ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.tex
(Generate patch)

Comparing interfacial/interfacial.tex (file contents):
Revision 3744 by skuang, Wed Jul 20 19:02:46 2011 UTC vs.
Revision 3745 by skuang, Thu Jul 21 00:04:26 2011 UTC

# Line 193 | Line 193 | gradient max($\Delta T$), which occurs at the Gibbs de
193   One way is to assume the temperature is discrete on the two sides of
194   the interface. $G$ can be calculated using the applied thermal flux
195   $J$ and the maximum temperature difference measured along the thermal
196 < gradient max($\Delta T$), which occurs at the Gibbs deviding surface,
197 < as:
196 > gradient max($\Delta T$), which occurs at the Gibbs deviding surface
197 > (Figure \ref{demoPic}):
198   \begin{equation}
199   G=\frac{J}{\Delta T}
200   \label{discreteG}
201   \end{equation}
202  
203 + \begin{figure}
204 + \includegraphics[width=\linewidth]{method}
205 + \caption{Interfacial conductance can be calculated by applying an
206 +  (unphysical) kinetic energy flux between two slabs, one located
207 +  within the metal and another on the edge of the periodic box.  The
208 +  system responds by forming a thermal response or a gradient.  In
209 +  bulk liquids, this gradient typically has a single slope, but in
210 +  interfacial systems, there are distinct thermal conductivity
211 +  domains.  The interfacial conductance, $G$ is found by measuring the
212 +  temperature gap at the Gibbs dividing surface, or by using second
213 +  derivatives of the thermal profile.}
214 + \label{demoPic}
215 + \end{figure}
216 +
217   The other approach is to assume a continuous temperature profile along
218   the thermal gradient axis (e.g. $z$) and define $G$ at the point where
219   the magnitude of thermal conductivity $\lambda$ change reach its
# Line 226 | Line 240 | illustrated in Figure \ref{demoPic}.
240   surfaces, the metal slab is solvated with simple organic solvents, as
241   illustrated in Figure \ref{demoPic}.
242  
229 \begin{figure}
230 \includegraphics[width=\linewidth]{method}
231 \caption{Interfacial conductance can be calculated by applying an
232  (unphysical) kinetic energy flux between two slabs, one located
233  within the metal and another on the edge of the periodic box.  The
234  system responds by forming a thermal response or a gradient.  In
235  bulk liquids, this gradient typically has a single slope, but in
236  interfacial systems, there are distinct thermal conductivity
237  domains.  The interfacial conductance, $G$ is found by measuring the
238  temperature gap at the Gibbs dividing surface, or by using second
239  derivatives of the thermal profile.}
240 \label{demoPic}
241 \end{figure}
242
243   With the simulation cell described above, we are able to equilibrate
244   the system and impose an unphysical thermal flux between the liquid
245   and the metal phase using the NIVS algorithm. By periodically applying
# Line 251 | Line 251 | and 2nd derivatives of the temperature profile.
251  
252   \begin{figure}
253   \includegraphics[width=\linewidth]{gradT}
254 < \caption{The 1st and 2nd derivatives of temperature profile can be
255 <  obtained with finite difference approximation.}
254 > \caption{A sample of Au-butanethiol/hexane interfacial system and the
255 >  temperature profile after a kinetic energy flux is imposed to
256 >  it. The 1st and 2nd derivatives of the temperature profile can be
257 >  obtained with finite difference approximation (lower panel).}
258   \label{gradT}
259   \end{figure}
260  
# Line 294 | Line 296 | corresponding spacing is usually $35 \sim 60$\AA.
296   solvent molecules would change the normal behavior of the liquid
297   phase. Therefore, our $N_{solvent}$ values were chosen to ensure that
298   these extreme cases did not happen to our simulations. And the
299 < corresponding spacing is usually $35 \sim 60$\AA.
299 > corresponding spacing is usually $35 \sim 75$\AA.
300  
301   The initial configurations generated by Packmol are further
302   equilibrated with the $x$ and $y$ dimensions fixed, only allowing
# Line 386 | Line 388 | added as an extra potential for maintaining the planar
388   adopted. Without the rigid body constraints, bonding interactions were
389   included. For the aromatic ring, improper torsions (inversions) were
390   added as an extra potential for maintaining the planar shape.
391 < [MORE CITATIONS?]
391 > [MORE CITATION?]
392  
393   The capping agent in our simulations, the butanethiol molecules can
394   either use UA or AA model. The TraPPE-UA force fields includes
# Line 531 | Line 533 | a large series of fluxes.
533        \caption{Computed interfacial thermal conductivity ($G$ and
534          $G^\prime$) values for the 100\% covered Au-butanethiol/hexane
535          interfaces with UA model and different hexane molecule numbers
536 <        at different temperatures using a range of energy fluxes.}
536 >        at different temperatures using a range of energy
537 >        fluxes. Error estimates indicated in parenthesis.}
538        
539        \begin{tabular}{ccccccc}
540          \hline\hline
# Line 540 | Line 543 | a large series of fluxes.
543          (K) & & $L_x$ \& $L_y$? & (g/cm$^3$) & (GW/m$^2$) &
544          \multicolumn{2}{c}{(MW/m$^2$/K)} \\
545          \hline
546 <        200 & 266 & No  & 0.672 & -0.96 & 102()     & 80.0()    \\
546 >        200 & 266 & No  & 0.672 & -0.96 & 102(3)    & 80.0(0.8) \\
547              & 200 & Yes & 0.694 &  1.92 & 129(11)   & 87.3(0.3) \\
548              &     & Yes & 0.672 &  1.93 & 131(16)   & 78(13)    \\
549 <            &     & No  & 0.688 &  0.96 & 125()     & 90.2()    \\
549 >            &     & No  & 0.688 &  0.96 & 125(16)   & 90.2(15)  \\
550              &     &     &       &  1.91 & 139(10)   & 101(10)   \\
551              &     &     &       &  2.83 & 141(6)    & 89.9(9.8) \\
552              & 166 & Yes & 0.679 &  0.97 & 115(19)   & 69(18)    \\
# Line 589 | Line 592 | in that higher degree of contact could yield increased
592   important role in the thermal transport process across the interface
593   in that higher degree of contact could yield increased conductance.
594  
592 [ADD ERROR ESTIMATE TO TABLE]
595   \begin{table*}
596    \begin{minipage}{\linewidth}
597      \begin{center}
598        \caption{Computed interfacial thermal conductivity ($G$ and
599          $G^\prime$) values for a 90\% coverage Au-butanethiol/toluene
600          interface at different temperatures using a range of energy
601 <        fluxes.}
601 >        fluxes. Error estimates indicated in parenthesis.}
602        
603        \begin{tabular}{ccccc}
604          \hline\hline
605          $\langle T\rangle$ & $\rho_{toluene}$ & $J_z$ & $G$ & $G^\prime$ \\
606          (K) & (g/cm$^3$) & (GW/m$^2$) & \multicolumn{2}{c}{(MW/m$^2$/K)} \\
607          \hline
608 <        200 & 0.933 & -1.86 & 180() & 135() \\
609 <            &       &  2.15 & 204() & 113() \\
610 <            &       & -3.93 & 175() & 114() \\
608 >        200 & 0.933 &  2.15 & 204(12) & 113(12) \\
609 >            &       & -1.86 & 180(3)  & 135(21) \\
610 >            &       & -3.93 & 176(5)  & 113(12) \\
611          \hline
612 <        300 & 0.855 & -1.91 & 143() & 125() \\
613 <            &       & -4.19 & 134() & 113() \\
612 >        300 & 0.855 & -1.91 & 143(5)  & 125(2)  \\
613 >            &       & -4.19 & 135(9)  & 113(12) \\
614          \hline\hline
615        \end{tabular}
616        \label{AuThiolToluene}
# Line 851 | Line 853 | power spectrum via a Fourier transform.
853   power spectrum via a Fourier transform.
854  
855   [MAY RELATE TO HASE'S]
856 < The gold surfaces covered by
857 < butanethiol molecules, compared to bare gold surfaces, exhibit an
858 < additional peak observed at a frequency of $\sim$170cm$^{-1}$, which
859 < is attributed to the vibration of the S-Au bonding. This vibration
860 < enables efficient thermal transport from surface Au atoms to the
861 < capping agents. Simultaneously, as shown in the lower panel of
862 < Fig. \ref{vibration}, the large overlap of the vibration spectra of
863 < butanethiol and hexane in the all-atom model, including the C-H
864 < vibration, also suggests high thermal exchange efficiency. The
865 < combination of these two effects produces the drastic interfacial
866 < thermal conductance enhancement in the all-atom model.
856 > The gold surfaces covered by butanethiol molecules, compared to bare
857 > gold surfaces, exhibit an additional peak observed at the frequency of
858 > $\sim$170cm$^{-1}$, which is attributed to the S-Au bonding
859 > vibration. This vibration enables efficient thermal transport from
860 > surface Au layer to the capping agents.
861 > [MAY PUT IN OTHER SECTION] Simultaneously, as shown in
862 > the lower panel of Fig. \ref{vibration}, the large overlap of the
863 > vibration spectra of butanethiol and hexane in the All-Atom model,
864 > including the C-H vibration, also suggests high thermal exchange
865 > efficiency. The combination of these two effects produces the drastic
866 > interfacial thermal conductance enhancement in the All-Atom model.
867  
868 < [REDO. MAY NEED TO CONVERT TO JPEG]
868 > [NEED SEPARATE FIGURE. MAY NEED TO CONVERT TO JPEG]
869   \begin{figure}
870   \includegraphics[width=\linewidth]{vibration}
871   \caption{Vibrational spectra obtained for gold in different
872 <  environments (upper panel) and for Au/thiol/hexane simulation in
871 <  all-atom model (lower panel).}
872 >  environments.}
873   \label{vibration}
874   \end{figure}
875  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines