ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.tex
(Generate patch)

Comparing interfacial/interfacial.tex (file contents):
Revision 3737 by skuang, Tue Jul 12 22:11:11 2011 UTC vs.
Revision 3739 by skuang, Thu Jul 14 19:49:12 2011 UTC

# Line 104 | Line 104 | monolayer of alkylthiolate with relatively long chain
104   this phenomena at the molecular level. Recently, Hase and coworkers
105   employed Non-Equilibrium Molecular Dynamics (NEMD) simulations to
106   study thermal transport from hot Au(111) substrate to a self-assembled
107 < monolayer of alkylthiolate with relatively long chain (8-20 carbon
107 > monolayer of alkylthiol with relatively long chain (8-20 carbon
108   atoms)\cite{hase:2010,hase:2011}. However, ensemble averaged
109   measurements for heat conductance of interfaces between the capping
110   monolayer on Au and a solvent phase has yet to be studied.
111 < The relatively low thermal flux through interfaces is
111 > The comparatively low thermal flux through interfaces is
112   difficult to measure with Equilibrium MD or forward NEMD simulation
113   methods. Therefore, the Reverse NEMD (RNEMD) methods would have the
114   advantage of having this difficult to measure flux known when studying
# Line 375 | Line 375 | Lorentz-Berthelot Mixing Rule:[EQN'S]
375   (UA or AA) of capping agent can be different from the
376   solvent. Regardless of model choice, the force field parameters for
377   interactions between capping agent and solvent can be derived using
378 < Lorentz-Berthelot Mixing Rule:[EQN'S]
379 <
378 > Lorentz-Berthelot Mixing Rule:
379 > \begin{eqnarray}
380 > \sigma_{IJ} & = & \frac{1}{2} \left(\sigma_{II} + \sigma_{JJ}\right) \\
381 > \epsilon_{IJ} & = & \sqrt{\epsilon_{II}\epsilon_{JJ}}
382 > \end{eqnarray}
383  
384   To describe the interactions between metal Au and non-metal capping
385   agent and solvent particles, we refer to an adsorption study of alkyl
# Line 405 | Line 408 | parameters in our simulations.
408   \begin{table*}
409    \begin{minipage}{\linewidth}
410      \begin{center}
411 <      \caption{Lennard-Jones parameters for Au-non-Metal
412 <        interactions in our simulations.}
413 <      
414 <      \begin{tabular}{ccc}
411 >      \caption{Non-bonded interaction paramters for non-metal
412 >        particles and metal-non-metal interactions in our
413 >        simulations.}
414 >      
415 >      \begin{tabular}{cccccc}
416          \hline\hline
417 <        Non-metal atom   & $\sigma$ & $\epsilon$ \\
418 <        (or pseudo-atom) & \AA      & kcal/mol  \\
417 >        Non-metal atom $I$ & $\sigma_{II}$ & $\epsilon_{II}$ & $q_I$ &
418 >        $\sigma_{AuI}$ & $\epsilon_{AuI}$ \\
419 >        (or pseudo-atom) & \AA & kcal/mol & & \AA & kcal/mol \\
420          \hline
421 <        S    & 2.40   & 8.465   \\
422 <        CH3  & 3.54   & 0.2146  \\
423 <        CH2  & 3.54   & 0.1749  \\
424 <        CT3  & 3.365  & 0.1373  \\
425 <        CT2  & 3.365  & 0.1373  \\
426 <        CTT  & 3.365  & 0.1373  \\
427 <        HC   & 2.865  & 0.09256 \\
428 <        CHar & 3.4625 & 0.1680  \\
429 <        CRar & 3.555  & 0.1604  \\
430 <        CA   & 3.173  & 0.0640  \\
431 <        HA   & 2.746  & 0.0414  \\
421 >        CH3  & 3.75  & 0.1947  & -      & 3.54   & 0.2146  \\
422 >        CH2  & 3.95  & 0.0914  & -      & 3.54   & 0.1749  \\
423 >        CHar & 3.695 & 0.1003  & -      & 3.4625 & 0.1680  \\
424 >        CRar & 3.88  & 0.04173 & -      & 3.555  & 0.1604  \\
425 >        S    & 4.45  & 0.25    & -      & 2.40   & 8.465   \\
426 >        CT3  & 3.50  & 0.066   & -0.18  & 3.365  & 0.1373  \\
427 >        CT2  & 3.50  & 0.066   & -0.12  & 3.365  & 0.1373  \\
428 >        CTT  & 3.50  & 0.066   & -0.065 & 3.365  & 0.1373  \\
429 >        HC   & 2.50  & 0.030   &  0.06  & 2.865  & 0.09256 \\
430 >        CA   & 3.55  & 0.070   & -0.115 & 3.173  & 0.0640  \\
431 >        HA   & 2.42  & 0.030   &  0.115 & 2.746  & 0.0414  \\
432          \hline\hline
433        \end{tabular}
434        \label{MnM}
# Line 493 | Line 498 | couple $J_z$'s and do not need to test a large series
498          interfaces with UA model and different hexane molecule numbers
499          at different temperatures using a range of energy fluxes.}
500        
501 <      \begin{tabular}{cccccccc}
501 >      \begin{tabular}{ccccccc}
502          \hline\hline
503 <        $\langle T\rangle$ & & $L_x$ & $L_y$ & $L_z$ & $J_z$ &
504 <        $G$ & $G^\prime$ \\
505 <        (K) & $N_{hexane}$ & \multicolumn{3}{c}{(\AA)} & (GW/m$^2$) &
503 >        $\langle T\rangle$ & $N_{hexane}$ & Fixed & $\rho_{hexane}$ &
504 >        $J_z$ & $G$ & $G^\prime$ \\
505 >        (K) & & $L_x$ \& $L_y$? & (g/cm$^3$) & (GW/m$^2$) &
506          \multicolumn{2}{c}{(MW/m$^2$/K)} \\
507          \hline
508 <        200 & 266 & 29.86 & 25.80 & 113.1 & -0.96 &
509 <        102()  & 80.0() \\
510 <            & 200 & 29.84 & 25.81 &  93.9 &  1.92 &
511 <        129()  & 87.3() \\
512 <            &     & 29.84 & 25.81 &  95.3 &  1.93 &
513 <        131()  & 77.5() \\
514 <            & 166 & 29.84 & 25.81 &  85.7 &  0.97 &
515 <        115()  & 69.3() \\
516 <            &     &       &       &       &  1.94 &
517 <        125()  & 87.1() \\
518 <        250 & 200 & 29.84 & 25.87 & 106.8 &  0.96 &
519 <        81.8() & 67.0() \\
520 <            & 166 & 29.87 & 25.84 &  94.8 &  0.98 &
521 <        79.0() & 62.9() \\
522 <            &     & 29.84 & 25.85 &  95.0 &  1.44 &
523 <        76.2() & 64.8() \\
508 >        200 & 266 & No  & 0.672 & -0.96 & 102()  & 80.0() \\
509 >            & 200 & Yes & 0.694 &  1.92 & 129()  & 87.3() \\
510 >            &     & Yes & 0.672 &  1.93 & 131()  & 77.5() \\
511 >            &     & No  & 0.688 &  0.96 & 125()  & 90.2() \\
512 >            &     &     &       &  1.91 & 139()  & 101()  \\
513 >            &     &     &       &  2.83 & 141()  & 89.9() \\
514 >            & 166 & Yes & 0.679 &  0.97 & 115()  & 69.3() \\
515 >            &     &     &       &  1.94 & 125()  & 87.1() \\
516 >            &     & No  & 0.681 &  0.97 & 141()  & 77.7() \\
517 >            &     &     &       &  1.92 & 138()  & 98.9() \\
518 >        \hline
519 >        250 & 200 & No  & 0.560 &  0.96 & 74.8() & 61.8() \\
520 >            &     &     &       & -0.95 & 49.4() & 45.7() \\
521 >            & 166 & Yes & 0.570 &  0.98 & 79.0() & 62.9() \\
522 >            &     & No  & 0.569 &  0.97 & 80.3() & 67.1() \\
523 >            &     &     &       &  1.44 & 76.2() & 64.8() \\
524 >            &     &     &       & -0.95 & 56.4() & 54.4() \\
525 >            &     &     &       & -1.85 & 47.8() & 53.5() \\
526          \hline\hline
527        \end{tabular}
528        \label{AuThiolHexaneUA}
# Line 546 | Line 553 | in that higher degree of contact could yield increased
553   important role in the thermal transport process across the interface
554   in that higher degree of contact could yield increased conductance.
555  
556 < [ADD Lxyz AND ERROR ESTIMATE TO TABLE]
556 > [ADD ERROR ESTIMATE TO TABLE]
557   \begin{table*}
558    \begin{minipage}{\linewidth}
559      \begin{center}
# Line 555 | Line 562 | in that higher degree of contact could yield increased
562          interface at different temperatures using a range of energy
563          fluxes.}
564        
565 <      \begin{tabular}{cccc}
565 >      \begin{tabular}{ccccc}
566          \hline\hline
567 <        $\langle T\rangle$ & $J_z$ & $G$ & $G^\prime$ \\
568 <        (K) & (GW/m$^2$) & \multicolumn{2}{c}{(MW/m$^2$/K)} \\
567 >        $\langle T\rangle$ & $\rho_{toluene}$ & $J_z$ & $G$ & $G^\prime$ \\
568 >        (K) & (g/cm$^3$) & (GW/m$^2$) & \multicolumn{2}{c}{(MW/m$^2$/K)} \\
569          \hline
570 <        200 & -1.86 & 180() & 135() \\
571 <            &  2.15 & 204() & 113() \\
572 <            & -3.93 & 175() & 114() \\
573 <        300 & -1.91 & 143() & 125() \\
574 <            & -4.19 & 134() & 113() \\
570 >        200 & 0.933 & -1.86 & 180() & 135() \\
571 >            &       &  2.15 & 204() & 113() \\
572 >            &       & -3.93 & 175() & 114() \\
573 >        \hline
574 >        300 & 0.855 & -1.91 & 143() & 125() \\
575 >            &       & -4.19 & 134() & 113() \\
576          \hline\hline
577        \end{tabular}
578        \label{AuThiolToluene}
# Line 597 | Line 605 | even at $\langle T\rangle\sim$300K. The Au(111) surfac
605   However, when the surface is not completely covered by butanethiols,
606   the simulated system is more resistent to the reconstruction
607   above. Our Au-butanethiol/toluene system did not see this phenomena
608 < even at $\langle T\rangle\sim$300K. The Au(111) surfaces have a 90\% coverage of
609 < butanethiols and have empty three-fold sites. These empty sites could
610 < help prevent surface reconstruction in that they provide other means
611 < of capping agent relaxation. It is observed that butanethiols can
612 < migrate to their neighbor empty sites during a simulation. Therefore,
613 < we were able to obtain $G$'s for these interfaces even at a relatively
614 < high temperature without being affected by surface reconstructions.
608 > even at $\langle T\rangle\sim$300K. The Au(111) surfaces have a 90\%
609 > coverage of butanethiols and have empty three-fold sites. These empty
610 > sites could help prevent surface reconstruction in that they provide
611 > other means of capping agent relaxation. It is observed that
612 > butanethiols can migrate to their neighbor empty sites during a
613 > simulation. Therefore, we were able to obtain $G$'s for these
614 > interfaces even at a relatively high temperature without being
615 > affected by surface reconstructions.
616  
617   \subsection{Influence of Capping Agent Coverage on $G$}
618   To investigate the influence of butanethiol coverage on interfacial
# Line 679 | Line 688 | can see a plateau of $G$ vs. butanethiol coverage in o
688   its effect to the process of interfacial thermal transport. Thus, one
689   can see a plateau of $G$ vs. butanethiol coverage in our results.
690  
691 < [NEED ERROR ESTIMATE, MAY ALSO PUT J HERE]
692 < \begin{table*}
693 <  \begin{minipage}{\linewidth}
694 <    \begin{center}
695 <      \caption{Computed interfacial thermal conductivity ($G$) values
696 <        for the Au-butanethiol/solvent interface with various UA
697 <        models and different capping agent coverages at $\langle
698 <        T\rangle\sim$200K using certain energy flux respectively.}
699 <      
691 <      \begin{tabular}{cccc}
692 <        \hline\hline
693 <        Thiol & \multicolumn{3}{c}{$G$(MW/m$^2$/K)} \\
694 <        coverage (\%) & hexane & hexane(D) & toluene \\
695 <        \hline
696 <        0.0   & 46.5() & 43.9() & 70.1() \\
697 <        25.0  & 151()  & 153()  & 249()  \\
698 <        50.0  & 172()  & 182()  & 214()  \\
699 <        75.0  & 242()  & 229()  & 244()  \\
700 <        88.9  & 178()  & -      & -      \\
701 <        100.0 & 137()  & 153()  & 187()  \\
702 <        \hline\hline
703 <      \end{tabular}
704 <      \label{tlnUhxnUhxnD}
705 <    \end{center}
706 <  \end{minipage}
707 < \end{table*}
691 > [NEED ERROR ESTIMATE]
692 > \begin{figure}
693 > \includegraphics[width=\linewidth]{coverage}
694 > \caption{Comparison of interfacial thermal conductivity ($G$) values
695 >  for the Au-butanethiol/solvent interface with various UA models and
696 >  different capping agent coverages at $\langle T\rangle\sim$200K
697 >  using certain energy flux respectively.}
698 > \label{coverage}
699 > \end{figure}
700  
701   \subsection{Influence of Chosen Molecule Model on $G$}
702   [MAY COMBINE W MECHANISM STUDY]
# Line 725 | Line 717 | these studies.
717        \caption{Computed interfacial thermal conductivity ($G$ and
718          $G^\prime$) values for interfaces using various models for
719          solvent and capping agent (or without capping agent) at
720 <        $\langle T\rangle\sim$200K.}
720 >        $\langle T\rangle\sim$200K. (D stands for deuterated solvent
721 >        or capping agent molecules; ``Avg.'' denotes results that are
722 >        averages of several simulations.)}
723        
724        \begin{tabular}{ccccc}
725          \hline\hline
# Line 733 | Line 727 | these studies.
727          (or bare surface) & model & (GW/m$^2$) &
728          \multicolumn{2}{c}{(MW/m$^2$/K)} \\
729          \hline
730 <        UA    & AA hexane  & 1.94 & 135()  & 129()  \\
731 <              &            & 2.86 & 126()  & 115()  \\
732 <              & AA toluene & 1.89 & 200()  & 149()  \\
733 <        AA    & UA hexane  & 1.94 & 116()  & 129()  \\
734 <              & AA hexane  & 3.76 & 451()  & 378()  \\
735 <              &            & 4.71 & 432()  & 334()  \\
736 <              & AA toluene & 3.79 & 487()  & 290()  \\
737 <        AA(D) & UA hexane  & 1.94 & 158()  & 172()  \\
738 <        bare  & AA hexane  & 0.96 & 31.0() & 29.4() \\
730 >        UA    & UA hexane    & Avg. & 131()  & 86.5() \\
731 >              & UA hexane(D) & 1.95 & 153()  & 136()  \\
732 >              & AA hexane    & 1.94 & 135()  & 129()  \\
733 >              &              & 2.86 & 126()  & 115()  \\
734 >              & UA toluene   & 1.96 & 187()  & 151()  \\
735 >              & AA toluene   & 1.89 & 200()  & 149()  \\
736 >        \hline
737 >        AA    & UA hexane    & 1.94 & 116()  & 129()  \\
738 >              & AA hexane    & Avg. & 442()  & 356()  \\
739 >              & AA hexane(D) & 1.93 & 222()  & 234()  \\
740 >              & UA toluene   & 1.98 & 125()  & 96.5() \\
741 >              & AA toluene   & 3.79 & 487()  & 290()  \\
742 >        \hline
743 >        AA(D) & UA hexane    & 1.94 & 158()  & 172()  \\
744 >              & AA hexane    & 1.92 & 243()  & 191()  \\
745 >              & AA toluene   & 1.93 & 364()  & 322()  \\
746 >        \hline
747 >        bare  & UA hexane    & Avg. & 46.5() & 49.4() \\
748 >              & UA hexane(D) & 0.98 & 43.9() & 43.0() \\
749 >              & AA hexane    & 0.96 & 31.0() & 29.4() \\
750 >              & UA toluene   & 1.99 & 70.1() & 65.8() \\
751          \hline\hline
752        \end{tabular}
753        \label{modelTest}
# Line 778 | Line 784 | measurement results.
784  
785   However, for Au-butanethiol/toluene interfaces, having the AA
786   butanethiol deuterated did not yield a significant change in the
787 < measurement results.
788 < . , so extra degrees of freedom
789 < such as the C-H vibrations could enhance heat exchange between these
790 < two phases and result in a much higher conductivity.
787 > measurement results. Compared to the C-H vibrational overlap between
788 > hexane and butanethiol, both of which have alkyl chains, that overlap
789 > between toluene and butanethiol is not so significant and thus does
790 > not have as much contribution to the ``Intramolecular Vibration
791 > Redistribution''[CITE HASE]. Conversely, extra degrees of freedom such
792 > as the C-H vibrations could yield higher heat exchange rate between
793 > these two phases and result in a much higher conductivity.
794  
786
795   Although the QSC model for Au is known to predict an overly low value
796 < for bulk metal gold conductivity[CITE NIVSRNEMD], our computational
796 > for bulk metal gold conductivity\cite{kuang:164101}, our computational
797   results for $G$ and $G^\prime$ do not seem to be affected by this
798 < drawback of the model for metal. Instead, the modeling of interfacial
799 < thermal transport behavior relies mainly on an accurate description of
800 < the interactions between components occupying the interfaces.
798 > drawback of the model for metal. Instead, our results suggest that the
799 > modeling of interfacial thermal transport behavior relies mainly on
800 > the accuracy of the interaction descriptions between components
801 > occupying the interfaces.
802  
803   \subsection{Mechanism of Interfacial Thermal Conductance Enhancement
804    by Capping Agent}
# Line 805 | Line 814 | power spectrum via a Fourier transform.
814   the velocity auto-correlation functions, which is used to construct a
815   power spectrum via a Fourier transform.
816  
817 + [MAY RELATE TO HASE'S]
818   The gold surfaces covered by
819   butanethiol molecules, compared to bare gold surfaces, exhibit an
820   additional peak observed at a frequency of $\sim$170cm$^{-1}$, which
# Line 817 | Line 827 | thermal conductance enhancement in the all-atom model.
827   combination of these two effects produces the drastic interfacial
828   thermal conductance enhancement in the all-atom model.
829  
830 < [MAY NEED TO CONVERT TO JPEG]
830 > [REDO. MAY NEED TO CONVERT TO JPEG]
831   \begin{figure}
832   \includegraphics[width=\linewidth]{vibration}
833   \caption{Vibrational spectra obtained for gold in different

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines