ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.tex
(Generate patch)

Comparing interfacial/interfacial.tex (file contents):
Revision 3739 by skuang, Thu Jul 14 19:49:12 2011 UTC vs.
Revision 3742 by skuang, Fri Jul 15 17:55:16 2011 UTC

# Line 23 | Line 23
23   \setlength{\belowcaptionskip}{30 pt}
24  
25   %\renewcommand\citemid{\ } % no comma in optional reference note
26 < \bibpunct{[}{]}{,}{s}{}{;}
27 < \bibliographystyle{aip}
26 > \bibpunct{[}{]}{,}{n}{}{;}
27 > \bibliographystyle{achemso}
28  
29   \begin{document}
30  
# Line 227 | Line 227 | illustrated in Figure \ref{demoPic}.
227   illustrated in Figure \ref{demoPic}.
228  
229   \begin{figure}
230 < \includegraphics[width=\linewidth]{demoPic}
231 < \caption{A sample showing how a metal slab has its (111) surface
232 <  covered by capping agent molecules and solvated by hexane.}
230 > \includegraphics[width=\linewidth]{method}
231 > \caption{Interfacial conductance can be calculated by applying an
232 >  (unphysical) kinetic energy flux between two slabs, one located
233 >  within the metal and another on the edge of the periodic box.  The
234 >  system responds by forming a thermal response or a gradient.  In
235 >  bulk liquids, this gradient typically has a single slope, but in
236 >  interfacial systems, there are distinct thermal conductivity
237 >  domains.  The interfacial conductance, $G$ is found by measuring the
238 >  temperature gap at the Gibbs dividing surface, or by using second
239 >  derivatives of the thermal profile.}
240   \label{demoPic}
241   \end{figure}
242  
# Line 332 | Line 339 | organic solvent molecules in our simulations.
339   organic solvent molecules in our simulations.
340  
341   \begin{figure}
342 < \includegraphics[width=\linewidth]{demoMol}
343 < \caption{Denomination of atoms or pseudo-atoms in our simulations: a)
344 <  UA-hexane; b) AA-hexane; c) UA-toluene; d) AA-toluene.}
342 > \includegraphics[width=\linewidth]{structures}
343 > \caption{Structures of the capping agent and solvents utilized in
344 >  these simulations. The chemically-distinct sites (a-e) are expanded
345 >  in terms of constituent atoms for both United Atom (UA) and All Atom
346 >  (AA) force fields.  Most parameters are from
347 >  Refs. \protect\cite{TraPPE-UA.alkanes,TraPPE-UA.alkylbenzenes} (UA) and
348 >  \protect\cite{OPLSAA} (AA).  Cross-interactions with the Au atoms are given
349 >  in Table \ref{MnM}.}
350   \label{demoMol}
351   \end{figure}
352  
# Line 377 | Line 389 | Lorentz-Berthelot Mixing Rule:
389   interactions between capping agent and solvent can be derived using
390   Lorentz-Berthelot Mixing Rule:
391   \begin{eqnarray}
392 < \sigma_{IJ} & = & \frac{1}{2} \left(\sigma_{II} + \sigma_{JJ}\right) \\
393 < \epsilon_{IJ} & = & \sqrt{\epsilon_{II}\epsilon_{JJ}}
392 > \sigma_{ij} & = & \frac{1}{2} \left(\sigma_{ii} + \sigma_{jj}\right) \\
393 > \epsilon_{ij} & = & \sqrt{\epsilon_{ii}\epsilon_{jj}}
394   \end{eqnarray}
395  
396   To describe the interactions between metal Au and non-metal capping
# Line 408 | Line 420 | parameters in our simulations.
420   \begin{table*}
421    \begin{minipage}{\linewidth}
422      \begin{center}
423 <      \caption{Non-bonded interaction paramters for non-metal
424 <        particles and metal-non-metal interactions in our
425 <        simulations.}
426 <      
415 <      \begin{tabular}{cccccc}
423 >      \caption{Non-bonded interaction parameters (including cross
424 >        interactions with Au atoms) for both force fields used in this
425 >        work.}      
426 >      \begin{tabular}{lllllll}
427          \hline\hline
428 <        Non-metal atom $I$ & $\sigma_{II}$ & $\epsilon_{II}$ & $q_I$ &
429 <        $\sigma_{AuI}$ & $\epsilon_{AuI}$ \\
430 <        (or pseudo-atom) & \AA & kcal/mol & & \AA & kcal/mol \\
428 >        & Site  & $\sigma_{ii}$ & $\epsilon_{ii}$ & $q_i$ &
429 >        $\sigma_{Au-i}$ & $\epsilon_{Au-i}$ \\
430 >        & & (\AA) & (kcal/mol) & ($e$) & (\AA) & (kcal/mol) \\
431          \hline
432 <        CH3  & 3.75  & 0.1947  & -      & 3.54   & 0.2146  \\
433 <        CH2  & 3.95  & 0.0914  & -      & 3.54   & 0.1749  \\
434 <        CHar & 3.695 & 0.1003  & -      & 3.4625 & 0.1680  \\
435 <        CRar & 3.88  & 0.04173 & -      & 3.555  & 0.1604  \\
436 <        S    & 4.45  & 0.25    & -      & 2.40   & 8.465   \\
437 <        CT3  & 3.50  & 0.066   & -0.18  & 3.365  & 0.1373  \\
438 <        CT2  & 3.50  & 0.066   & -0.12  & 3.365  & 0.1373  \\
439 <        CTT  & 3.50  & 0.066   & -0.065 & 3.365  & 0.1373  \\
440 <        HC   & 2.50  & 0.030   &  0.06  & 2.865  & 0.09256 \\
441 <        CA   & 3.55  & 0.070   & -0.115 & 3.173  & 0.0640  \\
442 <        HA   & 2.42  & 0.030   &  0.115 & 2.746  & 0.0414  \\
432 >        United Atom (UA)
433 >        &CH3  & 3.75  & 0.1947  & -      & 3.54   & 0.2146  \\
434 >        &CH2  & 3.95  & 0.0914  & -      & 3.54   & 0.1749  \\
435 >        &CHar & 3.695 & 0.1003  & -      & 3.4625 & 0.1680  \\
436 >        &CRar & 3.88  & 0.04173 & -      & 3.555  & 0.1604  \\
437 >        \hline
438 >        All Atom (AA)
439 >        &CT3  & 3.50  & 0.066   & -0.18  & 3.365  & 0.1373  \\
440 >        &CT2  & 3.50  & 0.066   & -0.12  & 3.365  & 0.1373  \\
441 >        &CTT  & 3.50  & 0.066   & -0.065 & 3.365  & 0.1373  \\
442 >        &HC   & 2.50  & 0.030   &  0.06  & 2.865  & 0.09256 \\
443 >        &CA   & 3.55  & 0.070   & -0.115 & 3.173  & 0.0640  \\
444 >        &HA   & 2.42  & 0.030   &  0.115 & 2.746  & 0.0414  \\
445 >        \hline
446 >        Both UA and AA & S    & 4.45  & 0.25    & -      & 2.40   & 8.465   \\
447          \hline\hline
448        \end{tabular}
449        \label{MnM}
# Line 688 | Line 703 | can see a plateau of $G$ vs. butanethiol coverage in o
703   its effect to the process of interfacial thermal transport. Thus, one
704   can see a plateau of $G$ vs. butanethiol coverage in our results.
705  
691 [NEED ERROR ESTIMATE]
706   \begin{figure}
707   \includegraphics[width=\linewidth]{coverage}
708   \caption{Comparison of interfacial thermal conductivity ($G$) values
# Line 709 | Line 723 | these studies.
723   the previous section. Table \ref{modelTest} summarizes the results of
724   these studies.
725  
712 [MORE DATA; ERROR ESTIMATE]
726   \begin{table*}
727    \begin{minipage}{\linewidth}
728      \begin{center}
# Line 719 | Line 732 | these studies.
732          solvent and capping agent (or without capping agent) at
733          $\langle T\rangle\sim$200K. (D stands for deuterated solvent
734          or capping agent molecules; ``Avg.'' denotes results that are
735 <        averages of several simulations.)}
735 >        averages of simulations under different $J_z$'s. Error
736 >        estimates indicated in parenthesis.)}
737        
738 <      \begin{tabular}{ccccc}
738 >      \begin{tabular}{llccc}
739          \hline\hline
740          Butanethiol model & Solvent & $J_z$ & $G$ & $G^\prime$ \\
741          (or bare surface) & model & (GW/m$^2$) &
742          \multicolumn{2}{c}{(MW/m$^2$/K)} \\
743          \hline
744 <        UA    & UA hexane    & Avg. & 131()  & 86.5() \\
745 <              & UA hexane(D) & 1.95 & 153()  & 136()  \\
746 <              & AA hexane    & 1.94 & 135()  & 129()  \\
747 <              &              & 2.86 & 126()  & 115()  \\
748 <              & UA toluene   & 1.96 & 187()  & 151()  \\
735 <              & AA toluene   & 1.89 & 200()  & 149()  \\
744 >        UA    & UA hexane    & Avg. & 131(9)    & 87(10)    \\
745 >              & UA hexane(D) & 1.95 & 153(5)    & 136(13)   \\
746 >              & AA hexane    & Avg. & 131(6)    & 122(10)   \\
747 >              & UA toluene   & 1.96 & 187(16)   & 151(11)   \\
748 >              & AA toluene   & 1.89 & 200(36)   & 149(53)   \\
749          \hline
750 <        AA    & UA hexane    & 1.94 & 116()  & 129()  \\
751 <              & AA hexane    & Avg. & 442()  & 356()  \\
752 <              & AA hexane(D) & 1.93 & 222()  & 234()  \\
753 <              & UA toluene   & 1.98 & 125()  & 96.5() \\
754 <              & AA toluene   & 3.79 & 487()  & 290()  \\
750 >        AA    & UA hexane    & 1.94 & 116(9)    & 129(8)    \\
751 >              & AA hexane    & Avg. & 442(14)   & 356(31)   \\
752 >              & AA hexane(D) & 1.93 & 222(12)   & 234(54)   \\
753 >              & UA toluene   & 1.98 & 125(25)   & 97(60)    \\
754 >              & AA toluene   & 3.79 & 487(56)   & 290(42)   \\
755          \hline
756 <        AA(D) & UA hexane    & 1.94 & 158()  & 172()  \\
757 <              & AA hexane    & 1.92 & 243()  & 191()  \\
758 <              & AA toluene   & 1.93 & 364()  & 322()  \\
756 >        AA(D) & UA hexane    & 1.94 & 158(25)   & 172(4)    \\
757 >              & AA hexane    & 1.92 & 243(29)   & 191(11)   \\
758 >              & AA toluene   & 1.93 & 364(36)   & 322(67)   \\
759          \hline
760 <        bare  & UA hexane    & Avg. & 46.5() & 49.4() \\
761 <              & UA hexane(D) & 0.98 & 43.9() & 43.0() \\
762 <              & AA hexane    & 0.96 & 31.0() & 29.4() \\
763 <              & UA toluene   & 1.99 & 70.1() & 65.8() \\
760 >        bare  & UA hexane    & Avg. & 46.5(3.2) & 49.4(4.5) \\
761 >              & UA hexane(D) & 0.98 & 43.9(4.6) & 43.0(2.0) \\
762 >              & AA hexane    & 0.96 & 31.0(1.4) & 29.4(1.3) \\
763 >              & UA toluene   & 1.99 & 70.1(1.3) & 65.8(0.5) \\
764          \hline\hline
765        \end{tabular}
766        \label{modelTest}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines