ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.tex
(Generate patch)

Comparing interfacial/interfacial.tex (file contents):
Revision 3730 by skuang, Tue Jul 5 17:39:21 2011 UTC vs.
Revision 3731 by skuang, Tue Jul 5 21:30:29 2011 UTC

# Line 448 | Line 448 | couple $J_z$'s and do not need to test a large series
448    \begin{minipage}{\linewidth}
449      \begin{center}
450        \caption{Computed interfacial thermal conductivity ($G$ and
451 <        $G^\prime$) values for the Au/butanethiol/hexane interface
452 <        with united-atom model and different capping agent coverage
453 <        and solvent molecule numbers at different temperatures using a
454 <        range of energy fluxes.}
455 <      
456 <      \begin{tabular}{cccccc}
451 >        $G^\prime$) values for the 100\% covered Au-butanethiol/hexane
452 >        interfaces with UA model and different hexane molecule numbers
453 >        at different temperatures using a range of energy fluxes.}
454 >      
455 >      \begin{tabular}{cccccccc}
456          \hline\hline
457 <        Thiol & $\langle T\rangle$ & & $J_z$ & $G$ & $G^\prime$ \\
458 <        coverage (\%) & (K) & $N_{hexane}$ & (GW/m$^2$) &
457 >        $\langle T\rangle$ & & $L_x$ & $L_y$ & $L_z$ & $J_z$ &
458 >        $G$ & $G^\prime$ \\
459 >        (K) & $N_{hexane}$ & \multicolumn{3}{c}\AA & (GW/m$^2$) &
460          \multicolumn{2}{c}{(MW/m$^2$/K)} \\
461          \hline
462 <        0.0   & 200 & 200 & 0.96 & 43.3 & 42.7 \\
463 <              &     &     & 1.91 & 45.7 & 42.9 \\
464 <              &     & 166 & 0.96 & 43.1 & 53.4 \\
465 <        88.9  & 200 & 166 & 1.94 & 172  & 108  \\
466 <        100.0 & 250 & 200 & 0.96 & 81.8 & 67.0 \\
467 <              &     & 166 & 0.98 & 79.0 & 62.9 \\
468 <              &     &     & 1.44 & 76.2 & 64.8 \\
469 <              & 200 & 200 & 1.92 & 129  & 87.3 \\
470 <              &     &     & 1.93 & 131  & 77.5 \\
471 <              &     & 166 & 0.97 & 115  & 69.3 \\
472 <              &     &     & 1.94 & 125  & 87.1 \\
462 >        200 & 266 & 29.86 & 25.80 & 113.1 & -0.96 &
463 >        102()  & 80.0() \\
464 >            & 200 & 29.84 & 25.81 &  93.9 &  1.92 &
465 >        129()  & 87.3() \\
466 >            &     & 29.84 & 25.81 &  95.3 &  1.93 &
467 >        131()  & 77.5() \\
468 >            & 166 & 29.84 & 25.81 &  85.7 &  0.97 &
469 >        115()  & 69.3() \\
470 >            &     &       &       &       &  1.94 &
471 >        125()  & 87.1() \\
472 >        250 & 200 & 29.84 & 25.87 & 106.8 &  0.96 &
473 >        81.8() & 67.0() \\
474 >            & 166 & 29.87 & 25.84 &  94.8 &  0.98 &
475 >        79.0() & 62.9() \\
476 >            &     & 29.84 & 25.85 &  95.0 &  1.44 &
477 >        76.2() & 64.8() \\
478          \hline\hline
479        \end{tabular}
480        \label{AuThiolHexaneUA}
# Line 500 | Line 505 | in that higher degree of contact could yield increased
505   important role in the thermal transport process across the interface
506   in that higher degree of contact could yield increased conductance.
507  
508 < [ADD SIGNS AND ERROR ESTIMATE TO TABLE]
508 > [ADD Lxyz AND ERROR ESTIMATE TO TABLE]
509   \begin{table*}
510    \begin{minipage}{\linewidth}
511      \begin{center}
512        \caption{Computed interfacial thermal conductivity ($G$ and
513 <        $G^\prime$) values for the Au/butanethiol/toluene interface at
514 <        different temperatures using a range of energy fluxes.}
513 >        $G^\prime$) values for a 90\% coverage Au-butanethiol/toluene
514 >        interface at different temperatures using a range of energy
515 >        fluxes.}
516        
517        \begin{tabular}{cccc}
518          \hline\hline
519          $\langle T\rangle$ & $J_z$ & $G$ & $G^\prime$ \\
520          (K) & (GW/m$^2$) & \multicolumn{2}{c}{(MW/m$^2$/K)} \\
521          \hline
522 <        200 & 1.86 & 180 & 135 \\
523 <            & 2.15 & 204 & 113 \\
524 <            & 3.93 & 175 & 114 \\
525 <        300 & 1.91 & 143 & 125 \\
526 <            & 4.19 & 134 & 113 \\
522 >        200 & -1.86 & 180() & 135() \\
523 >            &  2.15 & 204() & 113() \\
524 >            & -3.93 & 175() & 114() \\
525 >        300 & -1.91 & 143() & 125() \\
526 >            & -4.19 & 134() & 113() \\
527          \hline\hline
528        \end{tabular}
529        \label{AuThiolToluene}
# Line 565 | Line 571 | different coverages of butanethiol.
571   molecules. These systems are then equilibrated and their interfacial
572   thermal conductivity are measured with our NIVS algorithm. Table
573   \ref{tlnUhxnUhxnD} lists these results for direct comparison between
574 < different coverages of butanethiol.
574 > different coverages of butanethiol. To study the isotope effect in
575 > interfacial thermal conductance, deuterated UA-hexane is included as
576 > well.
577  
578 < With high coverage of butanethiol on the gold surface,
579 < the interfacial thermal conductance is enhanced
580 < significantly. Interestingly, a slightly lower butanethiol coverage
581 < leads to a moderately higher conductivity. This is probably due to
582 < more solvent/capping agent contact when butanethiol molecules are
583 < not densely packed, which enhances the interactions between the two
584 < phases and lowers the thermal transfer barrier of this interface.
577 < [COMPARE TO AU/WATER IN PAPER]
578 > It turned out that with partial covered butanethiol on the Au(111)
579 > surface, the derivative definition for $G$ (Eq. \ref{derivativeG}) has
580 > difficulty to apply, due to the difficulty in locating the maximum of
581 > change of $\lambda$. Instead, the discrete definition
582 > (Eq. \ref{discreteG}) is easier to apply, as max($\Delta T$) can still
583 > be well-defined. Therefore, $G$'s (not $G^\prime$) are used for this
584 > section.
585  
586 + From Table \ref{tlnUhxnUhxnD}, one can see the significance of the
587 + presence of capping agents. Even when a fraction of the Au(111)
588 + surface sites are covered with butanethiols, the conductivity would
589 + see an enhancement by at least a factor of 3. This indicates the
590 + important role cappping agent is playing for thermal transport
591 + phenomena on metal/organic solvent surfaces.
592  
593 < significant conductance enhancement compared to the gold/water
594 < interface without capping agent and agree with available experimental
595 < data. This indicates that the metal-metal potential, though not
596 < predicting an accurate bulk metal thermal conductivity, does not
597 < greatly interfere with the simulation of the thermal conductance
598 < behavior across a non-metal interface.
599 < The results show that the two definitions used for $G$ yield
600 < comparable values, though $G^\prime$ tends to be smaller.
593 > Interestingly, as one could observe from our results, the maximum
594 > conductance enhancement (largest $G$) happens while the surfaces are
595 > about 75\% covered with butanethiols. This again indicates that
596 > solvent-capping agent contact has an important role of the thermal
597 > transport process. Slightly lower butanethiol coverage allows small
598 > gaps between butanethiols to form. And these gaps could be filled with
599 > solvent molecules, which acts like ``heat conductors'' on the
600 > surface. The higher degree of interaction between these solvent
601 > molecules and capping agents increases the enhancement effect and thus
602 > produces a higher $G$ than densely packed butanethiol arrays. However,
603 > once this maximum conductance enhancement is reached, $G$ decreases
604 > when butanethiol coverage continues to decrease. Each capping agent
605 > molecule reaches its maximum capacity for thermal
606 > conductance. Therefore, even higher solvent-capping agent contact
607 > would not offset this effect. Eventually, when butanethiol coverage
608 > continues to decrease, solvent-capping agent contact actually
609 > decreases with the disappearing of butanethiol molecules. In this
610 > case, $G$ decrease could not be offset but instead accelerated.
611  
612 + A comparison of the results obtained from differenet organic solvents
613 + can also provide useful information of the interfacial thermal
614 + transport process. The deuterated hexane (UA) results do not appear to
615 + be much different from those of normal hexane (UA), given that
616 + butanethiol (UA) is non-deuterated for both solvents. These UA model
617 + studies, even though eliminating C-H vibration samplings, still have
618 + C-C vibrational frequencies different from each other. However, these
619 + differences in the IR range do not seem to produce an observable
620 + difference for the results of $G$. [MAY NEED FIGURE]
621  
622 + Furthermore, results for rigid body toluene solvent, as well as other
623 + UA-hexane solvents, are reasonable within the general experimental
624 + ranges[CITATIONS]. This suggests that explicit hydrogen might not be a
625 + required factor for modeling thermal transport phenomena of systems
626 + such as Au-thiol/organic solvent.
627 +
628 + However, results for Au-butanethiol/toluene do not show an identical
629 + trend with those for Au-butanethiol/hexane in that $G$'s remain at
630 + approximately the same magnitue when butanethiol coverage differs from
631 + 25\% to 75\%. This might be rooted in the molecule shape difference
632 + for plane-like toluene and chain-like {\it n}-hexane. Due to this
633 + difference, toluene molecules have more difficulty in occupying
634 + relatively small gaps among capping agents when their coverage is not
635 + too low. Therefore, the solvent-capping agent contact may keep
636 + increasing until the capping agent coverage reaches a relatively low
637 + level. This becomes an offset for decreasing butanethiol molecules on
638 + its effect to the process of interfacial thermal transport. Thus, one
639 + can see a plateau of $G$ vs. butanethiol coverage in our results.
640 +
641 + [NEED ERROR ESTIMATE, MAY ALSO PUT J HERE]
642   \begin{table*}
643    \begin{minipage}{\linewidth}
644      \begin{center}
645 <      \caption{Computed interfacial thermal conductivity ($G$ and
646 <        $G^\prime$) values for the Au/butanethiol/hexane interface
647 <        with united-atom model and different capping agent coverage
648 <        and solvent molecule numbers at different temperatures using a
597 <        range of energy fluxes.}
645 >      \caption{Computed interfacial thermal conductivity ($G$ in
646 >        MW/m$^2$/K) values for the Au-butanethiol/solvent interface
647 >        with various UA models and different capping agent coverages
648 >        at $<T>\sim$200K using certain energy flux respectively.}
649        
650 <      \begin{tabular}{cccccc}
650 >      \begin{tabular}{cccc}
651          \hline\hline
652 <        Thiol & $\langle T\rangle$ & & $J_z$ & $G$ & $G^\prime$ \\
653 <        coverage (\%) & (K) & $N_{hexane}$ & (GW/m$^2$) &
603 <        \multicolumn{2}{c}{(MW/m$^2$/K)} \\
652 >        Thiol & & & \\
653 >        coverage (\%) & hexane & hexane-D & toluene \\
654          \hline
655 <        0.0   & 200 & 200 & 0.96 & 43.3 & 42.7 \\
656 <              &     &     & 1.91 & 45.7 & 42.9 \\
657 <              &     & 166 & 0.96 & 43.1 & 53.4 \\
658 <        88.9  & 200 & 166 & 1.94 & 172  & 108  \\
659 <        100.0 & 250 & 200 & 0.96 & 81.8 & 67.0 \\
660 <              &     & 166 & 0.98 & 79.0 & 62.9 \\
611 <              &     &     & 1.44 & 76.2 & 64.8 \\
612 <              & 200 & 200 & 1.92 & 129  & 87.3 \\
613 <              &     &     & 1.93 & 131  & 77.5 \\
614 <              &     & 166 & 0.97 & 115  & 69.3 \\
615 <              &     &     & 1.94 & 125  & 87.1 \\
655 >        0.0   & 46.5 & 43.9 & 70.1 \\
656 >        25.0  & 151  & 153  & 249  \\
657 >        50.0  & 172  & 182  & 214  \\
658 >        75.0  & 242  & 229  & 244  \\
659 >        88.9  & 178  & -    & -    \\
660 >        100.0 & 137  & 153  & 187  \\
661          \hline\hline
662        \end{tabular}
663        \label{tlnUhxnUhxnD}
# Line 666 | Line 711 | two phases and result in a much higher conductivity.
711   \end{table*}
712  
713  
714 + significant conductance enhancement compared to the gold/water
715 + interface without capping agent and agree with available experimental
716 + data. This indicates that the metal-metal potential, though not
717 + predicting an accurate bulk metal thermal conductivity, does not
718 + greatly interfere with the simulation of the thermal conductance
719 + behavior across a non-metal interface.
720 +
721 + % The results show that the two definitions used for $G$ yield
722 + % comparable values, though $G^\prime$ tends to be smaller.
723 +
724   \subsection{Mechanism of Interfacial Thermal Conductance Enhancement
725    by Capping Agent}
726   [MAY INTRODUCE PROTOCOL IN METHODOLOGY/COMPUTATIONAL DETAIL]

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines