ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.tex
(Generate patch)

Comparing interfacial/interfacial.tex (file contents):
Revision 3767 by gezelter, Fri Sep 30 19:37:13 2011 UTC vs.
Revision 3768 by skuang, Mon Oct 3 17:38:14 2011 UTC

# Line 63 | Line 63 | Keywords: non-equilibrium, molecular dynamics, vibrati
63    diffusive heat transport of solvent molecules that have been in
64    close contact with the capping agent.
65  
66 < Keywords: non-equilibrium, molecular dynamics, vibrational overlap,
67 < coverage dependent.
66 > {\bf Keywords: non-equilibrium, molecular dynamics, vibrational
67 >  overlap, coverage dependent.}
68   \end{abstract}
69  
70   \newpage
# Line 107 | Line 107 | interface.\cite{schwartz} Here, $\rho_a$ and $v^s_a$ a
107  
108   The acoustic mismatch model for interfacial conductance utilizes the
109   acoustic impedance ($Z_a = \rho_a v^s_a$) on both sides of the
110 < interface.\cite{schwartz} Here, $\rho_a$ and $v^s_a$ are the density
110 > interface.\cite{swartz1989} Here, $\rho_a$ and $v^s_a$ are the density
111   and speed of sound in material $a$.  The phonon transmission
112   probability at the $a-b$ interface is
113   \begin{equation}
# Line 228 | Line 228 | of dimensions $L_x \times L_y$, $E_{total} = J_z *(t)*
228   and ${\langle T_\mathrm{cold}\rangle}$ are the average observed
229   temperature of the two separated phases.  For an applied flux $J_z$
230   operating over a simulation time $t$ on a periodically-replicated slab
231 < of dimensions $L_x \times L_y$, $E_{total} = J_z *(t)*(2 L_x L_y)$.
231 > of dimensions $L_x \times L_y$, $E_{total} = 2 J_z t L_x L_y$.
232  
233   When the interfacial conductance is {\it not} small, there are two
234   ways to define $G$. One common way is to assume the temperature is
# Line 632 | Line 632 | studies.
632        \begin{tabular}{llccc}
633          \hline\hline
634          Butanethiol model & Solvent & $G$ & $G^\prime$ \\
635 <        (or bare surface) & model &
636 <        \multicolumn{2}{c}{(MW/m$^2$/K)} \\
635 >        (or bare surface) & model & \multicolumn{2}{c}{(MW/m$^2$/K)} \\
636          \hline
637          UA    & UA hexane    & 131(9)    & 87(10)    \\
638                & UA hexane(D) & 153(5)    & 136(13)   \\
# Line 719 | Line 718 | computed conductivities (Table \ref{AuThiolHexaneUA}).
718   while the extra solvent served mainly to lengthen the axis that was
719   used to apply the thermal flux.  For a given value of the applied
720   flux, the different $z$ length scale has only a weak effect on the
721 < computed conductivities (Table \ref{AuThiolHexaneUA}).
721 > computed conductivities.
722  
723   \subsubsection{Effects of applied flux}
724   The NIVS algorithm allows changes in both the sign and magnitude of

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines