volume = {324},
1231     Year = {2000}}
1232    
1233     @article{ISI:000258840700015,
1234     Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
1235     (MD) simulations are carried out to calculate the viscosity and
1236     self-diffusion coefficient of liquid copper from the normal to the
1237     undercooled states. The simulated results are in reasonable agreement
1238     with the experimental values available above the melting temperature
1239     that is also predicted from a solid-liquid-solid sandwich structure.
1240     The relationship between the viscosity and the self-diffusion
1241     coefficient is evaluated. It is found that the Stokes-Einstein and
1242     Sutherland-Einstein relations qualitatively describe this relationship
1243     within the simulation temperature range. However, the predicted
1244     constant from MD simulation is close to 1/(3 pi), which is larger than
1245     the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
1246     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
1247     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
1248     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
1249     Author-Email = {mchen@tsinghua.edu.cn},
1250     Date-Added = {2010-04-14 12:00:38 -0400},
1251     Date-Modified = {2010-04-14 12:00:38 -0400},
1252     Doc-Delivery-Number = {343GH},
1253     Doi = {10.1007/s10765-008-0489-7},
1254     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
1255     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
1256     Issn = {0195-928X},
1257     Journal = {Int. J. Thermophys.},
1258     Journal-Iso = {Int. J. Thermophys.},
1259     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
1260     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
1261     Language = {English},
1262     Month = {AUG},
1263     Number = {4},
1264     Number-Of-Cited-References = {39},
1265     Pages = {1408-1421},
1266     Publisher = {SPRINGER/PLENUM PUBLISHERS},
1267     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
1268     Times-Cited = {2},
1269     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
1270     Type = {Article},
1271     Unique-Id = {ISI:000258840700015},
1272     Volume = {29},
1273     Year = {2008},
1274     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
1275    
1276     @article{Muller-Plathe:2008,
1277     Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
1278     dynamics simulations were carried out to compute the shear viscosity of
1279     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
1280     yielded consistent results which were also compared to experiments. The
1281     results showed that the reverse nonequilibrium molecular dynamics
1282     (RNEMD) methodology can successfully be applied to computation of
1283     highly viscous ionic liquids. Moreover, this study provides a
1284     validation of the atomistic force-field developed by Bhargava and
1285     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
1286     properties.},
1287     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1288     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
1289     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
1290     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
1291     Date-Added = {2010-04-14 11:53:37 -0400},
1292     Date-Modified = {2010-04-14 11:54:20 -0400},
1293     Doc-Delivery-Number = {321VS},
1294     Doi = {10.1021/jp8017869},
1295     Issn = {1520-6106},
1296     Journal = {J. Phys. Chem. B},
1297     Journal-Iso = {J. Phys. Chem. B},
1298     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
1299     Language = {English},
1300     Month = {JUL 10},
1301     Number = {27},
1302     Number-Of-Cited-References = {49},
1303     Pages = {8129-8133},
1304     Publisher = {AMER CHEMICAL SOC},
1305     Subject-Category = {Chemistry, Physical},
1306     Times-Cited = {2},
1307     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
1308     Type = {Article},
1309     Unique-Id = {ISI:000257335200022},
1310     Volume = {112},
1311     Year = {2008},
1312     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
1313    
1314     @article{Muller-Plathe:2002,
1315     Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
1316     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
1317     viscosity of Lennard-Jones liquids has been extended to atomistic
1318     models of molecular liquids. The method is improved to overcome the
1319     problems due to the detailed molecular models. The new technique is
1320     besides a test with a Lennard-Jones fluid, applied on different
1321     realistic systems: liquid nitrogen, water, and hexane, in order to
1322     cover a large range of interactions and systems/architectures. We show
1323     that all the advantages of the method itemized previously are still
1324     valid, and that it has a very good efficiency and accuracy making it
1325     very competitive. (C) 2002 American Institute of Physics.},
1326     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1327     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
1328     Author = {Bordat, P and M\"{u}ller-Plathe, F},
1329     Date-Added = {2010-04-14 11:34:42 -0400},
1330     Date-Modified = {2010-04-14 11:35:35 -0400},
1331     Doc-Delivery-Number = {521QV},
1332     Doi = {10.1063/1.1436124},
1333     Issn = {0021-9606},
1334     Journal = {J. Chem. Phys.},
1335     Journal-Iso = {J. Chem. Phys.},
1336     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
1337     Language = {English},
1338     Month = {FEB 22},
1339     Number = {8},
1340     Number-Of-Cited-References = {47},
1341     Pages = {3362-3369},
1342     Publisher = {AMER INST PHYSICS},
1343     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1344     Times-Cited = {33},
1345     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
1346     Type = {Article},
1347     Unique-Id = {ISI:000173853600023},
1348     Volume = {116},
1349     Year = {2002},
1350     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
1351    
1352     @article{ISI:000207079300006,
1353     Abstract = {Non-equilibrium Molecular Dynamics Simulation
1354     methods have been used to study the ability of
1355     Embedded Atom Method models of the metals copper and
1356     gold to reproduce the equilibrium and
1357     non-equilibrium behavior of metals at a stationary
1358     and at a moving solid/liquid interface. The
1359     equilibrium solid/vapor interface was shown to
1360     display a simple termination of the bulk until the
1361     temperature of the solid reaches approximate to 90\%
1362     of the bulk melting point. At and above such
1363     temperatures the systems exhibit a surface
1364     disodering known as surface melting. Non-equilibrium
1365     simulations emulating the action of a picosecond
1366     laser on the metal were performed to determine the
1367     regrowth velocity. For copper, the action of a 20 ps
1368     laser with an absorbed energy of 2-5 mJ/cm(2)
1369     produced a regrowth velocity of 83-100 m/s, in
1370     reasonable agreement with the value obtained by
1371     experiment (>60 m/s). For gold, similar conditions
1372     produced a slower regrowth velocity of 63 m/s at an
1373     absorbed energy of 5 mJ/cm(2). This is almost a
1374     factor of two too low in comparison to experiment
1375     (>100 m/s). The regrowth velocities of the metals
1376     seems unexpectedly close to experiment considering
1377     that the free-electron contribution is ignored in
1378     the Embeeded Atom Method models used.},
1379     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1380     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
1381     Author = {Richardson, Clifton F. and Clancy, Paulette},
1382     Date-Added = {2010-04-07 11:24:36 -0400},
1383     Date-Modified = {2010-04-07 11:24:36 -0400},
1384     Doc-Delivery-Number = {V04SY},
1385     Issn = {0892-7022},
1386     Journal = {Mol. Simul.},
1387     Journal-Iso = {Mol. Simul.},
1388     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
1389     Language = {English},
1390     Number = {5-6},
1391     Number-Of-Cited-References = {36},
1392     Pages = {335-355},
1393     Publisher = {TAYLOR \& FRANCIS LTD},
1394     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1395     Times-Cited = {7},
1396     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
1397     Type = {Article},
1398     Unique-Id = {ISI:000207079300006},
1399     Volume = {7},
1400     Year = {1991}}
1401    
1402     @article{ISI:000167766600035,
1403     Abstract = {Molecular dynamics simulations are used to
1404     investigate the separation of water films adjacent
1405     to a hot metal surface. The simulations clearly show
1406     that the water layers nearest the surface overheat
1407     and undergo explosive boiling. For thick films, the
1408     expansion of the vaporized molecules near the
1409     surface forces the outer water layers to move away
1410     from the surface. These results are of interest for
1411     mass spectrometry of biological molecules, steam
1412     cleaning of surfaces, and medical procedures.},
1413     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1414     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1415     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1416     Date-Added = {2010-03-11 15:32:14 -0500},
1417     Date-Modified = {2010-03-11 15:32:14 -0500},
1418     Doc-Delivery-Number = {416ED},
1419     Issn = {1089-5639},
1420     Journal = {J. Phys. Chem. A},
1421     Journal-Iso = {J. Phys. Chem. A},
1422     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1423     Language = {English},
1424     Month = {MAR 29},
1425     Number = {12},
1426     Number-Of-Cited-References = {65},
1427     Pages = {2748-2755},
1428     Publisher = {AMER CHEMICAL SOC},
1429     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1430     Times-Cited = {66},
1431     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1432     Type = {Article},
1433     Unique-Id = {ISI:000167766600035},
1434     Volume = {105},
1435     Year = {2001}}
1436    
1437     @article{Maginn:2010,
1438     Abstract = {The reverse nonequilibrium molecular dynamics
1439     (RNEMD) method calculates the shear viscosity of a
1440     fluid by imposing a nonphysical exchange of momentum
1441     and measuring the resulting shear velocity
1442     gradient. In this study we investigate the range of
1443     momentum flux values over which RNEMD yields usable
1444     (linear) velocity gradients. We find that nonlinear
1445     velocity profiles result primarily from gradients in
1446     fluid temperature and density. The temperature
1447     gradient results from conversion of heat into bulk
1448     kinetic energy, which is transformed back into heat
1449     elsewhere via viscous heating. An expression is
1450     derived to predict the temperature profile resulting
1451     from a specified momentum flux for a given fluid and
1452     simulation cell. Although primarily bounded above,
1453     we also describe milder low-flux limitations. RNEMD
1454     results for a Lennard-Jones fluid agree with
1455     equilibrium molecular dynamics and conventional
1456     nonequilibrium molecular dynamics calculations at
1457     low shear, but RNEMD underpredicts viscosity
1458     relative to conventional NEMD at high shear.},
1459     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1460     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1461     Article-Number = {014103},
1462     Author = {Tenney, Craig M. and Maginn, Edward J.},
1463     Author-Email = {ed@nd.edu},
1464     Date-Added = {2010-03-09 13:08:41 -0500},
1465     Date-Modified = {2010-07-19 16:21:35 -0400},
1466     Doc-Delivery-Number = {542DQ},
1467     Doi = {10.1063/1.3276454},
1468     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1469     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1470     Issn = {0021-9606},
1471     Journal = {J. Chem. Phys.},
1472     Journal-Iso = {J. Chem. Phys.},
1473     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1474     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1475     Language = {English},
1476     Month = {JAN 7},
1477     Number = {1},
1478     Number-Of-Cited-References = {20},
1479     Pages = {014103},
1480     Publisher = {AMER INST PHYSICS},
1481     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1482     Times-Cited = {0},
1483     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1484     Type = {Article},
1485     Unique-Id = {ISI:000273472300004},
1486     Volume = {132},
1487     Year = {2010},
1488     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1489    
1490     @article{Clancy:1992,
1491     Abstract = {The regrowth velocity of a crystal from a melt
1492     depends on contributions from the thermal
1493     conductivity, heat gradient, and latent heat. The
1494     relative contributions of these terms to the
1495     regrowth velocity of the pure metals copper and gold
1496     during liquid-phase epitaxy are evaluated. These
1497     results are used to explain how results from
1498     previous nonequilibrium molecular-dynamics
1499     simulations using classical potentials are able to
1500     predict regrowth velocities that are close to the
1501     experimental values. Results from equilibrium
1502     molecular dynamics showing the nature of the
1503     solid-vapor interface of an
1504     embedded-atom-method-modeled Cu57Ni43 alloy at a
1505     temperature corresponding to 62\% of the melting
1506     point are presented. The regrowth of this alloy
1507     following a simulation of a laser-processing
1508     experiment is also given, with use of nonequilibrium
1509     molecular-dynamics techniques. The thermal
1510     conductivity and temperature gradient in the
1511     simulation of the alloy are compared to those for
1512     the pure metals.},
1513     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1514     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
1515     Author = {Richardson, C.~F. and Clancy, P},
1516     Date-Added = {2010-01-12 16:17:33 -0500},
1517     Date-Modified = {2010-04-08 17:18:25 -0400},
1518     Doc-Delivery-Number = {HX378},
1519     Issn = {0163-1829},
1520     Journal = {Phys. Rev. B},
1521     Journal-Iso = {Phys. Rev. B},
1522     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
1523     Language = {English},
1524     Month = {JUN 1},
1525     Number = {21},
1526     Number-Of-Cited-References = {24},
1527     Pages = {12260-12268},
1528     Publisher = {AMERICAN PHYSICAL SOC},
1529     Subject-Category = {Physics, Condensed Matter},
1530     Times-Cited = {11},
1531     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1532     Type = {Article},
1533     Unique-Id = {ISI:A1992HX37800010},
1534     Volume = {45},
1535     Year = {1992}}
1536    
1537     @article{Bedrov:2000,
1538     Abstract = {We have applied a new nonequilibrium molecular
1539     dynamics (NEMD) method {[}F. Muller-Plathe,
1540     J. Chem. Phys. 106, 6082 (1997)] previously applied
1541     to monatomic Lennard-Jones fluids in the
1542     determination of the thermal conductivity of
1543     molecular fluids. The method was modified in order
1544     to be applicable to systems with holonomic
1545     constraints. Because the method involves imposing a
1546     known heat flux it is particularly attractive for
1547     systems involving long-range and many-body
1548     interactions where calculation of the microscopic
1549     heat flux is difficult. The predicted thermal
1550     conductivities of liquid n-butane and water using
1551     the imposed-flux NEMD method were found to be in a
1552     good agreement with previous simulations and
1553     experiment. (C) 2000 American Institute of
1554     Physics. {[}S0021-9606(00)50841-1].},
1555     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1556     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1557     Author = {Bedrov, D and Smith, GD},
1558     Date-Added = {2009-11-05 18:21:18 -0500},
1559     Date-Modified = {2010-04-14 11:50:48 -0400},
1560     Doc-Delivery-Number = {369BF},
1561     Issn = {0021-9606},
1562     Journal = {J. Chem. Phys.},
1563     Journal-Iso = {J. Chem. Phys.},
1564     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1565     Language = {English},
1566     Month = {NOV 8},
1567     Number = {18},
1568     Number-Of-Cited-References = {26},
1569     Pages = {8080-8084},
1570     Publisher = {AMER INST PHYSICS},
1571     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1572     Times-Cited = {23},
1573     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1574     Type = {Article},
1575     Unique-Id = {ISI:000090151400044},
1576     Volume = {113},
1577     Year = {2000}}
1578    
1579     @article{ISI:000231042800044,
1580     Abstract = {The reverse nonequilibrium molecular dynamics
1581     method for thermal conductivities is adapted to the
1582     investigation of molecular fluids. The method
1583     generates a heat flux through the system by suitably
1584     exchanging velocities of particles located in
1585     different regions. From the resulting temperature
1586     gradient, the thermal conductivity is then
1587     calculated. Different variants of the algorithm and
1588     their combinations with other system parameters are
1589     tested: exchange of atomic velocities versus
1590     exchange of molecular center-of-mass velocities,
1591     different exchange frequencies, molecular models
1592     with bond constraints versus models with flexible
1593     bonds, united-atom versus all-atom models, and
1594     presence versus absence of a thermostat. To help
1595     establish the range of applicability, the algorithm
1596     is tested on different models of benzene,
1597     cyclohexane, water, and n-hexane. We find that the
1598     algorithm is robust and that the calculated thermal
1599     conductivities are insensitive to variations in its
1600     control parameters. The force field, in contrast,
1601     has a major influence on the value of the thermal
1602     conductivity. While calculated and experimental
1603     thermal conductivities fall into the same order of
1604     magnitude, in most cases the calculated values are
1605     systematically larger. United-atom force fields seem
1606     to do better than all-atom force fields, possibly
1607     because they remove high-frequency degrees of
1608     freedom from the simulation, which, in nature, are
1609     quantum-mechanical oscillators in their ground state
1610     and do not contribute to heat conduction.},
1611     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1612     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1613     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1614     Date-Added = {2009-11-05 18:17:33 -0500},
1615     Date-Modified = {2009-11-05 18:17:33 -0500},
1616     Doc-Delivery-Number = {952YQ},
1617     Doi = {10.1021/jp0512255},
1618     Issn = {1520-6106},
1619     Journal = {J. Phys. Chem. B},
1620     Journal-Iso = {J. Phys. Chem. B},
1621     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1622     Language = {English},
1623     Month = {AUG 11},
1624     Number = {31},
1625     Number-Of-Cited-References = {42},
1626     Pages = {15060-15067},
1627     Publisher = {AMER CHEMICAL SOC},
1628     Subject-Category = {Chemistry, Physical},
1629     Times-Cited = {17},
1630     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1631     Type = {Article},
1632     Unique-Id = {ISI:000231042800044},
1633     Volume = {109},
1634     Year = {2005},
1635     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1636    
1637     @article{ISI:A1997YC32200056,
1638     Abstract = {Equilibrium molecular dynamics simulations have
1639     been carried out in the microcanonical ensemble at
1640     300 and 255 K on the extended simple point charge
1641     (SPC/E) model of water {[}Berendsen et al.,
1642     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1643     number of static and dynamic properties, thermal
1644     conductivity lambda has been calculated via
1645     Green-Kubo integration of the heat current time
1646     correlation functions (CF's) in the atomic and
1647     molecular formalism, at wave number k=0. The
1648     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1649     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1650     with the experimental data (0.61 W/mK at 300 K and
1651     0.49 W/mK at 255 K). A negative long-time tail of
1652     the heat current CF, more apparent at 255 K, is
1653     responsible for the anomalous decrease of lambda
1654     with temperature. An analysis of the dynamical modes
1655     contributing to lambda has shown that its value is
1656     due to two low-frequency exponential-like modes, a
1657     faster collisional mode, with positive contribution,
1658     and a slower one, which determines the negative
1659     long-time tail. A comparison of the molecular and
1660     atomic spectra of the heat current CF has suggested
1661     that higher-frequency modes should not contribute to
1662     lambda in this temperature range. Generalized
1663     thermal diffusivity D-T(k) decreases as a function
1664     of k, after an initial minor increase at k =
1665     k(min). The k dependence of the generalized
1666     thermodynamic properties has been calculated in the
1667     atomic and molecular formalisms. The observed
1668     differences have been traced back to intramolecular
1669     or intermolecular rotational effects and related to
1670     the partial structure functions. Finally, from the
1671     results we calculated it appears that the SPC/E
1672     model gives results in better agreement with
1673     experimental data than the transferable
1674     intermolecular potential with four points TIP4P
1675     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1676     926 (1983)], with a larger improvement for, e.g.,
1677     diffusion, viscosities, and dielectric properties
1678     and a smaller one for thermal conductivity. The
1679     SPC/E model shares, to a smaller extent, the
1680     insufficient slowing down of dynamics at low
1681     temperature already found for the TIP4P water
1682     model.},
1683     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1684     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1685     Author = {Bertolini, D and Tani, A},
1686     Date-Added = {2009-10-30 15:41:21 -0400},
1687     Date-Modified = {2009-10-30 15:41:21 -0400},
1688     Doc-Delivery-Number = {YC322},
1689     Issn = {1063-651X},
1690     Journal = {Phys. Rev. E},
1691     Journal-Iso = {Phys. Rev. E},
1692     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1693     Language = {English},
1694     Month = {OCT},
1695     Number = {4},
1696     Number-Of-Cited-References = {35},
1697     Pages = {4135-4151},
1698     Publisher = {AMERICAN PHYSICAL SOC},
1699     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1700     Times-Cited = {18},
1701     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1702     Type = {Article},
1703     Unique-Id = {ISI:A1997YC32200056},
1704     Volume = {56},
1705     Year = {1997}}
1706    
1707     @article{Meineke:2005gd,
1708     Abstract = {OOPSE is a new molecular dynamics simulation program
1709     that is capable of efficiently integrating equations
1710     of motion for atom types with orientational degrees
1711     of freedom (e.g. #sticky# atoms and point
1712     dipoles). Transition metals can also be simulated
1713     using the embedded atom method (EAM) potential
1714     included in the code. Parallel simulations are
1715     carried out using the force-based decomposition
1716     method. Simulations are specified using a very
1717     simple C-based meta-data language. A number of
1718     advanced integrators are included, and the basic
1719     integrator for orientational dynamics provides
1720     substantial improvements over older quaternion-based
1721     schemes.},
1722     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1723     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1724     Date-Added = {2009-10-01 18:43:03 -0400},
1725     Date-Modified = {2010-04-13 09:11:16 -0400},
1726     Doi = {DOI 10.1002/jcc.20161},
1727     Isi = {000226558200006},
1728     Isi-Recid = {142688207},
1729     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1730 skuang 3755 Journal = {J. Comput. Chem.},
1731 skuang 3719 Keywords = {OOPSE; molecular dynamics},
1732     Month = feb,
1733     Number = {3},
1734     Pages = {252-271},
1735     Publisher = {JOHN WILEY \& SONS INC},
1736     Times-Cited = {9},
1737     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1738     Volume = {26},
1739     Year = {2005},
1740     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1741     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1742    
1743     @article{ISI:000080382700030,
1744     Abstract = {A nonequilibrium method for calculating the shear
1745     viscosity is presented. It reverses the
1746     cause-and-effect picture customarily used in
1747     nonequilibrium molecular dynamics: the effect, the
1748     momentum flux or stress, is imposed, whereas the
1749     cause, the velocity gradient or shear rate, is
1750     obtained from the simulation. It differs from other
1751     Norton-ensemble methods by the way in which the
1752     steady-state momentum flux is maintained. This
1753     method involves a simple exchange of particle
1754     momenta, which is easy to implement. Moreover, it
1755     can be made to conserve the total energy as well as
1756     the total linear momentum, so no coupling to an
1757     external temperature bath is needed. The resulting
1758     raw data, the velocity profile, is a robust and
1759     rapidly converging property. The method is tested on
1760     the Lennard-Jones fluid near its triple point. It
1761     yields a viscosity of 3.2-3.3, in Lennard-Jones
1762     reduced units, in agreement with literature
1763     results. {[}S1063-651X(99)03105-0].},
1764     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1765     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1766     Author = {M\"{u}ller-Plathe, F},
1767     Date-Added = {2009-10-01 14:07:30 -0400},
1768     Date-Modified = {2009-10-01 14:07:30 -0400},
1769     Doc-Delivery-Number = {197TX},
1770     Issn = {1063-651X},
1771     Journal = {Phys. Rev. E},
1772     Journal-Iso = {Phys. Rev. E},
1773     Language = {English},
1774     Month = {MAY},
1775     Number = {5, Part A},
1776     Number-Of-Cited-References = {17},
1777     Pages = {4894-4898},
1778     Publisher = {AMERICAN PHYSICAL SOC},
1779     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1780     Times-Cited = {57},
1781     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1782     Type = {Article},
1783     Unique-Id = {ISI:000080382700030},
1784     Volume = {59},
1785     Year = {1999}}
1786    
1787     @article{Maginn:2007,
1788     Abstract = {Atomistic simulations are conducted to examine the
1789     dependence of the viscosity of
1790     1-ethyl-3-methylimidazolium
1791     bis(trifluoromethanesulfonyl)imide on temperature
1792     and water content. A nonequilibrium molecular
1793     dynamics procedure is utilized along with an
1794     established fixed charge force field. It is found
1795     that the simulations quantitatively capture the
1796     temperature dependence of the viscosity as well as
1797     the drop in viscosity that occurs with increasing
1798     water content. Using mixture viscosity models, we
1799     show that the relative drop in viscosity with water
1800     content is actually less than that that would be
1801     predicted for an ideal system. This finding is at
1802     odds with the popular notion that small amounts of
1803     water cause an unusually large drop in the viscosity
1804     of ionic liquids. The simulations suggest that, due
1805     to preferential association of water with anions and
1806     the formation of water clusters, the excess molar
1807     volume is negative. This means that dissolved water
1808     is actually less effective at lowering the viscosity
1809     of these mixtures when compared to a solute obeying
1810     ideal mixing behavior. The use of a nonequilibrium
1811     simulation technique enables diffusive behavior to
1812     be observed on the time scale of the simulations,
1813     and standard equilibrium molecular dynamics resulted
1814     in sub-diffusive behavior even over 2 ns of
1815     simulation time.},
1816     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1817     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1818     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1819     Author-Email = {ed@nd.edu},
1820     Date-Added = {2009-09-29 17:07:17 -0400},
1821     Date-Modified = {2010-04-14 12:51:02 -0400},
1822     Doc-Delivery-Number = {163VA},
1823     Doi = {10.1021/jp0686893},
1824     Issn = {1520-6106},
1825     Journal = {J. Phys. Chem. B},
1826     Journal-Iso = {J. Phys. Chem. B},
1827     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1828     Language = {English},
1829     Month = {MAY 10},
1830     Number = {18},
1831     Number-Of-Cited-References = {57},
1832     Pages = {4867-4876},
1833     Publisher = {AMER CHEMICAL SOC},
1834     Subject-Category = {Chemistry, Physical},
1835     Times-Cited = {35},
1836     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1837     Type = {Article},
1838     Unique-Id = {ISI:000246190100032},
1839     Volume = {111},
1840     Year = {2007},
1841     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1842     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1843    
1844     @article{MullerPlathe:1997xw,
1845     Abstract = {A nonequilibrium molecular dynamics method for
1846     calculating the thermal conductivity is
1847     presented. It reverses the usual cause and effect
1848     picture. The ''effect,'' the heat flux, is imposed
1849     on the system and the ''cause,'' the temperature
1850     gradient is obtained from the simulation. Besides
1851     being very simple to implement, the scheme offers
1852     several advantages such as compatibility with
1853     periodic boundary conditions, conservation of total
1854     energy and total linear momentum, and the sampling
1855     of a rapidly converging quantity (temperature
1856     gradient) rather than a slowly converging one (heat
1857     flux). The scheme is tested on the Lennard-Jones
1858     fluid. (C) 1997 American Institute of Physics.},
1859     Address = {WOODBURY},
1860     Author = {M\"{u}ller-Plathe, F.},
1861     Cited-Reference-Count = {13},
1862     Date = {APR 8},
1863     Date-Added = {2009-09-21 16:51:21 -0400},
1864     Date-Modified = {2009-09-21 16:51:21 -0400},
1865     Document-Type = {Article},
1866     Isi = {ISI:A1997WR62000032},
1867     Isi-Document-Delivery-Number = {WR620},
1868     Iso-Source-Abbreviation = {J. Chem. Phys.},
1869     Issn = {0021-9606},
1870     Journal = {J. Chem. Phys.},
1871     Language = {English},
1872     Month = {Apr},
1873     Number = {14},
1874     Page-Count = {4},
1875     Pages = {6082--6085},
1876     Publication-Type = {J},
1877     Publisher = {AMER INST PHYSICS},
1878     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1879     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1880     Source = {J CHEM PHYS},
1881     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1882     Times-Cited = {106},
1883     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1884     Volume = {106},
1885     Year = {1997}}
1886    
1887     @article{Muller-Plathe:1999ek,
1888     Abstract = {A novel non-equilibrium method for calculating
1889     transport coefficients is presented. It reverses the
1890     experimental cause-and-effect picture, e.g. for the
1891     calculation of viscosities: the effect, the momentum
1892     flux or stress, is imposed, whereas the cause, the
1893     velocity gradient or shear rates, is obtained from
1894     the simulation. It differs from other
1895     Norton-ensemble methods by the way, in which the
1896     steady-state fluxes are maintained. This method
1897     involves a simple exchange of particle momenta,
1898     which is easy to implement and to analyse. Moreover,
1899     it can be made to conserve the total energy as well
1900     as the total linear momentum, so no thermostatting
1901     is needed. The resulting raw data are robust and
1902     rapidly converging. The method is tested on the
1903     calculation of the shear viscosity, the thermal
1904     conductivity and the Soret coefficient (thermal
1905     diffusion) for the Lennard-Jones (LJ) fluid near its
1906     triple point. Possible applications to other
1907     transport coefficients and more complicated systems
1908     are discussed. (C) 1999 Elsevier Science Ltd. All
1909     rights reserved.},
1910     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1911     Author = {M\"{u}ller-Plathe, F and Reith, D},
1912     Date-Added = {2009-09-21 16:47:07 -0400},
1913     Date-Modified = {2009-09-21 16:47:07 -0400},
1914     Isi = {000082266500004},
1915     Isi-Recid = {111564960},
1916     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1917     Journal = {Computational and Theoretical Polymer Science},
1918     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1919     Number = {3-4},
1920     Pages = {203-209},
1921     Publisher = {ELSEVIER SCI LTD},
1922     Times-Cited = {15},
1923     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1924     Volume = {9},
1925     Year = {1999},
1926     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1927    
1928     @article{Viscardy:2007lq,
1929     Abstract = {The thermal conductivity is calculated with the
1930     Helfand-moment method in the Lennard-Jones fluid
1931     near the triple point. The Helfand moment of thermal
1932     conductivity is here derived for molecular dynamics
1933     with periodic boundary conditions. Thermal
1934     conductivity is given by a generalized Einstein
1935     relation with this Helfand moment. The authors
1936     compute thermal conductivity by this new method and
1937     compare it with their own values obtained by the
1938     standard Green-Kubo method. The agreement is
1939     excellent. (C) 2007 American Institute of Physics.},
1940     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1941     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1942     Date-Added = {2009-09-21 16:37:20 -0400},
1943     Date-Modified = {2010-07-19 16:18:44 -0400},
1944     Doi = {DOI 10.1063/1.2724821},
1945     Isi = {000246453900035},
1946     Isi-Recid = {156192451},
1947     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1948     Journal = {J. Chem. Phys.},
1949     Month = may,
1950     Number = {18},
1951     Pages = {184513},
1952     Publisher = {AMER INST PHYSICS},
1953     Times-Cited = {3},
1954     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1955     Volume = {126},
1956     Year = {2007},
1957     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1958     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1959    
1960     @article{Viscardy:2007bh,
1961     Abstract = {The authors propose a new method, the Helfand-moment
1962     method, to compute the shear viscosity by
1963     equilibrium molecular dynamics in periodic
1964     systems. In this method, the shear viscosity is
1965     written as an Einstein-type relation in terms of the
1966     variance of the so-called Helfand moment. This
1967     quantity is modified in order to satisfy systems
1968     with periodic boundary conditions usually considered
1969     in molecular dynamics. They calculate the shear
1970     viscosity in the Lennard-Jones fluid near the triple
1971     point thanks to this new technique. They show that
1972     the results of the Helfand-moment method are in
1973     excellent agreement with the results of the standard
1974     Green-Kubo method. (C) 2007 American Institute of
1975     Physics.},
1976     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1977     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1978     Date-Added = {2009-09-21 16:37:19 -0400},
1979     Date-Modified = {2010-07-19 16:19:03 -0400},
1980     Doi = {DOI 10.1063/1.2724820},
1981     Isi = {000246453900034},
1982     Isi-Recid = {156192449},
1983     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1984     Journal = {J. Chem. Phys.},
1985     Month = may,
1986     Number = {18},
1987     Pages = {184512},
1988     Publisher = {AMER INST PHYSICS},
1989     Times-Cited = {1},
1990     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1991     Volume = {126},
1992     Year = {2007},
1993     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1994     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
1995    
1996     @inproceedings{384119,
1997     Address = {New York, NY, USA},
1998     Author = {Fortune, Steven},
1999     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
2000     Doi = {http://doi.acm.org/10.1145/384101.384119},
2001     Isbn = {1-58113-417-7},
2002     Location = {London, Ontario, Canada},
2003     Pages = {121--128},
2004     Publisher = {ACM},
2005     Title = {Polynomial root finding using iterated Eigenvalue computation},
2006     Year = {2001},
2007     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}
2008    
2009     @article{Fennell06,
2010 skuang 3721 Author = {C.~J. Fennell and J.~D. Gezelter},
2011     Date-Added = {2006-08-24 09:49:57 -0400},
2012     Date-Modified = {2006-08-24 09:49:57 -0400},
2013     Doi = {10.1063/1.2206581},
2014     Journal = {J. Chem. Phys.},
2015     Number = {23},
2016     Pages = {234104(12)},
2017     Rating = {5},
2018     Read = {Yes},
2019     Title = {Is the \uppercase{E}wald summation still necessary? \uppercase{P}airwise alternatives to the accepted standard for long-range electrostatics},
2020     Volume = {124},
2021     Year = {2006},
2022     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2206581}}
2023 skuang 3719
2024 skuang 3721 @book{Sommese2005,
2025     Address = {Singapore},
2026     Author = {Andrew J. Sommese and Charles W. Wampler},
2027     Publisher = {World Scientific Press},
2028     Title = {The numerical solution of systems of polynomials arising in engineering and science},
2029     Year = 2005}