ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.bib
(Generate patch)

Comparing interfacial/interfacial.bib (file contents):
Revision 3737 by skuang, Tue Jul 12 22:11:11 2011 UTC vs.
Revision 3766 by skuang, Thu Sep 29 18:10:26 2011 UTC

# Line 2 | Line 2
2   %% http://bibdesk.sourceforge.net/
3  
4  
5 < %% Created for Shenyu Kuang at 2011-07-12 17:52:09 -0400
5 > %% Created for Shenyu Kuang at 2011-09-29 13:37:51 -0400
6  
7  
8   %% Saved with string encoding Unicode (UTF-8)
9 +
10 +
11 +
12 + @article{Luo20101,
13 +        Abstract = {Non-equilibrium molecular dynamics (NEMD) simulations were performed on Au{\^a}€``SAM (self-assembly monolayer){\^a}€``Au junctions to study the thermal energy transport across the junctions. Thermal conductance of the Au{\^a}€``SAM interfaces was calculated. Temperature effects, simulated external pressure effects, SAM molecule coverage effects and Au{\^a}€``SAM bond strength effects on the interfacial thermal conductance were studied. It was found that the interfacial thermal conductance increased with temperature increase at temperatures lower than 250&#xa0;K, but it did not have large changes at temperatures from 250 to 400&#xa0;K. Such a trend was found to be similar to experimental observations on similar junctions. The simulated external pressure did not affect the interfacial thermal conductance. SAM molecule coverage and Au{\^a}€``SAM bond strength were found to significantly affect on the thermal conductance. The vibration densities of state (VDOS) were calculated to explore the mechanism of thermal energy transport. Interfacial thermal resistance was found mainly due to the limited population of low-frequency vibration modes of the SAM molecule. Ballistic energy transport inside the SAM molecules was confirmed, and the anharmonicity played an important role in energy transport across the junctions. A heat pulse was imposed on the junction substrate, and heat dissipation inside the junction was studied. Analysis of the junction response to the heat pulse showed that the Au{\^a}€``SAM interfacial thermal resistance was much larger than the Au substrate and SAM resistances separately. This work showed that both the Au substrate and SAM molecules transported thermal energy efficiently, and it was the Au{\^a}€``SAM interfaces that dominated the thermal energy transport across the Au{\^a}€``SAM{\^a}€``Au junctions.},
14 +        Author = {Tengfei Luo and John R. Lloyd},
15 +        Date-Added = {2011-09-23 14:48:57 -0400},
16 +        Date-Modified = {2011-09-29 12:31:53 -0400},
17 +        Doi = {10.1016/j.ijheatmasstransfer.2009.10.033},
18 +        Issn = {0017-9310},
19 +        Journal = {Int. J. Heat Mass Transfer},
20 +        Keywords = {Vibration},
21 +        Number = {1-3},
22 +        Pages = {1 - 11},
23 +        Title = {Non-equilibrium molecular dynamics study of thermal energy transport in Au{\^a}€``SAM{\^a}€``Au junctions},
24 +        Url = {http://www.sciencedirect.com/science/article/pii/S0017931009005742},
25 +        Volume = {53},
26 +        Year = {2010},
27 +        Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0017931009005742},
28 +        Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.10.033}}
29 +
30 + @article{doi:10.1080/0026897031000068578,
31 +        Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
32 +        Author = {Barrat, JEAN-LOUIS and Chiaruttini, FRAN{\c C}OIS},
33 +        Date-Added = {2011-07-29 10:04:36 -0400},
34 +        Date-Modified = {2011-09-29 13:37:49 -0400},
35 +        Doi = {10.1080/0026897031000068578},
36 +        Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
37 +        Journal = {Mol. Phys.},
38 +        Number = {11},
39 +        Pages = {1605-1610},
40 +        Title = {Kapitza resistance at the liquid---solid interface},
41 +        Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
42 +        Volume = {101},
43 +        Year = {2003},
44 +        Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
45 +        Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
46 +
47 + @article{doi:10.1021/jp020581+,
48 +        Abstract = { The rate of energy dissipation from Au nanoparticles to their surroundings has been examined by pump−probe spectroscopy. These experiments were performed for particles suspended in aqueous solution, with average sizes ranging from 4 to 50 nm in diameter. The results show that energy relaxation is a very nonexponential process. Fitting the data to a stretched exponential function yields a characteristic time scale for relaxation that varies from ca. 10 ps for the smallest particles examined (∼4 nm diameter) to almost 400 ps for the 50 nm diameter particles. The relaxation times are proportional to the square of the radius, but do not depend on the initial temperature of the particles (i.e., the pump laser power). For very small particles, the time scale for energy dissipation is comparable to the time scale for electron−phonon coupling, which implies that significant energy loss occurs before the electrons and phonons reach thermal equilibrium within the particle. },
49 +        Author = {Hu, Min and Hartland, Gregory V.},
50 +        Date-Added = {2011-07-28 17:46:33 -0400},
51 +        Date-Modified = {2011-07-28 17:46:33 -0400},
52 +        Doi = {10.1021/jp020581+},
53 +        Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp020581%2B},
54 +        Journal = {The Journal of Physical Chemistry B},
55 +        Number = {28},
56 +        Pages = {7029-7033},
57 +        Title = {Heat Dissipation for Au Particles in Aqueous Solution:  Relaxation Time versus Size},
58 +        Url = {http://pubs.acs.org/doi/abs/10.1021/jp020581%2B},
59 +        Volume = {106},
60 +        Year = {2002},
61 +        Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp020581+},
62 +        Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp020581+}}
63 +
64 + @article{PhysRevLett.96.186101,
65 +        Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
66 +        Date-Added = {2011-07-28 15:41:43 -0400},
67 +        Date-Modified = {2011-07-28 15:41:43 -0400},
68 +        Doi = {10.1103/PhysRevLett.96.186101},
69 +        Journal = {Phys. Rev. Lett.},
70 +        Month = {May},
71 +        Number = {18},
72 +        Numpages = {4},
73 +        Pages = {186101},
74 +        Publisher = {American Physical Society},
75 +        Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
76 +        Volume = {96},
77 +        Year = {2006},
78 +        Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
79 +
80 + @article{doi:10.1021/jp048375k,
81 +        Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
82 +        Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
83 +        Date-Added = {2011-07-28 15:41:14 -0400},
84 +        Date-Modified = {2011-07-28 15:59:32 -0400},
85 +        Doi = {10.1021/jp048375k},
86 +        Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
87 +        Journal = {J. Phys. Chem. B},
88 +        Number = {49},
89 +        Pages = {18870-18875},
90 +        Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
91 +        Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
92 +        Volume = {108},
93 +        Year = {2004},
94 +        Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
95 +        Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
96 +
97 + @article{PhysRevB.67.054302,
98 +        Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
99 +        Date-Added = {2011-07-28 15:40:29 -0400},
100 +        Date-Modified = {2011-07-28 15:40:29 -0400},
101 +        Doi = {10.1103/PhysRevB.67.054302},
102 +        Journal = {Phys. Rev. B},
103 +        Month = {Feb},
104 +        Number = {5},
105 +        Numpages = {5},
106 +        Pages = {054302},
107 +        Publisher = {American Physical Society},
108 +        Title = {Thermal conductance of epitaxial interfaces},
109 +        Volume = {67},
110 +        Year = {2003},
111 +        Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
112  
113 + @article{garde:nl2005,
114 +        Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
115 +        Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
116 +        Date-Added = {2011-07-26 13:56:59 -0400},
117 +        Date-Modified = {2011-07-26 13:57:47 -0400},
118 +        Doi = {10.1021/nl051526q},
119 +        Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
120 +        Journal = {Nano Lett.},
121 +        Note = {PMID: 16277458},
122 +        Number = {11},
123 +        Pages = {2225-2231},
124 +        Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
125 +        Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
126 +        Volume = {5},
127 +        Year = {2005},
128 +        Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
129 +        Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
130  
131 + @article{garde:PhysRevLett2009,
132 +        Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
133 +        Date-Added = {2011-07-25 16:06:12 -0400},
134 +        Date-Modified = {2011-07-26 13:58:33 -0400},
135 +        Doi = {10.1103/PhysRevLett.102.156101},
136 +        Journal = {Phys. Rev. Lett.},
137 +        Month = {Apr},
138 +        Number = {15},
139 +        Numpages = {4},
140 +        Pages = {156101},
141 +        Publisher = {American Physical Society},
142 +        Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
143 +        Volume = {102},
144 +        Year = {2009},
145 +        Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
146  
147 + @article{doi:10.1021/cr9801317,
148 +        Author = {Takano, Hajime and Kenseth, Jeremy R. and Wong, Sze-Shun and O'Brie, Janese C. and Porter, Marc D.},
149 +        Date-Added = {2011-07-25 14:50:24 -0400},
150 +        Date-Modified = {2011-07-25 14:50:24 -0400},
151 +        Doi = {10.1021/cr9801317},
152 +        Eprint = {http://pubs.acs.org/doi/pdf/10.1021/cr9801317},
153 +        Journal = {Chem. Rev.},
154 +        Number = {10},
155 +        Pages = {2845-2890},
156 +        Title = {Chemical and Biochemical Analysis Using Scanning Force Microscopy},
157 +        Url = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
158 +        Volume = {99},
159 +        Year = {1999},
160 +        Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
161 +        Bdsk-Url-2 = {http://dx.doi.org/10.1021/cr9801317}}
162 +
163 + @article{doi:10.1021/ja00008a001,
164 +        Author = {Widrig, Cindra A. and Alves, Carla A. and Porter, Marc D.},
165 +        Date-Added = {2011-07-25 14:49:37 -0400},
166 +        Date-Modified = {2011-07-25 14:49:37 -0400},
167 +        Doi = {10.1021/ja00008a001},
168 +        Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00008a001},
169 +        Journal = {J. Am. Chem. Soc.},
170 +        Number = {8},
171 +        Pages = {2805-2810},
172 +        Title = {Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously absorbed at gold surfaces},
173 +        Url = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
174 +        Volume = {113},
175 +        Year = {1991},
176 +        Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
177 +        Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00008a001}}
178 +
179   @article{doi:10.1021/la026493y,
180          Abstract = { We have studied butanethiol self-assembled monolayers on Au(100) using cyclic voltammetry and in situ scanning tunneling microscopy (STM). The butanethiol adlayer shows ordered domains with a striped structure, the stripes running parallel to the main crystallographic axes of the substrate. After modification the surface reveals a 50% coverage of monoatomic high gold islands, but no vacancy islands were observed. Reductive and oxidative desorption of the film, previously studied by electrochemistry, were monitored by STM. },
181          Author = {Loglio, F. and Schweizer, M. and Kolb, D. M.},
# Line 32 | Line 199
199          Date-Modified = {2011-07-12 17:51:55 -0400},
200          Doi = {10.1021/j100035a033},
201          Eprint = {http://pubs.acs.org/doi/pdf/10.1021/j100035a033},
202 <        Journal = {The Journal of Physical Chemistry},
202 >        Journal = {J. Phys. Chem.},
203          Number = {35},
204          Pages = {13257-13267},
205          Title = {Structural Origins of the Surface Depressions at Alkanethiolate Monolayers on Au(111): A Scanning Tunneling and Atomic Force Microscopic Investigation},
# Line 47 | Line 214
214          Date-Added = {2011-07-11 18:27:57 -0400},
215          Date-Modified = {2011-07-11 18:27:57 -0400},
216          Doi = {10.1063/1.457621},
217 <        Journal = {The Journal of Chemical Physics},
217 >        Journal = {J. Chem. Phys.},
218          Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
219          Number = {8},
220          Pages = {4994-5001},
# Line 66 | Line 233
233          Date-Modified = {2011-07-11 18:22:54 -0400},
234          Doi = {10.1021/jp981745i},
235          Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
236 <        Journal = {The Journal of Physical Chemistry B},
236 >        Journal = {J. Phys. Chem. B},
237          Number = {34},
238          Pages = {6566-6572},
239          Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
# Line 133 | Line 300
300          Date-Modified = {2011-07-08 17:04:34 -0400},
301          Doi = {10.1021/jp8051888},
302          Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
303 <        Journal = {The Journal of Physical Chemistry C},
303 >        Journal = {J. Phys. Chem. C},
304          Number = {35},
305          Pages = {13320-13323},
306          Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
# Line 183 | Line 350
350          Date-Modified = {2011-07-11 16:07:01 -0400},
351          Doi = {10.1021/jp200672e},
352          Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
353 <        Journal = {The Journal of Physical Chemistry C},
353 >        Journal = {J. Phys. Chem. C},
354          Number = {19},
355          Pages = {9622-9628},
356          Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
# Line 193 | Line 360
360          Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
361          Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
362  
363 < @article{doi:10.1021/ja00051a040,
363 > @article{UFF.rappe92,
364          Author = {Rappe, A. K. and Casewit, C. J. and Colwell, K. S. and Goddard, W. A. and Skiff, W. M.},
365          Date-Added = {2011-06-29 14:04:33 -0400},
366 <        Date-Modified = {2011-06-29 14:04:33 -0400},
366 >        Date-Modified = {2011-07-26 18:53:04 -0400},
367          Doi = {10.1021/ja00051a040},
368          Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00051a040},
369          Journal = {Journal of the American Chemical Society},
# Line 211 | Line 378
378  
379   @article{doi:10.1021/jp034405s,
380          Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
381 <        Author = {Leng and Keffer, David J. and Cummings, Peter T.},
381 >        Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
382          Date-Added = {2011-04-28 11:23:28 -0400},
383          Date-Modified = {2011-04-28 11:23:28 -0400},
384          Doi = {10.1021/jp034405s},
385          Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
386 <        Journal = {The Journal of Physical Chemistry B},
386 >        Journal = {J. Phys. Chem. B},
387          Number = {43},
388          Pages = {11940-11950},
389          Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
# Line 235 | Line 402
402          Date-Modified = {2011-02-04 18:54:58 -0500},
403          Do = {10.1021/ja9621760},
404          Isbn = {0002-7863},
405 <        Journal = {Journal of the American Chemical Society},
405 >        Journal = {J. Am. Chem. Soc.},
406          M3 = {doi: 10.1021/ja9621760},
407          Month = {01},
408          Number = {45},
# Line 255 | Line 422
422          Date-Modified = {2011-02-04 18:32:22 -0500},
423          Doi = {10.1021/jp001044x},
424          Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
425 <        Journal = {The Journal of Physical Chemistry B},
425 >        Journal = {J. Phys. Chem. B},
426          Number = {33},
427          Pages = {8008-8016},
428          Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
# Line 271 | Line 438
438          Date-Modified = {2011-02-04 18:02:19 -0500},
439          Doi = {10.1021/jp972543+},
440          Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
441 <        Journal = {The Journal of Physical Chemistry B},
441 >        Journal = {J. Phys. Chem. B},
442          Number = {14},
443          Pages = {2569-2577},
444          Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
# Line 287 | Line 454
454          Date-Modified = {2011-02-04 17:54:20 -0500},
455          Doi = {10.1021/jp0549125},
456          Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
457 <        Journal = {The Journal of Physical Chemistry B},
457 >        Journal = {J. Phys. Chem. B},
458          Number = {50},
459          Pages = {24100-24107},
460          Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
# Line 303 | Line 470
470          Date-Modified = {2011-02-04 18:21:59 -0500},
471          Doi = {DOI: 10.1016/j.cpc.2007.02.028},
472          Issn = {0010-4655},
473 <        Journal = {Computer Physics Communications},
473 >        Journal = {Comput. Phys. Commun.},
474          Keywords = {Gold nanocrystals},
475          Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
476          Number = {1-2},
# Line 321 | Line 488
488          Date-Added = {2011-02-01 15:13:02 -0500},
489          Date-Modified = {2011-02-01 15:14:25 -0500},
490          Ee = {http://dx.doi.org/10.1002/jcc.21224},
491 <        Journal = {Journal of Computational Chemistry},
491 >        Journal = {J. Comput. Chem.},
492          Number = {13},
493          Pages = {2157-2164},
494          Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
# Line 334 | Line 501
501          Date-Modified = {2011-01-31 17:12:35 -0500},
502          Doi = {10.1063/1.3499947},
503          Eid = {164101},
504 <        Journal = {The Journal of Chemical Physics},
504 >        Journal = {J. Chem. Phys.},
505          Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
506          Number = {16},
507          Numpages = {9},
# Line 481 | Line 648
648          Doi = {ARTN 224301},
649          Journal = {Phys. Rev. B},
650          Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
651 +        Pages = {224301},
652          Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
653          Volume = {66},
654          Year = {2002},
# Line 507 | Line 675
675          Date-Added = {2010-08-06 17:02:22 -0400},
676          Date-Modified = {2010-08-06 17:02:22 -0400},
677          Doi = {10.1063/1.1524305},
678 <        Journal = {J. Applied Phys.},
678 >        Journal = {J. Appl. Phys.},
679          Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
680          Number = {2},
681          Pages = {793-818},
# Line 677 | Line 845
845          Author = {A.~P. Sutton and J. Chen},
846          Date-Added = {2010-07-13 11:40:48 -0400},
847          Date-Modified = {2010-07-13 11:40:48 -0400},
848 <        Journal = {Phil. Mag. Lett.},
848 >        Journal = {Philos. Mag. Lett.},
849          Pages = {139-146},
850          Title = {Long-Range Finnis Sinclair Potentials},
851          Volume = 61,
# Line 1577 | Line 1745
1745          Isi = {000226558200006},
1746          Isi-Recid = {142688207},
1747          Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1748 <        Journal = {J. Comp. Chem.},
1748 >        Journal = {J. Comput. Chem.},
1749          Keywords = {OOPSE; molecular dynamics},
1750          Month = feb,
1751          Number = {3},

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines