ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.bib
Revision: 3762
Committed: Fri Sep 23 20:12:12 2011 UTC (12 years, 9 months ago) by skuang
File size: 123860 byte(s)
Log Message:
add one reference and corresponding edits to introduction.

File Contents

# User Rev Content
1 skuang 3719 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3762 %% Created for Shenyu Kuang at 2011-09-23 15:17:48 -0400
6 skuang 3719
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3762 @article{Luo20101,
13     Abstract = {Non-equilibrium molecular dynamics (NEMD) simulations were performed on Au{\^a}€``SAM (self-assembly monolayer){\^a}€``Au junctions to study the thermal energy transport across the junctions. Thermal conductance of the Au{\^a}€``SAM interfaces was calculated. Temperature effects, simulated external pressure effects, SAM molecule coverage effects and Au{\^a}€``SAM bond strength effects on the interfacial thermal conductance were studied. It was found that the interfacial thermal conductance increased with temperature increase at temperatures lower than 250 K, but it did not have large changes at temperatures from 250 to 400 K. Such a trend was found to be similar to experimental observations on similar junctions. The simulated external pressure did not affect the interfacial thermal conductance. SAM molecule coverage and Au{\^a}€``SAM bond strength were found to significantly affect on the thermal conductance. The vibration densities of state (VDOS) were calculated to explore the mechanism of thermal energy transport. Interfacial thermal resistance was found mainly due to the limited population of low-frequency vibration modes of the SAM molecule. Ballistic energy transport inside the SAM molecules was confirmed, and the anharmonicity played an important role in energy transport across the junctions. A heat pulse was imposed on the junction substrate, and heat dissipation inside the junction was studied. Analysis of the junction response to the heat pulse showed that the Au{\^a}€``SAM interfacial thermal resistance was much larger than the Au substrate and SAM resistances separately. This work showed that both the Au substrate and SAM molecules transported thermal energy efficiently, and it was the Au{\^a}€``SAM interfaces that dominated the thermal energy transport across the Au{\^a}€``SAM{\^a}€``Au junctions.},
14     Author = {Tengfei Luo and John R. Lloyd},
15     Date-Added = {2011-09-23 14:48:57 -0400},
16     Date-Modified = {2011-09-23 14:48:57 -0400},
17     Doi = {10.1016/j.ijheatmasstransfer.2009.10.033},
18     Issn = {0017-9310},
19     Journal = {International Journal of Heat and Mass Transfer},
20     Keywords = {Vibration},
21     Number = {1-3},
22     Pages = {1 - 11},
23     Title = {Non-equilibrium molecular dynamics study of thermal energy transport in Au{\^a}€``SAM{\^a}€``Au junctions},
24     Url = {http://www.sciencedirect.com/science/article/pii/S0017931009005742},
25     Volume = {53},
26     Year = {2010},
27     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0017931009005742},
28     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.10.033}}
29    
30 skuang 3755 @article{doi:10.1080/0026897031000068578,
31     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
32     Author = {BARRAT, JEAN-LOUIS and CHIARUTTINI, FRAN{\c C}OIS},
33     Date-Added = {2011-07-29 10:04:36 -0400},
34     Date-Modified = {2011-07-29 10:04:36 -0400},
35     Doi = {10.1080/0026897031000068578},
36     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
37     Journal = {Molecular Physics},
38     Number = {11},
39     Pages = {1605-1610},
40     Title = {Kapitza resistance at the liquid---solid interface},
41     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
42     Volume = {101},
43     Year = {2003},
44     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
45     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
46    
47     @article{doi:10.1021/jp020581+,
48     Abstract = { The rate of energy dissipation from Au nanoparticles to their surroundings has been examined by pump−probe spectroscopy. These experiments were performed for particles suspended in aqueous solution, with average sizes ranging from 4 to 50 nm in diameter. The results show that energy relaxation is a very nonexponential process. Fitting the data to a stretched exponential function yields a characteristic time scale for relaxation that varies from ca. 10 ps for the smallest particles examined (∼4 nm diameter) to almost 400 ps for the 50 nm diameter particles. The relaxation times are proportional to the square of the radius, but do not depend on the initial temperature of the particles (i.e., the pump laser power). For very small particles, the time scale for energy dissipation is comparable to the time scale for electron−phonon coupling, which implies that significant energy loss occurs before the electrons and phonons reach thermal equilibrium within the particle. },
49     Author = {Hu, Min and Hartland, Gregory V.},
50     Date-Added = {2011-07-28 17:46:33 -0400},
51     Date-Modified = {2011-07-28 17:46:33 -0400},
52     Doi = {10.1021/jp020581+},
53     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp020581%2B},
54     Journal = {The Journal of Physical Chemistry B},
55     Number = {28},
56     Pages = {7029-7033},
57     Title = {Heat Dissipation for Au Particles in Aqueous Solution:  Relaxation Time versus Size},
58     Url = {http://pubs.acs.org/doi/abs/10.1021/jp020581%2B},
59     Volume = {106},
60     Year = {2002},
61     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp020581+},
62     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp020581+}}
63    
64     @article{PhysRevLett.96.186101,
65     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
66     Date-Added = {2011-07-28 15:41:43 -0400},
67     Date-Modified = {2011-07-28 15:41:43 -0400},
68     Doi = {10.1103/PhysRevLett.96.186101},
69     Journal = {Phys. Rev. Lett.},
70     Month = {May},
71     Number = {18},
72     Numpages = {4},
73     Pages = {186101},
74     Publisher = {American Physical Society},
75     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
76     Volume = {96},
77     Year = {2006},
78     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
79    
80     @article{doi:10.1021/jp048375k,
81     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
82     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
83     Date-Added = {2011-07-28 15:41:14 -0400},
84     Date-Modified = {2011-07-28 15:59:32 -0400},
85     Doi = {10.1021/jp048375k},
86     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
87     Journal = {J. Phys. Chem. B},
88     Number = {49},
89     Pages = {18870-18875},
90     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
91     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
92     Volume = {108},
93     Year = {2004},
94     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
95     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
96    
97     @article{PhysRevB.67.054302,
98     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
99     Date-Added = {2011-07-28 15:40:29 -0400},
100     Date-Modified = {2011-07-28 15:40:29 -0400},
101     Doi = {10.1103/PhysRevB.67.054302},
102     Journal = {Phys. Rev. B},
103     Month = {Feb},
104     Number = {5},
105     Numpages = {5},
106     Pages = {054302},
107     Publisher = {American Physical Society},
108     Title = {Thermal conductance of epitaxial interfaces},
109     Volume = {67},
110     Year = {2003},
111     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
112    
113 skuang 3750 @article{garde:nl2005,
114     Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
115     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
116     Date-Added = {2011-07-26 13:56:59 -0400},
117     Date-Modified = {2011-07-26 13:57:47 -0400},
118     Doi = {10.1021/nl051526q},
119     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
120 skuang 3755 Journal = {Nano Lett.},
121 skuang 3750 Note = {PMID: 16277458},
122     Number = {11},
123     Pages = {2225-2231},
124     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
125     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
126     Volume = {5},
127     Year = {2005},
128     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
129     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
130    
131     @article{garde:PhysRevLett2009,
132     Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
133     Date-Added = {2011-07-25 16:06:12 -0400},
134     Date-Modified = {2011-07-26 13:58:33 -0400},
135     Doi = {10.1103/PhysRevLett.102.156101},
136     Journal = {Phys. Rev. Lett.},
137     Month = {Apr},
138     Number = {15},
139     Numpages = {4},
140     Pages = {156101},
141     Publisher = {American Physical Society},
142     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
143     Volume = {102},
144     Year = {2009},
145     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
146    
147 skuang 3749 @article{doi:10.1021/cr9801317,
148     Author = {Takano, Hajime and Kenseth, Jeremy R. and Wong, Sze-Shun and O'Brie, Janese C. and Porter, Marc D.},
149     Date-Added = {2011-07-25 14:50:24 -0400},
150     Date-Modified = {2011-07-25 14:50:24 -0400},
151     Doi = {10.1021/cr9801317},
152     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/cr9801317},
153 skuang 3755 Journal = {Chem. Rev.},
154 skuang 3749 Number = {10},
155     Pages = {2845-2890},
156     Title = {Chemical and Biochemical Analysis Using Scanning Force Microscopy},
157     Url = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
158     Volume = {99},
159     Year = {1999},
160     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
161     Bdsk-Url-2 = {http://dx.doi.org/10.1021/cr9801317}}
162    
163     @article{doi:10.1021/ja00008a001,
164     Author = {Widrig, Cindra A. and Alves, Carla A. and Porter, Marc D.},
165     Date-Added = {2011-07-25 14:49:37 -0400},
166     Date-Modified = {2011-07-25 14:49:37 -0400},
167     Doi = {10.1021/ja00008a001},
168     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00008a001},
169 skuang 3755 Journal = {J. Am. Chem. Soc.},
170 skuang 3749 Number = {8},
171     Pages = {2805-2810},
172     Title = {Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously absorbed at gold surfaces},
173     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
174     Volume = {113},
175     Year = {1991},
176     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
177     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00008a001}}
178    
179 skuang 3737 @article{doi:10.1021/la026493y,
180     Abstract = { We have studied butanethiol self-assembled monolayers on Au(100) using cyclic voltammetry and in situ scanning tunneling microscopy (STM). The butanethiol adlayer shows ordered domains with a striped structure, the stripes running parallel to the main crystallographic axes of the substrate. After modification the surface reveals a 50% coverage of monoatomic high gold islands, but no vacancy islands were observed. Reductive and oxidative desorption of the film, previously studied by electrochemistry, were monitored by STM. },
181     Author = {Loglio, F. and Schweizer, M. and Kolb, D. M.},
182     Date-Added = {2011-07-12 17:52:01 -0400},
183     Date-Modified = {2011-07-12 17:52:01 -0400},
184     Doi = {10.1021/la026493y},
185     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la026493y},
186     Journal = {Langmuir},
187     Number = {3},
188     Pages = {830-834},
189     Title = {In Situ Characterization of Self-Assembled Butanethiol Monolayers on Au(100) Electrodes},
190     Url = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
191     Volume = {19},
192     Year = {2003},
193     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
194     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la026493y}}
195    
196     @article{doi:10.1021/j100035a033,
197     Author = {McDermott, Christie A. and McDermott, Mark T. and Green, John-Bruce and Porter, Marc D.},
198     Date-Added = {2011-07-12 17:51:55 -0400},
199     Date-Modified = {2011-07-12 17:51:55 -0400},
200     Doi = {10.1021/j100035a033},
201     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/j100035a033},
202 skuang 3755 Journal = {J. Phys. Chem.},
203 skuang 3737 Number = {35},
204     Pages = {13257-13267},
205     Title = {Structural Origins of the Surface Depressions at Alkanethiolate Monolayers on Au(111): A Scanning Tunneling and Atomic Force Microscopic Investigation},
206     Url = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
207     Volume = {99},
208     Year = {1995},
209     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
210     Bdsk-Url-2 = {http://dx.doi.org/10.1021/j100035a033}}
211    
212 skuang 3736 @article{hautman:4994,
213     Author = {Joseph Hautman and Michael L. Klein},
214     Date-Added = {2011-07-11 18:27:57 -0400},
215     Date-Modified = {2011-07-11 18:27:57 -0400},
216     Doi = {10.1063/1.457621},
217 skuang 3755 Journal = {J. Chem. Phys.},
218 skuang 3736 Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
219     Number = {8},
220     Pages = {4994-5001},
221     Publisher = {AIP},
222     Title = {Simulation of a monolayer of alkyl thiol chains},
223     Url = {http://link.aip.org/link/?JCP/91/4994/1},
224     Volume = {91},
225     Year = {1989},
226     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
227     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
228    
229     @article{landman:1998,
230     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
231     Author = {Luedtke, W. D. and Landman, Uzi},
232     Date-Added = {2011-07-11 18:22:20 -0400},
233     Date-Modified = {2011-07-11 18:22:54 -0400},
234     Doi = {10.1021/jp981745i},
235     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
236 skuang 3755 Journal = {J. Phys. Chem. B},
237 skuang 3736 Number = {34},
238     Pages = {6566-6572},
239     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
240     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
241     Volume = {102},
242     Year = {1998},
243     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
244     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
245    
246     @article{hase:2010,
247     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
248     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
249     Date-Added = {2011-07-11 16:02:11 -0400},
250     Date-Modified = {2011-07-11 16:06:39 -0400},
251     Doi = {10.1039/B923858C},
252     Issue = {17},
253     Journal = {Phys. Chem. Chem. Phys.},
254     Pages = {4435-4445},
255     Publisher = {The Royal Society of Chemistry},
256     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
257     Url = {http://dx.doi.org/10.1039/B923858C},
258     Volume = {12},
259     Year = {2010},
260     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
261    
262     @article{jiang:2002,
263 skuang 3733 Abstract = { A review is presented of this group's recent molecular simulation studies of self-assembled monolayers (SAMs) of alkanethiols on Au(111) surfaces. SAMs are very useful for the systematic alteration of the chemical and structural properties of a surface by varying chain length, tail group and composition. The scientific and technological importance of SAMs cannot be overestimated. The present work has been centred on studies of atomic scale surface properties of SAMs. First, configurational-bias Monte Carlo simulations were performed in both semigrand canonical and canonical ensembles to investigate the preferential adsorption and phase behaviour of mixed SAMs on Au(111) surfaces. Second, a novel hybrid molecular simulation technique was developed to simulate atomic force microscopy (AFM) over experimental timescales. The method combines a dynamic element model for the tip-cantilever system in AFM and a molecular dynamics relaxation approach for the sample. The hybrid simulation technique was applied to investigate atomic scale friction and adhesion properties of SAMs as a function of chain length. Third, dual-control-volume grand canonical molecular dynamics (DCV-GCMD) simulations were performed of transport diffusion of liquid water and methanol through a slit pore with both inner walls consisting of Au(111) surfaces covered by SAMs under a chemical potential gradient. Surface hydrophobicity was adjusted by varying the terminal group of CH3 (hydrophobic) or OH (hydrophilic) of the SAMs. Finally, ab initio quantum chemical calculations were performed on both clusters and periodic systems of methylthiols on Au(111) surfaces. Based on the ab initio results, an accurate force field capable of predicting c(4×2) superlattice structures over a wide range of temepratures for alkanethiols on Au(111) was developed. The extension of current work is discussed briefly. },
264     Author = {JIANG, SHAOYI},
265     Date-Added = {2011-07-08 17:51:59 -0400},
266 skuang 3736 Date-Modified = {2011-07-11 16:11:38 -0400},
267 skuang 3733 Doi = {10.1080/00268970210130948},
268     Eprint = {http://www.tandfonline.com/doi/pdf/10.1080/00268970210130948},
269     Journal = {Molecular Physics},
270     Number = {14},
271     Pages = {2261-2275},
272     Title = {Molecular simulation studies of self-assembled monolayers of alkanethiols on Au(111)},
273     Url = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
274     Volume = {100},
275     Year = {2002},
276     Bdsk-Url-1 = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
277     Bdsk-Url-2 = {http://dx.doi.org/10.1080/00268970210130948}}
278    
279     @article{doi:10.1021/la904855s,
280     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
281     Date-Added = {2011-07-08 17:18:53 -0400},
282     Date-Modified = {2011-07-08 17:18:53 -0400},
283     Doi = {10.1021/la904855s},
284     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
285     Journal = {Langmuir},
286     Note = {PMID: 20166728},
287     Number = {6},
288     Pages = {3786-3789},
289     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
290     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
291     Volume = {26},
292     Year = {2010},
293     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
294     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
295    
296     @article{doi:10.1021/jp8051888,
297     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
298     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
299     Date-Added = {2011-07-08 17:04:34 -0400},
300     Date-Modified = {2011-07-08 17:04:34 -0400},
301     Doi = {10.1021/jp8051888},
302     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
303 skuang 3755 Journal = {J. Phys. Chem. C},
304 skuang 3733 Number = {35},
305     Pages = {13320-13323},
306     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
307     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
308     Volume = {112},
309     Year = {2008},
310     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
311     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
312    
313     @article{PhysRevB.80.195406,
314     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
315     Date-Added = {2011-07-08 16:36:39 -0400},
316     Date-Modified = {2011-07-08 16:36:39 -0400},
317     Doi = {10.1103/PhysRevB.80.195406},
318     Journal = {Phys. Rev. B},
319     Month = {Nov},
320     Number = {19},
321     Numpages = {6},
322     Pages = {195406},
323     Publisher = {American Physical Society},
324     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
325     Volume = {80},
326     Year = {2009},
327     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
328    
329     @article{Wang10082007,
330     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
331     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
332     Date-Added = {2011-07-08 16:20:05 -0400},
333     Date-Modified = {2011-07-08 16:20:05 -0400},
334     Doi = {10.1126/science.1145220},
335     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
336     Journal = {Science},
337     Number = {5839},
338     Pages = {787-790},
339     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
340     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
341     Volume = {317},
342     Year = {2007},
343     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
344     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
345    
346 skuang 3736 @article{hase:2011,
347 skuang 3733 Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
348     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
349     Date-Added = {2011-07-08 13:36:39 -0400},
350 skuang 3736 Date-Modified = {2011-07-11 16:07:01 -0400},
351 skuang 3733 Doi = {10.1021/jp200672e},
352     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
353 skuang 3755 Journal = {J. Phys. Chem. C},
354 skuang 3733 Number = {19},
355     Pages = {9622-9628},
356     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
357     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
358     Volume = {115},
359     Year = {2011},
360     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
361     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
362    
363 skuang 3752 @article{UFF.rappe92,
364 skuang 3729 Author = {Rappe, A. K. and Casewit, C. J. and Colwell, K. S. and Goddard, W. A. and Skiff, W. M.},
365     Date-Added = {2011-06-29 14:04:33 -0400},
366 skuang 3752 Date-Modified = {2011-07-26 18:53:04 -0400},
367 skuang 3729 Doi = {10.1021/ja00051a040},
368     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00051a040},
369     Journal = {Journal of the American Chemical Society},
370     Number = {25},
371     Pages = {10024-10035},
372     Title = {UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations},
373     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
374     Volume = {114},
375     Year = {1992},
376     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
377     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00051a040}}
378    
379 skuang 3724 @article{doi:10.1021/jp034405s,
380     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
381 skuang 3755 Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
382 skuang 3724 Date-Added = {2011-04-28 11:23:28 -0400},
383     Date-Modified = {2011-04-28 11:23:28 -0400},
384     Doi = {10.1021/jp034405s},
385     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
386 skuang 3755 Journal = {J. Phys. Chem. B},
387 skuang 3724 Number = {43},
388     Pages = {11940-11950},
389     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
390     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
391     Volume = {107},
392     Year = {2003},
393     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
394     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
395    
396 skuang 3721 @article{OPLSAA,
397     Abstract = {null},
398     Annote = {doi: 10.1021/ja9621760},
399     Author = {Jorgensen, William L. and Maxwell, David S. and Tirado-Rives, Julian},
400     Date = {1996/01/01},
401     Date-Added = {2011-02-04 18:54:58 -0500},
402     Date-Modified = {2011-02-04 18:54:58 -0500},
403     Do = {10.1021/ja9621760},
404     Isbn = {0002-7863},
405 skuang 3755 Journal = {J. Am. Chem. Soc.},
406 skuang 3721 M3 = {doi: 10.1021/ja9621760},
407     Month = {01},
408     Number = {45},
409     Pages = {11225--11236},
410     Publisher = {American Chemical Society},
411     Title = {Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids},
412     Ty = {JOUR},
413     Url = {http://dx.doi.org/10.1021/ja9621760},
414     Volume = {118},
415     Year = {1996},
416     Year1 = {1996/01/01},
417     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja9621760}}
418    
419     @article{TraPPE-UA.alkylbenzenes,
420     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
421     Date-Added = {2011-02-04 18:31:46 -0500},
422     Date-Modified = {2011-02-04 18:32:22 -0500},
423     Doi = {10.1021/jp001044x},
424     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
425 skuang 3755 Journal = {J. Phys. Chem. B},
426 skuang 3721 Number = {33},
427     Pages = {8008-8016},
428     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
429     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
430     Volume = {104},
431     Year = {2000},
432     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
433     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
434    
435     @article{TraPPE-UA.alkanes,
436     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
437     Date-Added = {2011-02-04 18:01:31 -0500},
438     Date-Modified = {2011-02-04 18:02:19 -0500},
439     Doi = {10.1021/jp972543+},
440     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
441 skuang 3755 Journal = {J. Phys. Chem. B},
442 skuang 3721 Number = {14},
443     Pages = {2569-2577},
444     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
445     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
446     Volume = {102},
447     Year = {1998},
448     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
449     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+}}
450    
451     @article{TraPPE-UA.thiols,
452     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
453     Date-Added = {2011-02-04 17:51:03 -0500},
454     Date-Modified = {2011-02-04 17:54:20 -0500},
455     Doi = {10.1021/jp0549125},
456     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
457 skuang 3755 Journal = {J. Phys. Chem. B},
458 skuang 3721 Number = {50},
459     Pages = {24100-24107},
460     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
461     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
462     Volume = {109},
463     Year = {2005},
464     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
465     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
466    
467     @article{vlugt:cpc2007154,
468     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
469     Date-Added = {2011-02-01 16:00:11 -0500},
470     Date-Modified = {2011-02-04 18:21:59 -0500},
471     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
472     Issn = {0010-4655},
473 skuang 3755 Journal = {Comput. Phys. Commun.},
474 skuang 3721 Keywords = {Gold nanocrystals},
475     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
476     Number = {1-2},
477     Pages = {154 - 157},
478     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
479     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
480     Volume = {177},
481     Year = {2007},
482     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
483     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
484    
485     @article{packmol,
486     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
487     Bibsource = {DBLP, http://dblp.uni-trier.de},
488     Date-Added = {2011-02-01 15:13:02 -0500},
489     Date-Modified = {2011-02-01 15:14:25 -0500},
490     Ee = {http://dx.doi.org/10.1002/jcc.21224},
491 skuang 3755 Journal = {J. Comput. Chem.},
492 skuang 3721 Number = {13},
493     Pages = {2157-2164},
494     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
495     Volume = {30},
496     Year = {2009}}
497    
498     @article{kuang:164101,
499     Author = {Shenyu Kuang and J. Daniel Gezelter},
500     Date-Added = {2011-01-31 17:12:35 -0500},
501     Date-Modified = {2011-01-31 17:12:35 -0500},
502     Doi = {10.1063/1.3499947},
503     Eid = {164101},
504 skuang 3755 Journal = {J. Chem. Phys.},
505 skuang 3721 Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
506     Number = {16},
507     Numpages = {9},
508     Pages = {164101},
509     Publisher = {AIP},
510     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
511     Url = {http://link.aip.org/link/?JCP/133/164101/1},
512     Volume = {133},
513     Year = {2010},
514     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/133/164101/1},
515     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3499947}}
516    
517 skuang 3719 @article{muller:014102,
518     Author = {Thomas J. Muller and Michael Al-Samman and Florian Muller-Plathe},
519     Date-Added = {2010-09-16 19:19:25 -0400},
520     Date-Modified = {2010-09-16 19:19:25 -0400},
521     Doi = {10.1063/1.2943312},
522     Eid = {014102},
523     Journal = {The Journal of Chemical Physics},
524     Keywords = {intramolecular mechanics; Lennard-Jones potential; molecular dynamics method; thermostats; viscosity},
525     Number = {1},
526     Numpages = {8},
527     Pages = {014102},
528     Publisher = {AIP},
529     Title = {The influence of thermostats and manostats on reverse nonequilibrium molecular dynamics calculations of fluid viscosities},
530     Url = {http://link.aip.org/link/?JCP/129/014102/1},
531     Volume = {129},
532     Year = {2008},
533     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/129/014102/1},
534     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2943312}}
535    
536     @article{wolf:8254,
537     Author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
538     Date-Added = {2010-09-16 19:01:51 -0400},
539     Date-Modified = {2010-09-16 19:01:51 -0400},
540     Doi = {10.1063/1.478738},
541     Journal = {J. Chem. Phys.},
542     Keywords = {POTENTIAL ENERGY; COULOMB FIELD; COULOMB ENERGY; LATTICE PARAMETERS; potential energy functions; lattice dynamics; lattice energy},
543     Number = {17},
544     Pages = {8254-8282},
545     Publisher = {AIP},
546     Title = {Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup -1] summation},
547     Url = {http://link.aip.org/link/?JCP/110/8254/1},
548     Volume = {110},
549     Year = {1999},
550     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/110/8254/1},
551     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.478738}}
552    
553     @article{HeX:1993,
554     Abstract = {A recently developed non-equilibrium molecular dynamics algorithm for
555     heat conduction is used to compute the thermal conductivity, thermal
556     diffusion factor, and heat of transfer in binary Lennard-Jones
557     mixtures. An internal energy flux is established with local source and
558     sink terms for kinetic energy.
559     Simulations of isotope mixtures covering a range of densities and mass
560     ratios show that the lighter component prefers the hot side of the
561     system at stationary state. This implies a positive thermal diffusion
562     factor in the definition we have adopted here. The molecular basis for
563     the Soret effect is studied by analysing the energy flux through the
564     system. In all cases we found that there is a difference in the
565     relative contributions when we compare the hot and cold sides of the
566     system. The contribution from the lighter component is predominantly
567     flux of kinetic energy, and this contribution increases from the cold
568     to the hot side. The contribution from the heavier component is
569     predominantly energy transfer through molecular interactions, and it
570     increases from the hot to the cold side. This explains why the thermal
571     diffusion factor is positive; heal is conducted more effectively
572     through the system if the lighter component is enriched at the hot
573     side. Even for very large heat fluxes, we find a linear or almost
574     linear temperature profile through the system, and a constant thermal
575     conductivity. The entropy production per unit volume and unit time
576     increases from the hot to the cold side.},
577     Author = {Hafskjold, B and Ikeshoji, T and Ratkje, SK},
578     Date-Added = {2010-09-15 16:52:45 -0400},
579     Date-Modified = {2010-09-15 16:54:23 -0400},
580     Issn = {{0026-8976}},
581     Journal = {Mol. Phys.},
582     Month = {DEC},
583     Number = {6},
584     Pages = {1389-1412},
585     Title = {ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS},
586     Unique-Id = {ISI:A1993MQ34500009},
587     Volume = {80},
588 skuang 3721 Year = {1993}}
589 skuang 3719
590     @article{HeX:1994,
591     Abstract = {This paper presents a new algorithm for non-equilibrium molecular
592     dynamics, where a temperature gradient is established in a system with
593     periodic boundary conditions. At each time step in the simulation, a
594     fixed amount of energy is supplied to a hot region by scaling the
595     velocity of each particle in it, subject to conservation of total
596     momentum. An equal amount of energy is likewise withdrawn from a cold
597     region at each time step. Between the hot and cold regions is a region
598     through which an energy flux is established. Two configurations of hot
599     and cold regions are proposed. Using a stacked layer structure, the
600     instantaneous local energy flux for a 128-particle Lennard-Jones system
601     in liquid was found to be in good agreement with the macroscopic theory
602     of heat conduction at stationary state, except in and near the hot and
603     cold regions. Thermal conductivity calculated for the 128-particle
604     system was about 10\% smaller than the literature value obtained by
605     molecular dynamics calculations. One run with a 1024-particle system
606     showed an agreement with the literature value within statistical error
607     (1-2\%). Using a unit cell with a cold spherical region at the centre
608     and a hot region in the perimeter of the cube, an initial gaseous state
609     of argon was separated into gas and liquid phases. Energy fluxes due to
610     intermolecular energy transfer and transport of kinetic energy dominate
611     in the liquid and gas phases, respectively.},
612     Author = {Ikeshoji, T and Hafskjold, B},
613     Date-Added = {2010-09-15 16:52:45 -0400},
614     Date-Modified = {2010-09-15 16:54:37 -0400},
615     Issn = {0026-8976},
616     Journal = {Mol. Phys.},
617     Month = {FEB},
618     Number = {2},
619     Pages = {251-261},
620     Title = {NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE},
621     Unique-Id = {ISI:A1994MY17400001},
622     Volume = {81},
623 skuang 3721 Year = {1994}}
624 skuang 3719
625     @article{plech:195423,
626     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
627     Date-Added = {2010-08-12 11:34:55 -0400},
628     Date-Modified = {2010-08-12 11:34:55 -0400},
629     Eid = {195423},
630     Journal = {Phys. Rev. B},
631     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
632     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
633     Number = {19},
634     Numpages = {7},
635     Pages = {195423},
636     Publisher = {APS},
637     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
638     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
639     Volume = {70},
640     Year = {2004},
641     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
642    
643     @article{Wilson:2002uq,
644     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
645     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
646     Date-Added = {2010-08-12 11:31:02 -0400},
647     Date-Modified = {2010-08-12 11:31:02 -0400},
648     Doi = {ARTN 224301},
649     Journal = {Phys. Rev. B},
650     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
651 skuang 3755 Pages = {224301},
652 skuang 3719 Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
653     Volume = {66},
654     Year = {2002},
655     Bdsk-Url-1 = {http://dx.doi.org/224301}}
656    
657     @article{RevModPhys.61.605,
658     Author = {Swartz, E. T. and Pohl, R. O.},
659     Date-Added = {2010-08-06 17:03:01 -0400},
660     Date-Modified = {2010-08-06 17:03:01 -0400},
661     Doi = {10.1103/RevModPhys.61.605},
662     Journal = {Rev. Mod. Phys.},
663     Month = {Jul},
664     Number = {3},
665     Numpages = {63},
666     Pages = {605--668},
667     Publisher = {American Physical Society},
668     Title = {Thermal boundary resistance},
669     Volume = {61},
670     Year = {1989},
671     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
672    
673     @article{cahill:793,
674     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
675     Date-Added = {2010-08-06 17:02:22 -0400},
676     Date-Modified = {2010-08-06 17:02:22 -0400},
677     Doi = {10.1063/1.1524305},
678 skuang 3755 Journal = {J. Appl. Phys.},
679 skuang 3719 Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
680     Number = {2},
681     Pages = {793-818},
682     Publisher = {AIP},
683     Title = {Nanoscale thermal transport},
684     Url = {http://link.aip.org/link/?JAP/93/793/1},
685     Volume = {93},
686     Year = {2003},
687     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
688     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
689    
690     @inbook{Hoffman:2001sf,
691     Address = {New York},
692     Annote = {LDR 01107cam 2200253 a 4500
693     001 12358442
694     005 20070910074423.0
695     008 010326s2001 nyua b 001 0 eng
696     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
697     925 0 $aacquire$b2 shelf copies$xpolicy default
698     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
699     010 $a 2001028633
700     020 $a0824704436 (acid-free paper)
701     040 $aDLC$cDLC$dDLC
702     050 00 $aQA297$b.H588 2001
703     082 00 $a519.4$221
704     100 1 $aHoffman, Joe D.,$d1934-
705     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
706     250 $a2nd ed., rev. and expanded.
707     260 $aNew York :$bMarcel Dekker,$cc2001.
708     300 $axi, 823 p. :$bill. ;$c26 cm.
709     504 $aIncludes bibliographical references (p. 775-777) and index.
710     650 0 $aNumerical analysis.
711     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
712     },
713     Author = {Hoffman, Joe D.},
714     Call-Number = {QA297},
715     Date-Added = {2010-07-15 16:32:02 -0400},
716     Date-Modified = {2010-07-19 16:49:37 -0400},
717     Dewey-Call-Number = {519.4},
718     Edition = {2nd ed., rev. and expanded},
719     Genre = {Numerical analysis},
720     Isbn = {0824704436 (acid-free paper)},
721     Library-Id = {2001028633},
722     Pages = {157},
723     Publisher = {Marcel Dekker},
724     Title = {Numerical methods for engineers and scientists},
725     Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
726     Year = {2001},
727     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
728    
729     @article{Vardeman:2008fk,
730     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
731     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
732     Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
733     Date-Added = {2010-07-13 11:48:22 -0400},
734     Date-Modified = {2010-07-19 16:20:01 -0400},
735     Doi = {DOI 10.1021/jp710063g},
736     Isi = {000253512400021},
737     Isi-Recid = {160903603},
738     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
739     Journal = {J. Phys. Chem. C},
740     Month = mar,
741     Number = {9},
742     Pages = {3283-3293},
743     Publisher = {AMER CHEMICAL SOC},
744     Times-Cited = {0},
745     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
746     Volume = {112},
747     Year = {2008},
748     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
749    
750     @article{PhysRevB.59.3527,
751     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
752     Date-Added = {2010-07-13 11:44:08 -0400},
753     Date-Modified = {2010-07-13 11:44:08 -0400},
754     Doi = {10.1103/PhysRevB.59.3527},
755     Journal = {Phys. Rev. B},
756     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
757     Month = {Feb},
758     Number = {5},
759     Numpages = {6},
760     Pages = {3527-3533},
761     Publisher = {American Physical Society},
762     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
763     Volume = {59},
764     Year = {1999},
765     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
766    
767     @article{Medasani:2007uq,
768     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
769     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
770     Date-Added = {2010-07-13 11:43:15 -0400},
771     Date-Modified = {2010-07-13 11:43:15 -0400},
772     Doi = {ARTN 235436},
773     Journal = {Phys. Rev. B},
774     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
775     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
776     Volume = {75},
777     Year = {2007},
778     Bdsk-Url-1 = {http://dx.doi.org/235436}}
779    
780     @article{Wang:2005qy,
781     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
782     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
783     Date-Added = {2010-07-13 11:42:50 -0400},
784     Date-Modified = {2010-07-13 11:42:50 -0400},
785     Doi = {DOI 10.1021/jp050116n},
786     Journal = {J. Phys. Chem. B},
787     Pages = {11683-11692},
788     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
789     Volume = {109},
790     Year = {2005},
791     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
792    
793     @article{Chui:2003fk,
794     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
795     Author = {Chui, YH and Chan, KY},
796     Date-Added = {2010-07-13 11:42:32 -0400},
797     Date-Modified = {2010-07-13 11:42:32 -0400},
798     Doi = {DOI 10.1039/b302122j},
799     Journal = {Phys. Chem. Chem. Phys.},
800     Pages = {2869-2874},
801     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
802     Volume = {5},
803     Year = {2003},
804     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
805    
806     @article{Sankaranarayanan:2005lr,
807     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
808     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
809     Date-Added = {2010-07-13 11:42:13 -0400},
810     Date-Modified = {2010-07-13 11:42:13 -0400},
811     Doi = {ARTN 195415},
812     Journal = {Phys. Rev. B},
813     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
814     Volume = {71},
815     Year = {2005},
816     Bdsk-Url-1 = {http://dx.doi.org/195415}}
817    
818     @article{Vardeman-II:2001jn,
819     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
820     Date-Added = {2010-07-13 11:41:50 -0400},
821     Date-Modified = {2010-07-13 11:41:50 -0400},
822     Journal = {J. Phys. Chem. A},
823     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
824     Number = {12},
825     Pages = {2568},
826     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
827     Volume = {105},
828     Year = {2001}}
829    
830     @article{ShibataT._ja026764r,
831     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
832     Date-Added = {2010-07-13 11:41:36 -0400},
833     Date-Modified = {2010-07-13 11:41:36 -0400},
834     Journal = {J. Amer. Chem. Soc.},
835     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
836     Number = {40},
837     Pages = {11989-11996},
838     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
839     Url = {http://dx.doi.org/10.1021/ja026764r},
840     Volume = {124},
841     Year = {2002},
842     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
843    
844     @article{Chen90,
845     Author = {A.~P. Sutton and J. Chen},
846     Date-Added = {2010-07-13 11:40:48 -0400},
847     Date-Modified = {2010-07-13 11:40:48 -0400},
848 skuang 3755 Journal = {Philos. Mag. Lett.},
849 skuang 3719 Pages = {139-146},
850     Title = {Long-Range Finnis Sinclair Potentials},
851     Volume = 61,
852     Year = {1990}}
853    
854     @article{PhysRevB.33.7983,
855     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
856     Date-Added = {2010-07-13 11:40:28 -0400},
857     Date-Modified = {2010-07-13 11:40:28 -0400},
858     Doi = {10.1103/PhysRevB.33.7983},
859     Journal = {Phys. Rev. B},
860     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
861     Month = {Jun},
862     Number = {12},
863     Numpages = {8},
864     Pages = {7983-7991},
865     Publisher = {American Physical Society},
866     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
867     Volume = {33},
868     Year = {1986},
869     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
870    
871     @article{hoover85,
872     Author = {W.~G. Hoover},
873     Date-Added = {2010-07-13 11:24:30 -0400},
874     Date-Modified = {2010-07-13 11:24:30 -0400},
875     Journal = pra,
876     Pages = 1695,
877     Title = {Canonical dynamics: Equilibrium phase-space distributions},
878     Volume = 31,
879     Year = 1985}
880    
881     @article{melchionna93,
882     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
883     Date-Added = {2010-07-13 11:22:17 -0400},
884     Date-Modified = {2010-07-13 11:22:17 -0400},
885     Journal = {Mol. Phys.},
886     Pages = {533-544},
887     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
888     Volume = 78,
889     Year = 1993}
890    
891     @misc{openmd,
892     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
893     Date-Added = {2010-07-13 11:16:00 -0400},
894     Date-Modified = {2010-07-19 16:27:45 -0400},
895     Howpublished = {Available at {\tt http://openmd.net}},
896     Title = {{OpenMD, an open source engine for molecular dynamics}}}
897    
898     @inbook{AshcroftMermin,
899 skuang 3721 Address = {Belmont, CA},
900 skuang 3719 Author = {Neil W. Ashcroft and N.~David Mermin},
901     Date-Added = {2010-07-12 14:26:49 -0400},
902     Date-Modified = {2010-07-22 13:37:20 -0400},
903     Pages = {21},
904     Publisher = {Brooks Cole},
905     Title = {Solid State Physics},
906 skuang 3721 Year = {1976}}
907 skuang 3719
908     @book{WagnerKruse,
909     Address = {Berlin},
910     Author = {W. Wagner and A. Kruse},
911     Date-Added = {2010-07-12 14:10:29 -0400},
912     Date-Modified = {2010-07-12 14:13:44 -0400},
913     Publisher = {Springer-Verlag},
914     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
915 skuang 3721 Year = {1998}}
916 skuang 3719
917     @article{ISI:000266247600008,
918     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
919     hexafluorophosphate is investigated by non-equilibrium molecular
920     dynamics simulations with cosine-modulated force in the temperature
921     range from 360 to 480K. It is shown that this method is able to
922     correctly predict the shear viscosity. The simulation setting and
923     choice of the force field are discussed in detail. The all-atom force
924     field exhibits a bad convergence and the shear viscosity is
925     overestimated, while the simple united atom model predicts the kinetics
926     very well. The results are compared with the equilibrium molecular
927     dynamics simulations. The relationship between the diffusion
928     coefficient and viscosity is examined by means of the hydrodynamic
929     radii calculated from the Stokes-Einstein equation and the solvation
930     properties are discussed.},
931     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
932     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
933     Author = {Picalek, Jan and Kolafa, Jiri},
934     Author-Email = {jiri.kolafa@vscht.cz},
935     Date-Added = {2010-04-16 13:19:12 -0400},
936     Date-Modified = {2010-04-16 13:19:12 -0400},
937     Doc-Delivery-Number = {448FD},
938     Doi = {10.1080/08927020802680703},
939     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
940     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
941     Issn = {0892-7022},
942     Journal = {Mol. Simul.},
943     Journal-Iso = {Mol. Simul.},
944     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
945     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
946     Language = {English},
947     Number = {8},
948     Number-Of-Cited-References = {50},
949     Pages = {685-690},
950     Publisher = {TAYLOR \& FRANCIS LTD},
951     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
952     Times-Cited = {2},
953     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
954     Type = {Article},
955     Unique-Id = {ISI:000266247600008},
956     Volume = {35},
957     Year = {2009},
958     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
959    
960     @article{Vasquez:2004fk,
961     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
962     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
963     Date = {2004/11/02/},
964     Date-Added = {2010-04-16 13:18:48 -0400},
965     Date-Modified = {2010-04-16 13:18:48 -0400},
966     Day = {02},
967     Journal = {Int. J. Thermophys.},
968     M3 = {10.1007/s10765-004-7736-3},
969     Month = {11},
970     Number = {6},
971     Pages = {1799--1818},
972     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
973     Ty = {JOUR},
974     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
975     Volume = {25},
976     Year = {2004},
977     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
978    
979     @article{hess:209,
980     Author = {Berk Hess},
981     Date-Added = {2010-04-16 12:37:37 -0400},
982     Date-Modified = {2010-04-16 12:37:37 -0400},
983     Doi = {10.1063/1.1421362},
984     Journal = {J. Chem. Phys.},
985     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
986     Number = {1},
987     Pages = {209-217},
988     Publisher = {AIP},
989     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
990     Url = {http://link.aip.org/link/?JCP/116/209/1},
991     Volume = {116},
992     Year = {2002},
993     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
994     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
995    
996     @article{backer:154503,
997     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
998     Date-Added = {2010-04-16 12:37:37 -0400},
999     Date-Modified = {2010-04-16 12:37:37 -0400},
1000     Doi = {10.1063/1.1883163},
1001     Eid = {154503},
1002     Journal = {J. Chem. Phys.},
1003     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
1004     Number = {15},
1005     Numpages = {6},
1006     Pages = {154503},
1007     Publisher = {AIP},
1008     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
1009     Url = {http://link.aip.org/link/?JCP/122/154503/1},
1010     Volume = {122},
1011     Year = {2005},
1012     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
1013     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
1014    
1015     @article{daivis:541,
1016     Author = {Peter J. Daivis and Denis J. Evans},
1017     Date-Added = {2010-04-16 12:05:36 -0400},
1018     Date-Modified = {2010-04-16 12:05:36 -0400},
1019     Doi = {10.1063/1.466970},
1020     Journal = {J. Chem. Phys.},
1021     Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
1022     Number = {1},
1023     Pages = {541-547},
1024     Publisher = {AIP},
1025     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
1026     Url = {http://link.aip.org/link/?JCP/100/541/1},
1027     Volume = {100},
1028     Year = {1994},
1029     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
1030     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
1031    
1032     @article{mondello:9327,
1033     Author = {Maurizio Mondello and Gary S. Grest},
1034     Date-Added = {2010-04-16 12:05:36 -0400},
1035     Date-Modified = {2010-04-16 12:05:36 -0400},
1036     Doi = {10.1063/1.474002},
1037     Journal = {J. Chem. Phys.},
1038     Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
1039     Number = {22},
1040     Pages = {9327-9336},
1041     Publisher = {AIP},
1042     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
1043     Url = {http://link.aip.org/link/?JCP/106/9327/1},
1044     Volume = {106},
1045     Year = {1997},
1046     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
1047     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
1048    
1049     @article{ISI:A1988Q205300014,
1050     Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
1051     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
1052     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
1053     Date-Added = {2010-04-14 16:20:24 -0400},
1054     Date-Modified = {2010-04-14 16:20:24 -0400},
1055     Doc-Delivery-Number = {Q2053},
1056     Issn = {0026-8976},
1057     Journal = {Mol. Phys.},
1058     Journal-Iso = {Mol. Phys.},
1059     Language = {English},
1060     Month = {AUG 20},
1061     Number = {6},
1062     Number-Of-Cited-References = {14},
1063     Pages = {1203-1213},
1064     Publisher = {TAYLOR \& FRANCIS LTD},
1065     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1066     Times-Cited = {12},
1067     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
1068     Type = {Article},
1069     Unique-Id = {ISI:A1988Q205300014},
1070     Volume = {64},
1071     Year = {1988}}
1072    
1073     @article{ISI:000261835100054,
1074     Abstract = {Transport properties of liquid methanol and ethanol are predicted by
1075     molecular dynamics simulation. The molecular models for the alcohols
1076     are rigid, nonpolarizable, and of united-atom type. They were developed
1077     in preceding work using experimental vapor-liquid equilibrium data
1078     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
1079     shear viscosity of methanol, ethanol, and their binary mixture are
1080     determined using equilibrium molecular dynamics and the Green-Kubo
1081     formalism. Nonequilibrium molecular dynamics is used for predicting the
1082     thermal conductivity of the two pure substances. The transport
1083     properties of the fluids are calculated over a wide temperature range
1084     at ambient pressure and compared with experimental and simulation data
1085     from the literature. Overall, a very good agreement with the experiment
1086     is found. For instance, the self-diffusion coefficient and the shear
1087     viscosity are predicted with average deviations of less than 8\% for
1088     the pure alcohols and 12\% for the mixture. The predicted thermal
1089     conductivity agrees on average within 5\% with the experimental data.
1090     Additionally, some velocity and shear viscosity autocorrelation
1091     functions are presented and discussed. Radial distribution functions
1092     for ethanol are also presented. The predicted excess volume, excess
1093     enthalpy, and the vapor-liquid equilibrium of the binary mixture
1094     methanol + ethanol are assessed and agree well with experimental data.},
1095     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1096     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
1097     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
1098     Author-Email = {vrabec@itt.uni-stuttgart.de},
1099     Date-Added = {2010-04-14 15:43:29 -0400},
1100     Date-Modified = {2010-04-14 15:43:29 -0400},
1101     Doc-Delivery-Number = {385SY},
1102     Doi = {10.1021/jp805584d},
1103     Issn = {1520-6106},
1104     Journal = {J. Phys. Chem. B},
1105     Journal-Iso = {J. Phys. Chem. B},
1106     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
1107     Language = {English},
1108     Month = {DEC 25},
1109     Number = {51},
1110     Number-Of-Cited-References = {86},
1111     Pages = {16664-16674},
1112     Publisher = {AMER CHEMICAL SOC},
1113     Subject-Category = {Chemistry, Physical},
1114     Times-Cited = {5},
1115     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
1116     Type = {Article},
1117     Unique-Id = {ISI:000261835100054},
1118     Volume = {112},
1119     Year = {2008},
1120     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
1121    
1122     @article{ISI:000258460400020,
1123     Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
1124     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
1125     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
1126     9549) force fields have been employed to calculate the thermal
1127     conductivity and other associated properties of methane hydrate over a
1128     temperature range from 30 to 260 K. The calculated results are compared
1129     to experimental data over this same range. The values of the thermal
1130     conductivity calculated with the COS/G2 model are closer to the
1131     experimental values than are those calculated with the nonpolarizable
1132     SPC/E model. The calculations match the temperature trend in the
1133     experimental data at temperatures below 50 K; however, they exhibit a
1134     slight decrease in thermal conductivity at higher temperatures in
1135     comparison to an opposite trend in the experimental data. The
1136     calculated thermal conductivity values are found to be relatively
1137     insensitive to the occupancy of the cages except at low (T <= 50 K)
1138     temperatures, which indicates that the differences between the two
1139     lattice structures may have a more dominant role than generally thought
1140     in explaining the low thermal conductivity of methane hydrate compared
1141     to ice Ih. The introduction of defects into the water lattice is found
1142     to cause a reduction in the thermal conductivity but to have a
1143     negligible impact on its temperature dependence.},
1144     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1145     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
1146     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
1147     Date-Added = {2010-04-14 15:38:14 -0400},
1148     Date-Modified = {2010-04-14 15:38:14 -0400},
1149     Doc-Delivery-Number = {337UG},
1150     Doi = {10.1021/jp802942v},
1151     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
1152     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
1153     Issn = {1520-6106},
1154     Journal = {J. Phys. Chem. B},
1155     Journal-Iso = {J. Phys. Chem. B},
1156     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
1157     Language = {English},
1158     Month = {AUG 21},
1159     Number = {33},
1160     Number-Of-Cited-References = {51},
1161     Pages = {10207-10216},
1162     Publisher = {AMER CHEMICAL SOC},
1163     Subject-Category = {Chemistry, Physical},
1164     Times-Cited = {8},
1165     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
1166     Type = {Article},
1167     Unique-Id = {ISI:000258460400020},
1168     Volume = {112},
1169     Year = {2008},
1170     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
1171    
1172     @article{ISI:000184808400018,
1173     Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
1174     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
1175     6082), for the non-equilibrium simulation of heat transport maintaining
1176     fixed the total momentum as well as the total energy of the system. The
1177     presented scheme preserves these properties but, unlike the original
1178     algorithm, is able to deal with multicomponent systems, that is with
1179     particles of different mass independently of their relative
1180     concentration. The main idea behind the new procedure is to consider an
1181     exchange of momentum and energy between the particles in the hot and
1182     cold regions, to maintain the non-equilibrium conditions, as if they
1183     undergo a hypothetical elastic collision. The new algorithm can also be
1184     employed in multicomponent systems for molecular fluids and in a wide
1185     range of thermodynamic conditions.},
1186     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1187     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
1188     Author = {Nieto-Draghi, C and Avalos, JB},
1189     Date-Added = {2010-04-14 12:48:08 -0400},
1190     Date-Modified = {2010-04-14 12:48:08 -0400},
1191     Doc-Delivery-Number = {712QM},
1192     Doi = {10.1080/0026897031000154338},
1193     Issn = {0026-8976},
1194     Journal = {Mol. Phys.},
1195     Journal-Iso = {Mol. Phys.},
1196     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
1197     Language = {English},
1198     Month = {JUL 20},
1199     Number = {14},
1200     Number-Of-Cited-References = {20},
1201     Pages = {2303-2307},
1202     Publisher = {TAYLOR \& FRANCIS LTD},
1203     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1204     Times-Cited = {13},
1205     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
1206     Type = {Article},
1207     Unique-Id = {ISI:000184808400018},
1208     Volume = {101},
1209     Year = {2003},
1210     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
1211    
1212     @article{Bedrov:2000-1,
1213     Abstract = {The thermal conductivity of liquid
1214     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
1215     determined from imposed heat flux non-equilibrium molecular dynamics
1216     (NEMD) simulations using a previously published quantum chemistry-based
1217     atomistic potential. The thermal conductivity was determined in the
1218     temperature domain 550 less than or equal to T less than or equal to
1219     800 K, which corresponds approximately to the existence limits of the
1220     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
1221     which comprise the first reported values for thermal conductivity of
1222     HMX liquid, were found to be consistent with measured values for
1223     crystalline HMX. The thermal conductivity of liquid HMX was found to
1224     exhibit a much weaker temperature dependence than the shear viscosity
1225     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
1226     rights reserved.},
1227     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
1228     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
1229     Author = {Bedrov, D and Smith, GD and Sewell, TD},
1230     Date-Added = {2010-04-14 12:26:59 -0400},
1231     Date-Modified = {2010-04-14 12:27:52 -0400},
1232     Doc-Delivery-Number = {330PF},
1233     Issn = {0009-2614},
1234     Journal = {Chem. Phys. Lett.},
1235     Journal-Iso = {Chem. Phys. Lett.},
1236     Keywords-Plus = {FORCE-FIELD},
1237     Language = {English},
1238     Month = {JUN 30},
1239     Number = {1-3},
1240     Number-Of-Cited-References = {17},
1241     Pages = {64-68},
1242     Publisher = {ELSEVIER SCIENCE BV},
1243     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1244     Times-Cited = {19},
1245     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
1246     Type = {Article},
1247     Unique-Id = {ISI:000087969900011},
1248     Volume = {324},
1249     Year = {2000}}
1250    
1251     @article{ISI:000258840700015,
1252     Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
1253     (MD) simulations are carried out to calculate the viscosity and
1254     self-diffusion coefficient of liquid copper from the normal to the
1255     undercooled states. The simulated results are in reasonable agreement
1256     with the experimental values available above the melting temperature
1257     that is also predicted from a solid-liquid-solid sandwich structure.
1258     The relationship between the viscosity and the self-diffusion
1259     coefficient is evaluated. It is found that the Stokes-Einstein and
1260     Sutherland-Einstein relations qualitatively describe this relationship
1261     within the simulation temperature range. However, the predicted
1262     constant from MD simulation is close to 1/(3 pi), which is larger than
1263     the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
1264     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
1265     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
1266     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
1267     Author-Email = {mchen@tsinghua.edu.cn},
1268     Date-Added = {2010-04-14 12:00:38 -0400},
1269     Date-Modified = {2010-04-14 12:00:38 -0400},
1270     Doc-Delivery-Number = {343GH},
1271     Doi = {10.1007/s10765-008-0489-7},
1272     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
1273     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
1274     Issn = {0195-928X},
1275     Journal = {Int. J. Thermophys.},
1276     Journal-Iso = {Int. J. Thermophys.},
1277     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
1278     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
1279     Language = {English},
1280     Month = {AUG},
1281     Number = {4},
1282     Number-Of-Cited-References = {39},
1283     Pages = {1408-1421},
1284     Publisher = {SPRINGER/PLENUM PUBLISHERS},
1285     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
1286     Times-Cited = {2},
1287     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
1288     Type = {Article},
1289     Unique-Id = {ISI:000258840700015},
1290     Volume = {29},
1291     Year = {2008},
1292     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
1293    
1294     @article{Muller-Plathe:2008,
1295     Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
1296     dynamics simulations were carried out to compute the shear viscosity of
1297     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
1298     yielded consistent results which were also compared to experiments. The
1299     results showed that the reverse nonequilibrium molecular dynamics
1300     (RNEMD) methodology can successfully be applied to computation of
1301     highly viscous ionic liquids. Moreover, this study provides a
1302     validation of the atomistic force-field developed by Bhargava and
1303     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
1304     properties.},
1305     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1306     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
1307     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
1308     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
1309     Date-Added = {2010-04-14 11:53:37 -0400},
1310     Date-Modified = {2010-04-14 11:54:20 -0400},
1311     Doc-Delivery-Number = {321VS},
1312     Doi = {10.1021/jp8017869},
1313     Issn = {1520-6106},
1314     Journal = {J. Phys. Chem. B},
1315     Journal-Iso = {J. Phys. Chem. B},
1316     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
1317     Language = {English},
1318     Month = {JUL 10},
1319     Number = {27},
1320     Number-Of-Cited-References = {49},
1321     Pages = {8129-8133},
1322     Publisher = {AMER CHEMICAL SOC},
1323     Subject-Category = {Chemistry, Physical},
1324     Times-Cited = {2},
1325     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
1326     Type = {Article},
1327     Unique-Id = {ISI:000257335200022},
1328     Volume = {112},
1329     Year = {2008},
1330     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
1331    
1332     @article{Muller-Plathe:2002,
1333     Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
1334     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
1335     viscosity of Lennard-Jones liquids has been extended to atomistic
1336     models of molecular liquids. The method is improved to overcome the
1337     problems due to the detailed molecular models. The new technique is
1338     besides a test with a Lennard-Jones fluid, applied on different
1339     realistic systems: liquid nitrogen, water, and hexane, in order to
1340     cover a large range of interactions and systems/architectures. We show
1341     that all the advantages of the method itemized previously are still
1342     valid, and that it has a very good efficiency and accuracy making it
1343     very competitive. (C) 2002 American Institute of Physics.},
1344     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1345     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
1346     Author = {Bordat, P and M\"{u}ller-Plathe, F},
1347     Date-Added = {2010-04-14 11:34:42 -0400},
1348     Date-Modified = {2010-04-14 11:35:35 -0400},
1349     Doc-Delivery-Number = {521QV},
1350     Doi = {10.1063/1.1436124},
1351     Issn = {0021-9606},
1352     Journal = {J. Chem. Phys.},
1353     Journal-Iso = {J. Chem. Phys.},
1354     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
1355     Language = {English},
1356     Month = {FEB 22},
1357     Number = {8},
1358     Number-Of-Cited-References = {47},
1359     Pages = {3362-3369},
1360     Publisher = {AMER INST PHYSICS},
1361     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1362     Times-Cited = {33},
1363     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
1364     Type = {Article},
1365     Unique-Id = {ISI:000173853600023},
1366     Volume = {116},
1367     Year = {2002},
1368     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
1369    
1370     @article{ISI:000207079300006,
1371     Abstract = {Non-equilibrium Molecular Dynamics Simulation
1372     methods have been used to study the ability of
1373     Embedded Atom Method models of the metals copper and
1374     gold to reproduce the equilibrium and
1375     non-equilibrium behavior of metals at a stationary
1376     and at a moving solid/liquid interface. The
1377     equilibrium solid/vapor interface was shown to
1378     display a simple termination of the bulk until the
1379     temperature of the solid reaches approximate to 90\%
1380     of the bulk melting point. At and above such
1381     temperatures the systems exhibit a surface
1382     disodering known as surface melting. Non-equilibrium
1383     simulations emulating the action of a picosecond
1384     laser on the metal were performed to determine the
1385     regrowth velocity. For copper, the action of a 20 ps
1386     laser with an absorbed energy of 2-5 mJ/cm(2)
1387     produced a regrowth velocity of 83-100 m/s, in
1388     reasonable agreement with the value obtained by
1389     experiment (>60 m/s). For gold, similar conditions
1390     produced a slower regrowth velocity of 63 m/s at an
1391     absorbed energy of 5 mJ/cm(2). This is almost a
1392     factor of two too low in comparison to experiment
1393     (>100 m/s). The regrowth velocities of the metals
1394     seems unexpectedly close to experiment considering
1395     that the free-electron contribution is ignored in
1396     the Embeeded Atom Method models used.},
1397     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1398     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
1399     Author = {Richardson, Clifton F. and Clancy, Paulette},
1400     Date-Added = {2010-04-07 11:24:36 -0400},
1401     Date-Modified = {2010-04-07 11:24:36 -0400},
1402     Doc-Delivery-Number = {V04SY},
1403     Issn = {0892-7022},
1404     Journal = {Mol. Simul.},
1405     Journal-Iso = {Mol. Simul.},
1406     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
1407     Language = {English},
1408     Number = {5-6},
1409     Number-Of-Cited-References = {36},
1410     Pages = {335-355},
1411     Publisher = {TAYLOR \& FRANCIS LTD},
1412     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1413     Times-Cited = {7},
1414     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
1415     Type = {Article},
1416     Unique-Id = {ISI:000207079300006},
1417     Volume = {7},
1418     Year = {1991}}
1419    
1420     @article{ISI:000167766600035,
1421     Abstract = {Molecular dynamics simulations are used to
1422     investigate the separation of water films adjacent
1423     to a hot metal surface. The simulations clearly show
1424     that the water layers nearest the surface overheat
1425     and undergo explosive boiling. For thick films, the
1426     expansion of the vaporized molecules near the
1427     surface forces the outer water layers to move away
1428     from the surface. These results are of interest for
1429     mass spectrometry of biological molecules, steam
1430     cleaning of surfaces, and medical procedures.},
1431     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1432     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1433     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1434     Date-Added = {2010-03-11 15:32:14 -0500},
1435     Date-Modified = {2010-03-11 15:32:14 -0500},
1436     Doc-Delivery-Number = {416ED},
1437     Issn = {1089-5639},
1438     Journal = {J. Phys. Chem. A},
1439     Journal-Iso = {J. Phys. Chem. A},
1440     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1441     Language = {English},
1442     Month = {MAR 29},
1443     Number = {12},
1444     Number-Of-Cited-References = {65},
1445     Pages = {2748-2755},
1446     Publisher = {AMER CHEMICAL SOC},
1447     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1448     Times-Cited = {66},
1449     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1450     Type = {Article},
1451     Unique-Id = {ISI:000167766600035},
1452     Volume = {105},
1453     Year = {2001}}
1454    
1455     @article{Maginn:2010,
1456     Abstract = {The reverse nonequilibrium molecular dynamics
1457     (RNEMD) method calculates the shear viscosity of a
1458     fluid by imposing a nonphysical exchange of momentum
1459     and measuring the resulting shear velocity
1460     gradient. In this study we investigate the range of
1461     momentum flux values over which RNEMD yields usable
1462     (linear) velocity gradients. We find that nonlinear
1463     velocity profiles result primarily from gradients in
1464     fluid temperature and density. The temperature
1465     gradient results from conversion of heat into bulk
1466     kinetic energy, which is transformed back into heat
1467     elsewhere via viscous heating. An expression is
1468     derived to predict the temperature profile resulting
1469     from a specified momentum flux for a given fluid and
1470     simulation cell. Although primarily bounded above,
1471     we also describe milder low-flux limitations. RNEMD
1472     results for a Lennard-Jones fluid agree with
1473     equilibrium molecular dynamics and conventional
1474     nonequilibrium molecular dynamics calculations at
1475     low shear, but RNEMD underpredicts viscosity
1476     relative to conventional NEMD at high shear.},
1477     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1478     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1479     Article-Number = {014103},
1480     Author = {Tenney, Craig M. and Maginn, Edward J.},
1481     Author-Email = {ed@nd.edu},
1482     Date-Added = {2010-03-09 13:08:41 -0500},
1483     Date-Modified = {2010-07-19 16:21:35 -0400},
1484     Doc-Delivery-Number = {542DQ},
1485     Doi = {10.1063/1.3276454},
1486     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1487     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1488     Issn = {0021-9606},
1489     Journal = {J. Chem. Phys.},
1490     Journal-Iso = {J. Chem. Phys.},
1491     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1492     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1493     Language = {English},
1494     Month = {JAN 7},
1495     Number = {1},
1496     Number-Of-Cited-References = {20},
1497     Pages = {014103},
1498     Publisher = {AMER INST PHYSICS},
1499     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1500     Times-Cited = {0},
1501     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1502     Type = {Article},
1503     Unique-Id = {ISI:000273472300004},
1504     Volume = {132},
1505     Year = {2010},
1506     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1507    
1508     @article{Clancy:1992,
1509     Abstract = {The regrowth velocity of a crystal from a melt
1510     depends on contributions from the thermal
1511     conductivity, heat gradient, and latent heat. The
1512     relative contributions of these terms to the
1513     regrowth velocity of the pure metals copper and gold
1514     during liquid-phase epitaxy are evaluated. These
1515     results are used to explain how results from
1516     previous nonequilibrium molecular-dynamics
1517     simulations using classical potentials are able to
1518     predict regrowth velocities that are close to the
1519     experimental values. Results from equilibrium
1520     molecular dynamics showing the nature of the
1521     solid-vapor interface of an
1522     embedded-atom-method-modeled Cu57Ni43 alloy at a
1523     temperature corresponding to 62\% of the melting
1524     point are presented. The regrowth of this alloy
1525     following a simulation of a laser-processing
1526     experiment is also given, with use of nonequilibrium
1527     molecular-dynamics techniques. The thermal
1528     conductivity and temperature gradient in the
1529     simulation of the alloy are compared to those for
1530     the pure metals.},
1531     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1532     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
1533     Author = {Richardson, C.~F. and Clancy, P},
1534     Date-Added = {2010-01-12 16:17:33 -0500},
1535     Date-Modified = {2010-04-08 17:18:25 -0400},
1536     Doc-Delivery-Number = {HX378},
1537     Issn = {0163-1829},
1538     Journal = {Phys. Rev. B},
1539     Journal-Iso = {Phys. Rev. B},
1540     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
1541     Language = {English},
1542     Month = {JUN 1},
1543     Number = {21},
1544     Number-Of-Cited-References = {24},
1545     Pages = {12260-12268},
1546     Publisher = {AMERICAN PHYSICAL SOC},
1547     Subject-Category = {Physics, Condensed Matter},
1548     Times-Cited = {11},
1549     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1550     Type = {Article},
1551     Unique-Id = {ISI:A1992HX37800010},
1552     Volume = {45},
1553     Year = {1992}}
1554    
1555     @article{Bedrov:2000,
1556     Abstract = {We have applied a new nonequilibrium molecular
1557     dynamics (NEMD) method {[}F. Muller-Plathe,
1558     J. Chem. Phys. 106, 6082 (1997)] previously applied
1559     to monatomic Lennard-Jones fluids in the
1560     determination of the thermal conductivity of
1561     molecular fluids. The method was modified in order
1562     to be applicable to systems with holonomic
1563     constraints. Because the method involves imposing a
1564     known heat flux it is particularly attractive for
1565     systems involving long-range and many-body
1566     interactions where calculation of the microscopic
1567     heat flux is difficult. The predicted thermal
1568     conductivities of liquid n-butane and water using
1569     the imposed-flux NEMD method were found to be in a
1570     good agreement with previous simulations and
1571     experiment. (C) 2000 American Institute of
1572     Physics. {[}S0021-9606(00)50841-1].},
1573     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1574     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1575     Author = {Bedrov, D and Smith, GD},
1576     Date-Added = {2009-11-05 18:21:18 -0500},
1577     Date-Modified = {2010-04-14 11:50:48 -0400},
1578     Doc-Delivery-Number = {369BF},
1579     Issn = {0021-9606},
1580     Journal = {J. Chem. Phys.},
1581     Journal-Iso = {J. Chem. Phys.},
1582     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1583     Language = {English},
1584     Month = {NOV 8},
1585     Number = {18},
1586     Number-Of-Cited-References = {26},
1587     Pages = {8080-8084},
1588     Publisher = {AMER INST PHYSICS},
1589     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1590     Times-Cited = {23},
1591     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1592     Type = {Article},
1593     Unique-Id = {ISI:000090151400044},
1594     Volume = {113},
1595     Year = {2000}}
1596    
1597     @article{ISI:000231042800044,
1598     Abstract = {The reverse nonequilibrium molecular dynamics
1599     method for thermal conductivities is adapted to the
1600     investigation of molecular fluids. The method
1601     generates a heat flux through the system by suitably
1602     exchanging velocities of particles located in
1603     different regions. From the resulting temperature
1604     gradient, the thermal conductivity is then
1605     calculated. Different variants of the algorithm and
1606     their combinations with other system parameters are
1607     tested: exchange of atomic velocities versus
1608     exchange of molecular center-of-mass velocities,
1609     different exchange frequencies, molecular models
1610     with bond constraints versus models with flexible
1611     bonds, united-atom versus all-atom models, and
1612     presence versus absence of a thermostat. To help
1613     establish the range of applicability, the algorithm
1614     is tested on different models of benzene,
1615     cyclohexane, water, and n-hexane. We find that the
1616     algorithm is robust and that the calculated thermal
1617     conductivities are insensitive to variations in its
1618     control parameters. The force field, in contrast,
1619     has a major influence on the value of the thermal
1620     conductivity. While calculated and experimental
1621     thermal conductivities fall into the same order of
1622     magnitude, in most cases the calculated values are
1623     systematically larger. United-atom force fields seem
1624     to do better than all-atom force fields, possibly
1625     because they remove high-frequency degrees of
1626     freedom from the simulation, which, in nature, are
1627     quantum-mechanical oscillators in their ground state
1628     and do not contribute to heat conduction.},
1629     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1630     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1631     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1632     Date-Added = {2009-11-05 18:17:33 -0500},
1633     Date-Modified = {2009-11-05 18:17:33 -0500},
1634     Doc-Delivery-Number = {952YQ},
1635     Doi = {10.1021/jp0512255},
1636     Issn = {1520-6106},
1637     Journal = {J. Phys. Chem. B},
1638     Journal-Iso = {J. Phys. Chem. B},
1639     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1640     Language = {English},
1641     Month = {AUG 11},
1642     Number = {31},
1643     Number-Of-Cited-References = {42},
1644     Pages = {15060-15067},
1645     Publisher = {AMER CHEMICAL SOC},
1646     Subject-Category = {Chemistry, Physical},
1647     Times-Cited = {17},
1648     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1649     Type = {Article},
1650     Unique-Id = {ISI:000231042800044},
1651     Volume = {109},
1652     Year = {2005},
1653     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1654    
1655     @article{ISI:A1997YC32200056,
1656     Abstract = {Equilibrium molecular dynamics simulations have
1657     been carried out in the microcanonical ensemble at
1658     300 and 255 K on the extended simple point charge
1659     (SPC/E) model of water {[}Berendsen et al.,
1660     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1661     number of static and dynamic properties, thermal
1662     conductivity lambda has been calculated via
1663     Green-Kubo integration of the heat current time
1664     correlation functions (CF's) in the atomic and
1665     molecular formalism, at wave number k=0. The
1666     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1667     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1668     with the experimental data (0.61 W/mK at 300 K and
1669     0.49 W/mK at 255 K). A negative long-time tail of
1670     the heat current CF, more apparent at 255 K, is
1671     responsible for the anomalous decrease of lambda
1672     with temperature. An analysis of the dynamical modes
1673     contributing to lambda has shown that its value is
1674     due to two low-frequency exponential-like modes, a
1675     faster collisional mode, with positive contribution,
1676     and a slower one, which determines the negative
1677     long-time tail. A comparison of the molecular and
1678     atomic spectra of the heat current CF has suggested
1679     that higher-frequency modes should not contribute to
1680     lambda in this temperature range. Generalized
1681     thermal diffusivity D-T(k) decreases as a function
1682     of k, after an initial minor increase at k =
1683     k(min). The k dependence of the generalized
1684     thermodynamic properties has been calculated in the
1685     atomic and molecular formalisms. The observed
1686     differences have been traced back to intramolecular
1687     or intermolecular rotational effects and related to
1688     the partial structure functions. Finally, from the
1689     results we calculated it appears that the SPC/E
1690     model gives results in better agreement with
1691     experimental data than the transferable
1692     intermolecular potential with four points TIP4P
1693     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1694     926 (1983)], with a larger improvement for, e.g.,
1695     diffusion, viscosities, and dielectric properties
1696     and a smaller one for thermal conductivity. The
1697     SPC/E model shares, to a smaller extent, the
1698     insufficient slowing down of dynamics at low
1699     temperature already found for the TIP4P water
1700     model.},
1701     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1702     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1703     Author = {Bertolini, D and Tani, A},
1704     Date-Added = {2009-10-30 15:41:21 -0400},
1705     Date-Modified = {2009-10-30 15:41:21 -0400},
1706     Doc-Delivery-Number = {YC322},
1707     Issn = {1063-651X},
1708     Journal = {Phys. Rev. E},
1709     Journal-Iso = {Phys. Rev. E},
1710     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1711     Language = {English},
1712     Month = {OCT},
1713     Number = {4},
1714     Number-Of-Cited-References = {35},
1715     Pages = {4135-4151},
1716     Publisher = {AMERICAN PHYSICAL SOC},
1717     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1718     Times-Cited = {18},
1719     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1720     Type = {Article},
1721     Unique-Id = {ISI:A1997YC32200056},
1722     Volume = {56},
1723     Year = {1997}}
1724    
1725     @article{Meineke:2005gd,
1726     Abstract = {OOPSE is a new molecular dynamics simulation program
1727     that is capable of efficiently integrating equations
1728     of motion for atom types with orientational degrees
1729     of freedom (e.g. #sticky# atoms and point
1730     dipoles). Transition metals can also be simulated
1731     using the embedded atom method (EAM) potential
1732     included in the code. Parallel simulations are
1733     carried out using the force-based decomposition
1734     method. Simulations are specified using a very
1735     simple C-based meta-data language. A number of
1736     advanced integrators are included, and the basic
1737     integrator for orientational dynamics provides
1738     substantial improvements over older quaternion-based
1739     schemes.},
1740     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1741     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1742     Date-Added = {2009-10-01 18:43:03 -0400},
1743     Date-Modified = {2010-04-13 09:11:16 -0400},
1744     Doi = {DOI 10.1002/jcc.20161},
1745     Isi = {000226558200006},
1746     Isi-Recid = {142688207},
1747     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1748 skuang 3755 Journal = {J. Comput. Chem.},
1749 skuang 3719 Keywords = {OOPSE; molecular dynamics},
1750     Month = feb,
1751     Number = {3},
1752     Pages = {252-271},
1753     Publisher = {JOHN WILEY \& SONS INC},
1754     Times-Cited = {9},
1755     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1756     Volume = {26},
1757     Year = {2005},
1758     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1759     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1760    
1761     @article{ISI:000080382700030,
1762     Abstract = {A nonequilibrium method for calculating the shear
1763     viscosity is presented. It reverses the
1764     cause-and-effect picture customarily used in
1765     nonequilibrium molecular dynamics: the effect, the
1766     momentum flux or stress, is imposed, whereas the
1767     cause, the velocity gradient or shear rate, is
1768     obtained from the simulation. It differs from other
1769     Norton-ensemble methods by the way in which the
1770     steady-state momentum flux is maintained. This
1771     method involves a simple exchange of particle
1772     momenta, which is easy to implement. Moreover, it
1773     can be made to conserve the total energy as well as
1774     the total linear momentum, so no coupling to an
1775     external temperature bath is needed. The resulting
1776     raw data, the velocity profile, is a robust and
1777     rapidly converging property. The method is tested on
1778     the Lennard-Jones fluid near its triple point. It
1779     yields a viscosity of 3.2-3.3, in Lennard-Jones
1780     reduced units, in agreement with literature
1781     results. {[}S1063-651X(99)03105-0].},
1782     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1783     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1784     Author = {M\"{u}ller-Plathe, F},
1785     Date-Added = {2009-10-01 14:07:30 -0400},
1786     Date-Modified = {2009-10-01 14:07:30 -0400},
1787     Doc-Delivery-Number = {197TX},
1788     Issn = {1063-651X},
1789     Journal = {Phys. Rev. E},
1790     Journal-Iso = {Phys. Rev. E},
1791     Language = {English},
1792     Month = {MAY},
1793     Number = {5, Part A},
1794     Number-Of-Cited-References = {17},
1795     Pages = {4894-4898},
1796     Publisher = {AMERICAN PHYSICAL SOC},
1797     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1798     Times-Cited = {57},
1799     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1800     Type = {Article},
1801     Unique-Id = {ISI:000080382700030},
1802     Volume = {59},
1803     Year = {1999}}
1804    
1805     @article{Maginn:2007,
1806     Abstract = {Atomistic simulations are conducted to examine the
1807     dependence of the viscosity of
1808     1-ethyl-3-methylimidazolium
1809     bis(trifluoromethanesulfonyl)imide on temperature
1810     and water content. A nonequilibrium molecular
1811     dynamics procedure is utilized along with an
1812     established fixed charge force field. It is found
1813     that the simulations quantitatively capture the
1814     temperature dependence of the viscosity as well as
1815     the drop in viscosity that occurs with increasing
1816     water content. Using mixture viscosity models, we
1817     show that the relative drop in viscosity with water
1818     content is actually less than that that would be
1819     predicted for an ideal system. This finding is at
1820     odds with the popular notion that small amounts of
1821     water cause an unusually large drop in the viscosity
1822     of ionic liquids. The simulations suggest that, due
1823     to preferential association of water with anions and
1824     the formation of water clusters, the excess molar
1825     volume is negative. This means that dissolved water
1826     is actually less effective at lowering the viscosity
1827     of these mixtures when compared to a solute obeying
1828     ideal mixing behavior. The use of a nonequilibrium
1829     simulation technique enables diffusive behavior to
1830     be observed on the time scale of the simulations,
1831     and standard equilibrium molecular dynamics resulted
1832     in sub-diffusive behavior even over 2 ns of
1833     simulation time.},
1834     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1835     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1836     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1837     Author-Email = {ed@nd.edu},
1838     Date-Added = {2009-09-29 17:07:17 -0400},
1839     Date-Modified = {2010-04-14 12:51:02 -0400},
1840     Doc-Delivery-Number = {163VA},
1841     Doi = {10.1021/jp0686893},
1842     Issn = {1520-6106},
1843     Journal = {J. Phys. Chem. B},
1844     Journal-Iso = {J. Phys. Chem. B},
1845     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1846     Language = {English},
1847     Month = {MAY 10},
1848     Number = {18},
1849     Number-Of-Cited-References = {57},
1850     Pages = {4867-4876},
1851     Publisher = {AMER CHEMICAL SOC},
1852     Subject-Category = {Chemistry, Physical},
1853     Times-Cited = {35},
1854     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1855     Type = {Article},
1856     Unique-Id = {ISI:000246190100032},
1857     Volume = {111},
1858     Year = {2007},
1859     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1860     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1861    
1862     @article{MullerPlathe:1997xw,
1863     Abstract = {A nonequilibrium molecular dynamics method for
1864     calculating the thermal conductivity is
1865     presented. It reverses the usual cause and effect
1866     picture. The ''effect,'' the heat flux, is imposed
1867     on the system and the ''cause,'' the temperature
1868     gradient is obtained from the simulation. Besides
1869     being very simple to implement, the scheme offers
1870     several advantages such as compatibility with
1871     periodic boundary conditions, conservation of total
1872     energy and total linear momentum, and the sampling
1873     of a rapidly converging quantity (temperature
1874     gradient) rather than a slowly converging one (heat
1875     flux). The scheme is tested on the Lennard-Jones
1876     fluid. (C) 1997 American Institute of Physics.},
1877     Address = {WOODBURY},
1878     Author = {M\"{u}ller-Plathe, F.},
1879     Cited-Reference-Count = {13},
1880     Date = {APR 8},
1881     Date-Added = {2009-09-21 16:51:21 -0400},
1882     Date-Modified = {2009-09-21 16:51:21 -0400},
1883     Document-Type = {Article},
1884     Isi = {ISI:A1997WR62000032},
1885     Isi-Document-Delivery-Number = {WR620},
1886     Iso-Source-Abbreviation = {J. Chem. Phys.},
1887     Issn = {0021-9606},
1888     Journal = {J. Chem. Phys.},
1889     Language = {English},
1890     Month = {Apr},
1891     Number = {14},
1892     Page-Count = {4},
1893     Pages = {6082--6085},
1894     Publication-Type = {J},
1895     Publisher = {AMER INST PHYSICS},
1896     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1897     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1898     Source = {J CHEM PHYS},
1899     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1900     Times-Cited = {106},
1901     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1902     Volume = {106},
1903     Year = {1997}}
1904    
1905     @article{Muller-Plathe:1999ek,
1906     Abstract = {A novel non-equilibrium method for calculating
1907     transport coefficients is presented. It reverses the
1908     experimental cause-and-effect picture, e.g. for the
1909     calculation of viscosities: the effect, the momentum
1910     flux or stress, is imposed, whereas the cause, the
1911     velocity gradient or shear rates, is obtained from
1912     the simulation. It differs from other
1913     Norton-ensemble methods by the way, in which the
1914     steady-state fluxes are maintained. This method
1915     involves a simple exchange of particle momenta,
1916     which is easy to implement and to analyse. Moreover,
1917     it can be made to conserve the total energy as well
1918     as the total linear momentum, so no thermostatting
1919     is needed. The resulting raw data are robust and
1920     rapidly converging. The method is tested on the
1921     calculation of the shear viscosity, the thermal
1922     conductivity and the Soret coefficient (thermal
1923     diffusion) for the Lennard-Jones (LJ) fluid near its
1924     triple point. Possible applications to other
1925     transport coefficients and more complicated systems
1926     are discussed. (C) 1999 Elsevier Science Ltd. All
1927     rights reserved.},
1928     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1929     Author = {M\"{u}ller-Plathe, F and Reith, D},
1930     Date-Added = {2009-09-21 16:47:07 -0400},
1931     Date-Modified = {2009-09-21 16:47:07 -0400},
1932     Isi = {000082266500004},
1933     Isi-Recid = {111564960},
1934     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1935     Journal = {Computational and Theoretical Polymer Science},
1936     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1937     Number = {3-4},
1938     Pages = {203-209},
1939     Publisher = {ELSEVIER SCI LTD},
1940     Times-Cited = {15},
1941     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1942     Volume = {9},
1943     Year = {1999},
1944     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1945    
1946     @article{Viscardy:2007lq,
1947     Abstract = {The thermal conductivity is calculated with the
1948     Helfand-moment method in the Lennard-Jones fluid
1949     near the triple point. The Helfand moment of thermal
1950     conductivity is here derived for molecular dynamics
1951     with periodic boundary conditions. Thermal
1952     conductivity is given by a generalized Einstein
1953     relation with this Helfand moment. The authors
1954     compute thermal conductivity by this new method and
1955     compare it with their own values obtained by the
1956     standard Green-Kubo method. The agreement is
1957     excellent. (C) 2007 American Institute of Physics.},
1958     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1959     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1960     Date-Added = {2009-09-21 16:37:20 -0400},
1961     Date-Modified = {2010-07-19 16:18:44 -0400},
1962     Doi = {DOI 10.1063/1.2724821},
1963     Isi = {000246453900035},
1964     Isi-Recid = {156192451},
1965     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1966     Journal = {J. Chem. Phys.},
1967     Month = may,
1968     Number = {18},
1969     Pages = {184513},
1970     Publisher = {AMER INST PHYSICS},
1971     Times-Cited = {3},
1972     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1973     Volume = {126},
1974     Year = {2007},
1975     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1976     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1977    
1978     @article{Viscardy:2007bh,
1979     Abstract = {The authors propose a new method, the Helfand-moment
1980     method, to compute the shear viscosity by
1981     equilibrium molecular dynamics in periodic
1982     systems. In this method, the shear viscosity is
1983     written as an Einstein-type relation in terms of the
1984     variance of the so-called Helfand moment. This
1985     quantity is modified in order to satisfy systems
1986     with periodic boundary conditions usually considered
1987     in molecular dynamics. They calculate the shear
1988     viscosity in the Lennard-Jones fluid near the triple
1989     point thanks to this new technique. They show that
1990     the results of the Helfand-moment method are in
1991     excellent agreement with the results of the standard
1992     Green-Kubo method. (C) 2007 American Institute of
1993     Physics.},
1994     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1995     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1996     Date-Added = {2009-09-21 16:37:19 -0400},
1997     Date-Modified = {2010-07-19 16:19:03 -0400},
1998     Doi = {DOI 10.1063/1.2724820},
1999     Isi = {000246453900034},
2000     Isi-Recid = {156192449},
2001     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
2002     Journal = {J. Chem. Phys.},
2003     Month = may,
2004     Number = {18},
2005     Pages = {184512},
2006     Publisher = {AMER INST PHYSICS},
2007     Times-Cited = {1},
2008     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
2009     Volume = {126},
2010     Year = {2007},
2011     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
2012     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
2013    
2014     @inproceedings{384119,
2015     Address = {New York, NY, USA},
2016     Author = {Fortune, Steven},
2017     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
2018     Doi = {http://doi.acm.org/10.1145/384101.384119},
2019     Isbn = {1-58113-417-7},
2020     Location = {London, Ontario, Canada},
2021     Pages = {121--128},
2022     Publisher = {ACM},
2023     Title = {Polynomial root finding using iterated Eigenvalue computation},
2024     Year = {2001},
2025     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}
2026    
2027     @article{Fennell06,
2028 skuang 3721 Author = {C.~J. Fennell and J.~D. Gezelter},
2029     Date-Added = {2006-08-24 09:49:57 -0400},
2030     Date-Modified = {2006-08-24 09:49:57 -0400},
2031     Doi = {10.1063/1.2206581},
2032     Journal = {J. Chem. Phys.},
2033     Number = {23},
2034     Pages = {234104(12)},
2035     Rating = {5},
2036     Read = {Yes},
2037     Title = {Is the \uppercase{E}wald summation still necessary? \uppercase{P}airwise alternatives to the accepted standard for long-range electrostatics},
2038     Volume = {124},
2039     Year = {2006},
2040     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2206581}}
2041 skuang 3719
2042 skuang 3721 @book{Sommese2005,
2043     Address = {Singapore},
2044     Author = {Andrew J. Sommese and Charles W. Wampler},
2045     Publisher = {World Scientific Press},
2046     Title = {The numerical solution of systems of polynomials arising in engineering and science},
2047     Year = 2005}