ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/suppInfo.tex
Revision: 3765
Committed: Thu Sep 29 14:09:15 2011 UTC (12 years, 11 months ago) by skuang
Content type: application/x-tex
File size: 7417 byte(s)
Log Message:
add supporting information file, add keywords.

File Contents

# Content
1 \documentclass[11pt]{article}
2 \usepackage{amsmath}
3 \usepackage{amssymb}
4 \usepackage{setspace}
5 \usepackage{endfloat}
6 \usepackage{caption}
7 %\usepackage{tabularx}
8 \usepackage{graphicx}
9 \usepackage{multirow}
10 %\usepackage{booktabs}
11 %\usepackage{bibentry}
12 %\usepackage{mathrsfs}
13 %\usepackage[ref]{overcite}
14 \usepackage[square, comma, sort&compress]{natbib}
15 \usepackage{url}
16 \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
17 \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
18 9.0in \textwidth 6.5in \brokenpenalty=10000
19
20 % double space list of tables and figures
21 \AtBeginDelayedFloats{\renewcommand{\baselinestretch}{1.66}}
22 \setlength{\abovecaptionskip}{20 pt}
23 \setlength{\belowcaptionskip}{30 pt}
24
25 %\renewcommand\citemid{\ } % no comma in optional reference note
26 \bibpunct{[}{]}{,}{n}{}{;}
27 \bibliographystyle{achemso}
28
29 \begin{document}
30
31 \title{Simulating Interfacial Thermal Conductance at Metal-Solvent
32 Interfaces: the Role of Chemical Capping Agents}
33
34 \author{Shenyu Kuang and J. Daniel
35 Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
36 Department of Chemistry and Biochemistry,\\
37 University of Notre Dame\\
38 Notre Dame, Indiana 46556}
39
40 %\date{\today}
41
42 \maketitle
43
44 \begin{doublespace}
45
46 \newpage
47
48 %\narrowtext
49
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51 % BODY OF TEXT
52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
53
54 \begin{table*}
55 \begin{minipage}{\linewidth}
56 \begin{center}
57 \caption{Non-bonded interaction parameters (including cross
58 interactions with Au atoms) for both force fields used in this
59 work.}
60 \begin{tabular}{lllllll}
61 \hline\hline
62 & Site & $\sigma_{ii}$ & $\epsilon_{ii}$ & $q_i$ &
63 $\sigma_{Au-i}$ & $\epsilon_{Au-i}$ \\
64 & & (\AA) & (kcal/mol) & ($e$) & (\AA) & (kcal/mol) \\
65 \hline
66 United Atom (UA)
67 &CH3 & 3.75 & 0.1947 & - & 3.54 & 0.2146 \\
68 &CH2 & 3.95 & 0.0914 & - & 3.54 & 0.1749 \\
69 &CHar & 3.695 & 0.1003 & - & 3.4625 & 0.1680 \\
70 &CRar & 3.88 & 0.04173 & - & 3.555 & 0.1604 \\
71 \hline
72 All Atom (AA)
73 &CT3 & 3.50 & 0.066 & -0.18 & 3.365 & 0.1373 \\
74 &CT2 & 3.50 & 0.066 & -0.12 & 3.365 & 0.1373 \\
75 &CTT & 3.50 & 0.066 & -0.065 & 3.365 & 0.1373 \\
76 &HC & 2.50 & 0.030 & 0.06 & 2.865 & 0.09256 \\
77 &CA & 3.55 & 0.070 & -0.115 & 3.173 & 0.0640 \\
78 &HA & 2.42 & 0.030 & 0.115 & 2.746 & 0.0414 \\
79 \hline
80 Both UA and AA
81 & S & 4.45 & 0.25 & - & 2.40 & 8.465 \\
82 \hline\hline
83 \end{tabular}
84 \label{MnM}
85 \end{center}
86 \end{minipage}
87 \end{table*}
88
89 {\bf MAY NOT NEED $J_z$ IN TABLE}
90 \begin{table*}
91 \begin{minipage}{\linewidth}
92 \begin{center}
93
94 \caption{Computed interfacial thermal conductance ($G$ and
95 $G^\prime$) values for interfaces using various models for
96 solvent and capping agent (or without capping agent) at
97 $\langle T\rangle\sim$200K. Here ``D'' stands for deuterated
98 solvent or capping agent molecules; ``Avg.'' denotes results
99 that are averages of simulations under different applied
100 thermal flux $(J_z)$ values. Error estimates are indicated in
101 parentheses.}
102
103 \begin{tabular}{llccc}
104 \hline\hline
105 Butanethiol model & Solvent & $J_z$ & $G$ & $G^\prime$ \\
106 (or bare surface) & model & (GW/m$^2$) &
107 \multicolumn{2}{c}{(MW/m$^2$/K)} \\
108 \hline
109 UA & UA hexane & Avg. & 131(9) & 87(10) \\
110 & UA hexane(D) & 1.95 & 153(5) & 136(13) \\
111 & AA hexane & Avg. & 131(6) & 122(10) \\
112 & UA toluene & 1.96 & 187(16) & 151(11) \\
113 & AA toluene & 1.89 & 200(36) & 149(53) \\
114 \hline
115 AA & UA hexane & 1.94 & 116(9) & 129(8) \\
116 & AA hexane & Avg. & 442(14) & 356(31) \\
117 & AA hexane(D) & 1.93 & 222(12) & 234(54) \\
118 & UA toluene & 1.98 & 125(25) & 97(60) \\
119 & AA toluene & 3.79 & 487(56) & 290(42) \\
120 \hline
121 AA(D) & UA hexane & 1.94 & 158(25) & 172(4) \\
122 & AA hexane & 1.92 & 243(29) & 191(11) \\
123 & AA toluene & 1.93 & 364(36) & 322(67) \\
124 \hline
125 bare & UA hexane & Avg. & 46.5(3.2) & 49.4(4.5) \\
126 & UA hexane(D) & 0.98 & 43.9(4.6) & 43.0(2.0) \\
127 & AA hexane & 0.96 & 31.0(1.4) & 29.4(1.3) \\
128 & UA toluene & 1.99 & 70.1(1.3) & 65.8(0.5) \\
129 \hline\hline
130 \end{tabular}
131 \label{modelTest}
132 \end{center}
133 \end{minipage}
134 \end{table*}
135
136 \begin{table*}
137 \begin{minipage}{\linewidth}
138 \begin{center}
139 \caption{In the hexane-solvated interfaces, the system size has
140 little effect on the calculated values for interfacial
141 conductance ($G$ and $G^\prime$), but the direction of heat
142 flow (i.e. the sign of $J_z$) can alter the average
143 temperature of the liquid phase and this can alter the
144 computed conductivity.}
145
146 \begin{tabular}{ccccccc}
147 \hline\hline
148 $\langle T\rangle$ & $N_{hexane}$ & $\rho_{hexane}$ &
149 $J_z$ & $G$ & $G^\prime$ \\
150 (K) & & (g/cm$^3$) & (GW/m$^2$) &
151 \multicolumn{2}{c}{(MW/m$^2$/K)} \\
152 \hline
153 200 & 266 & 0.672 & -0.96 & 102(3) & 80.0(0.8) \\
154 & 200 & 0.688 & 0.96 & 125(16) & 90.2(15) \\
155 & & & 1.91 & 139(10) & 101(10) \\
156 & & & 2.83 & 141(6) & 89.9(9.8) \\
157 & 166 & 0.681 & 0.97 & 141(30) & 78(22) \\
158 & & & 1.92 & 138(4) & 98.9(9.5) \\
159 \hline
160 250 & 200 & 0.560 & 0.96 & 75(10) & 61.8(7.3) \\
161 & & & -0.95 & 49.4(0.3) & 45.7(2.1) \\
162 & 166 & 0.569 & 0.97 & 80.3(0.6) & 67(11) \\
163 & & & 1.44 & 76.2(5.0) & 64.8(3.8) \\
164 & & & -0.95 & 56.4(2.5) & 54.4(1.1) \\
165 & & & -1.85 & 47.8(1.1) & 53.5(1.5) \\
166 \hline\hline
167 \end{tabular}
168 \label{AuThiolHexaneUA}
169 \end{center}
170 \end{minipage}
171 \end{table*}
172
173 \begin{table*}
174 \begin{minipage}{\linewidth}
175 \begin{center}
176 \caption{When toluene is the solvent, the interfacial thermal
177 conductivity is less sensitive to temperature, but again, the
178 direction of the heat flow can alter the solvent temperature
179 and can change the computed conductance values.}
180
181 \begin{tabular}{ccccc}
182 \hline\hline
183 $\langle T\rangle$ & $\rho_{toluene}$ & $J_z$ & $G$ & $G^\prime$ \\
184 (K) & (g/cm$^3$) & (GW/m$^2$) & \multicolumn{2}{c}{(MW/m$^2$/K)} \\
185 \hline
186 200 & 0.933 & 2.15 & 204(12) & 113(12) \\
187 & & -1.86 & 180(3) & 135(21) \\
188 & & -3.93 & 176(5) & 113(12) \\
189 \hline
190 300 & 0.855 & -1.91 & 143(5) & 125(2) \\
191 & & -4.19 & 135(9) & 113(12) \\
192 \hline\hline
193 \end{tabular}
194 \label{AuThiolToluene}
195 \end{center}
196 \end{minipage}
197 \end{table*}
198
199 \end{doublespace}
200 \end{document}