ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/tags/start/chuckDissertation/dissertation.bbl
Revision: 3484
Committed: Tue Jan 13 14:39:51 2009 UTC (15 years, 8 months ago)
File size: 29159 byte(s)
Log Message:
This commit was manufactured by cvs2svn to create tag 'start'.

File Contents

# User Rev Content
1 chuckv 3483 \begin{thebibliography}{100}
2    
3     \bibitem{DAW:1993p1640}
4     M.~DAW, S.~FOILES and M.~BASKES, The embedded-atom method - a review of theory
5     and applications (Jan 1993).
6    
7     \bibitem{kimura-quantum}
8     Y.~Kimura and T.~Cagin, The quantum sutton-chen manybody potential for
9     properties of fcc metals.
10    
11     \bibitem{Chen90}
12     A.~P. Sutton and J.~Chen, Long-range finnis sinclair potentials. {\em Phil.
13     Mag. Lett.\/}, 61: 139--146 (1990).
14    
15     \bibitem{wolde:9932}
16     P.~R. ten Wolde, M.~J. Ruiz-Montero and D.~Frenkel, Numerical calculation of
17     the rate of crystal nucleation in a lennard-jones system at moderate
18     undercooling. {\em J. Chem. Phys.\/}, 104(24): 9932--9947 (1996).
19    
20     \bibitem{Allen87}
21     M.~P. Allen and D.~J. Tildesley, {\em Computer Simulations of Liquids\/}.
22     Oxford University Press, New York (1987).
23    
24     \bibitem{Frenkel02}
25     D.~Frenkel and B.~Smit, {\em Understanding Molecular Simulation:
26     \uppercase{F}rom Algorithms to Applications\/}. Academic Press, New York,
27     second edition (2002).
28    
29     \bibitem{Leach01}
30     A.~R. Leach, {\em Molecular Modeling: Principles and Applications\/}. Pearson
31     Educated Limited, Harlow, England, second edition (2001).
32    
33     \bibitem{Meineke:2004uq}
34     M.~A. Meineke, C.~F. Vardeman~II, T.~Lin, C.~J. Fennell and J.~D. Gezelter,
35     {OOPSE:} an object-oriented parallel simulation engine for molecular
36     dynamics. {\em J. Comp Chem\/}, 26(3): 252--271 (2005).
37    
38     \bibitem{Nieminen:1990hw}
39     V.~Heine and J.~Hafnner, {\em Many-atom interactions in solids: proceedings of
40     the international workshop, Pajulahti, Finland, June 5-9, 1989\/}, volume~48
41     of {\em Springer proceedings in physics\/}. Springer-Verlag, Berlin (1990).
42    
43     \bibitem{Ashcroft:1976zt}
44     N.~W. Ashcroft and N.~D. Mermin, {\em Solid state physics\/}. Holt, Rinehart
45     and Winston, New York (1976).
46    
47     \bibitem{Drude:1900p1479}
48     P.~Drude, On the ionic theory of metals. {\em Phys Z\/}, 1: 161--165 (Jan
49     1900).
50    
51     \bibitem{Drude:1900p1481}
52     P.~Drude, On the electron theory of metals. {\em Ann Phys-Berlin\/}, 1(3):
53     566--613 (Jan 1900).
54    
55     \bibitem{Kittel:1996fk}
56     C.~Kittel, {\em Introduction to solid state physics\/}. Wiley, New York, 7th
57     edition (1996).
58    
59     \bibitem{Egelstaff:1992yb}
60     P.~A. Egelstaff, {\em An introduction to the liquid state\/}, volume~7.
61     Clarendon Press, Oxford, second edition (1992).
62    
63     \bibitem{Nrskov:1980p1752}
64     J.~K. N{\o}rskov and N.~D. Lang, Effective-medium theory of chemical binding:
65     Application to chemisorption. {\em Phys Rev B\/}, 21(6): 2131--2136 (Mar
66     1980).
67    
68     \bibitem{Nrskov:1982p1753}
69     J.~K. N{\o}rskov, Covalent effects in the effective-medium theory of chemical
70     binding: Hydrogen heats of solution in the 3 dmetals. {\em Phys Rev B\/},
71     26(6): 2875--2885 (Sep 1982).
72    
73     \bibitem{Stott:1980p1754}
74     M.~J. Stott and E.~Zaremba, Quasiatoms: An approach to atoms in nonuniform
75     electronic systems. {\em Phys Rev B\/}, 22(4): 1564--1583 (Aug 1980).
76    
77     \bibitem{Puska:1981p1755}
78     M.~J. Puska and M.~Manninen, Atoms embedded in an electron gas: Immersion
79     energies. {\em Phys Rev B\/}, 24(6): 3037--3047 (Sep 1981).
80    
81     \bibitem{Daw84}
82     M.~S. Daw and M.~I. Baskes, Embedded-atom method: Derivation and application to
83     impurities, surfaces, and other defects in metals. 29(12): 6443--6453 (1984).
84    
85     \bibitem{DAW:1983ht}
86     M.~DAW and M.~BASKES, Semiempirical, quantum-mechanical calculation of hydrogen
87     embrittlement in metals. {\em Physical Review Letters\/}, 50(17): 1285--1288
88     (1983).
89    
90     \bibitem{Hohenberg:1964bs}
91     P.~Hohenberg and W.~Kohn, Inhomogeneous electron gas. {\em Phys. Rev.\/},
92     136(3B): B864--B871 (Nov 1964).
93    
94     \bibitem{DAW:1989p1673}
95     M.~DAW, Model of metallic cohesion - the embedded-atom method. {\em Phys Rev
96     B\/}, 39(11): 7441--7452 (Jan 1989).
97    
98     \bibitem{PhysRevB.33.7983}
99     S.~M. Foiles, M.~I. Baskes and M.~S. Daw, Embedded-atom-method functions for
100     the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys. {\em
101     Phys. Rev. B\/}, 33(12): 7983--7991 (Jun 1986).
102    
103     \bibitem{Voter:95}
104     A.~F. Voter, {\em Intermetallic Compounds: Principles and Practice\/},
105     volume~1, chapter~4, page~77. John Wiley and Sons Ltd (1995).
106    
107     \bibitem{Rose:1984rw}
108     J.~H. Rose, J.~R. Smith, F.~Guinea and J.~Ferrante, Universal features of the
109     equation of state of metals. {\em Phys. Rev. B\/}, 29(6): 2963--2969 (Mar
110     1984).
111    
112     \bibitem{BASKES:1987p1743}
113     M.~BASKES, Application of the embedded-atom method to covalent materials - a
114     semiempirical potential for silicon. {\em Phys Rev Lett\/}, 59(23):
115     2666--2669 (Jan 1987).
116    
117     \bibitem{BASKES:1989p1746}
118     M.~BASKES, J.~NELSON and A.~WRIGHT, Semiempirical modified embedded-atom
119     potentials for silicon and germanium. {\em Phys Rev B\/}, 40(9): 6085--6100
120     (Jan 1989).
121    
122     \bibitem{BASKES:1992p1735}
123     M.~BASKES, Modified embedded-atom potentials for cubic materials and
124     impurities. {\em Phys Rev B\/}, 46(5): 2727--2742 (Jan 1992).
125    
126     \bibitem{Finnis84}
127     M.~W. Finnis and J.~E. Sinclair, A simple empirical n-body potential for
128     transition-metals. {\em Phil. Mag. A\/}, 50: 45--55 (1984).
129    
130     \bibitem{Ercolessi88}
131     F.~Ercolessi, M.~Parrinello and E.~Tosatti, Simulation of gold in the glue
132     model. {\em Phil. Mag. A\/}, 58: 213--226 (1988).
133    
134     \bibitem{Qi99}
135     Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics
136     simulations of glass formation and crystallization in binary liquid metals:
137     Cu-ag and cu-ni. 59(5): 3527--3533 (1999).
138    
139     \bibitem{Ercolessi02}
140     U.~Tartaglino, E.~Tosatti, D.~Passerone and F.~Ercolessi, Bending strain-driven
141     modification of surface resconstructions: Au(111). 65: 241406 (2002).
142    
143     \bibitem{Tolman:1938kl}
144     R.~C. Tolman, {\em The Principles of Statistical Mechanics\/}. Oxford
145     University Press, Inc., New York (1938).
146    
147     \bibitem{Goldstein:2001uf}
148     H.~Goldstein, C.~Poole and J.~Safko, {\em Classical Mechanics\/}. Addison
149     Wesley, San Francisco, third edition (2001).
150    
151     \bibitem{Pense92}
152     A.~W. Pense, The decline and fall of the roman denarius. {\em Mat. Char.\/},
153     29: 213 (1992).
154    
155     \bibitem{duwez:1136}
156     P.~Duwez, R.~H. Willens, W.~Klement and Jr, Continuous series of metastable
157     solid solutions in silver-copper alloys. {\em Journal of Applied Physics\/},
158     31(6): 1136--1137 (1960).
159    
160     \bibitem{Peker93}
161     A.~Peker and W.~L. Johnson, A highly processable metallic-glass -
162     $\mbox{Zr}_{41.2}\mbox{Ti}_{13.8}\mbox{Cu}_{12.5}\mbox{Ni}_{10.0}\mbox{Be}_{%
163     22.5}$. {\em Appl. Phys. Lett.\/}, 63: 2342--2344 (1993).
164    
165     \bibitem{Kob95a}
166     W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled
167     binary lennard-jones mixtures: The van hove corraltion function. 51:
168     4626--4641 (1995).
169    
170     \bibitem{Kob95b}
171     W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled
172     binary lennard-jones mixtures. ii. intermediate scattering function and
173     dynamic susceptibility. 52: 4134--4153 (1995).
174    
175     \bibitem{Stillinger98}
176     S.~Sastry, P.~G. Debenedetti and F.~H. Stillinger, Signatures of distinct
177     dynamical regimes in the energy landscape of a glass-forming liquid. {\em
178     Nature\/}, 393: 554--557 (1998).
179    
180     \bibitem{Hansen86}
181     J.~P. Hansen and I.~R. McDonald, {\em Theory of Simple Liquids\/}. Academic
182     Press, London (1986).
183    
184     \bibitem{Gaukel98}
185     C.~Gaukel and H.~R. Schober, Diffusion mechanisms in under-cooled binary metal
186     liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$. {\em Solid State Comm.\/}, 107:
187     1--5 (1998).
188    
189     \bibitem{Rabani97}
190     E.~Rabani, J.~D. Gezelter and B.~J. Berne, Calculating the hopping rate for
191     self-diffusion on rough potential energy surfaces: Cage correlations. {\em J.
192     Chem. Phys.\/}, 107: 6867--6876 (1997).
193    
194     \bibitem{Gezelter99}
195     J.~D. Gezelter, E.~Rabani and B.~J. Berne, Methods for calculating the hopping
196     rate for orientational and spatial diffusion in a molecular liquid:
197     $\mbox{CS}_{2}$. 110: 3444 (1999).
198    
199     \bibitem{Rabani99}
200     E.~Rabani, J.~D. Gezelter and B.~J. Berne, Direct observation of
201     stretched-exponential relaxation in low-temperature lennard-jones systems
202     using the cage correlation function. 82: 3649 (1999).
203    
204     \bibitem{Rabani2000}
205     E.~Rabani, J.~D. Gezelter and B.~J. Berne, Reply to `comment on ``direct
206     observation of stretched-exponential relaxation in low-temperature
207     lennard-jones systems using th ecage correlation function'' '. 85: 467
208     (2000).
209    
210     \bibitem{Zwanzig83}
211     R.~Zwanzig, On the relation between self-diffusion and viscosity of liquids.
212     79: 4507--4508 (1983).
213    
214     \bibitem{Blumen83}
215     A.~Blumen, J.~Klafter and G.~Zumofen, Recombination in amorphous materials as a
216     continuous-time random-walk problem. {\em Phys. Rev. B\/}, 27: 3429--3435
217     (1983).
218    
219     \bibitem{Klafter94}
220     J.~Klafter and G.~Zumofen, Probability distributions for continuous-time random
221     walks with long tails. 98: 7366--7370 (1994).
222    
223     \bibitem{Klafter96}
224     J.~Klafter, M.~Shlesinger and G.~Zumofen, Beyond brownian motion. {\em Physics
225     Today\/}, 49: 33--39 (1996).
226    
227     \bibitem{Shlesinger99}
228     M.~F. Shlesinger, J.~Klafter and G.~Zumofen, Above, below, and beyond brownian
229     motion. {\em Am. J. Phys.\/}, 67: 1253--1259 (1999).
230    
231     \bibitem{Stillinger82}
232     F.~H. Stillinger and T.~A. Weber, Hidden structure in liquids. 25(2): 978--989
233     (1982).
234    
235     \bibitem{Stillinger83}
236     F.~H. Stillinger and T.~A. Weber, Dynamics of structural transitions in
237     liquids. 28(4): 2408--2416 (1983).
238    
239     \bibitem{Weber84}
240     T.~A. Weber and F.~H. Stillinger, The effect of density on the inherent
241     structure in liquids. 80(6): 2742--2746 (1984).
242    
243     \bibitem{Stillinger85}
244     F.~H. Stillinger and T.~A. Weber, Inherent structure theory of liquids in the
245     hard-sphere limit. 83(9): 4767--4775 (1985).
246    
247     \bibitem{Berne90}
248     B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Robert E. Krieger
249     Publishing Company, Inc., Malabar, Florida (1990).
250    
251     \bibitem{Parkhurst75a}
252     H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. i. the effect of density
253     and temperature on viscosity of tetramethylsilane and benzene-$\mbox{D}_6$.
254     63(6): 2698--2704 (1975).
255    
256     \bibitem{Parkhurst75b}
257     H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. ii. the effect of density
258     and temperature on viscosity of tetramethylsilane and benzene. 63(6):
259     2705--2709 (1975).
260    
261     \bibitem{Ngai81}
262     K.~L. Ngai and F.-S. Liu, Dispersive diffusion transport and noise,
263     time-dependent diffusion coefficient, generalized einstein-nernst relation,
264     and dispersive diffusion-controlled unimolecular and bimolecular reactions.
265     24: 1049--1065 (1981).
266    
267     \bibitem{Gezelter97}
268     J.~D. Gezelter, E.~Rabani and B.~J. Berne, Can imaginary instantaneous normal
269     mode frequencies predict barriers to self-diffusion? 107: 4618 (1997).
270    
271     \bibitem{Gezelter98a}
272     J.~D. Gezelter, E.~Rabani and B.~J. Berne, Response to 'comment on a critique
273     of the instantaneous normal mode (inm) approach to diffusion'. 109: 4695
274     (1998).
275    
276     \bibitem{Lu97}
277     J.~Lu and J.~A. Szpunar, Applications of the embedded-atom method to glass
278     formation and crystallization of liquid and glass transition-metal nickel.
279     {\em Phil. Mag. A\/}, 75: 1057--1066 (1997).
280    
281     \bibitem{Alemany98}
282     M.~M.~G. Alemany, C.~Rey and L.~J. Gallego, Transport coefficients of liquid
283     transition metals: A computer simulation study using the embedded atom model.
284     109: 5175--5176 (1998).
285    
286     \bibitem{Belonoshko00}
287     A.~B. Belonoshko, R.~Ahuja, O.~Eriksson and B.~Johansson, Quasi ab initio
288     molecular dynamic study of cu melting. 61: 3838--3844 (2000).
289    
290     \bibitem{Banhart:1992sv}
291     J.~Banhart, H.~Ebert, R.~Kuentzler and J.~Voitl\"{a}nder, Electronic properties
292     of single-phased metastable ag-cu alloys. 46(16): 9968--9975 (1992).
293    
294     \bibitem{Nagel96}
295     M.~Ediger, C.~Angell and S.~R. Nagel, Supercooled liquids and glasses. 100:
296     13200 (1996).
297    
298     \bibitem{Wendt78}
299     H.~Wendt and F.~F. Abraham. 41: 1244 (1978).
300    
301     \bibitem{Lewis91}
302     L.~J. Lewis, Atomic dynamics through the glass transition. 44: 4245--4254
303     (1991).
304    
305     \bibitem{Liu92}
306     R.~S. Liu, D.~W. Qi and S.~Wang, Subpeaks of structure factors for rapidly
307     quenched metals. 45: 451--453 (1992).
308    
309     \bibitem{Truhlar00}
310     D.~G. Truhlar and A.~Kohen. private correspondence.
311    
312     \bibitem{Tolman20}
313     R.~C. Tolman, Statistical mechanics applied to chemical kinetics. 42: 2506
314     (1920).
315    
316     \bibitem{Tolman27}
317     R.~C. Tolman, {\em Statistical Mechanics with Applications to Physics and
318     Chemistry\/}. Chemical Catalog Co., New York (1927).
319    
320     \bibitem{Buffat:1976yq}
321     P.~Buffat and J.-P. Borel, Size effect on the melting temperature of gold
322     particles. {\em Phys. Rev. A\/}, 13: 2287--2298 (1976).
323    
324     \bibitem{el-sayed00}
325     S.~Link, Z.~L. Wang and M.~A. El-Sayed, How does a gold nanorod melt? 104:
326     7867--7870 (2000).
327    
328     \bibitem{el-sayed01}
329     S.~Link and M.~A. El-Sayed, Spectroscopic determination of the melting energy
330     of a gold nanorod. 114: 2362--2368 (2001).
331    
332     \bibitem{ShibataT._ja026764r}
333     T.~Shibata, B.~Bunker, Z.~Zhang, D.~Meisel, C.~Vardeman and J.~Gezelter,
334     Size-dependent spontaneous alloying of {A}u-{A}g nanoparticles. {\em JACS\/},
335     124(40): 11989--11996 (2002).
336    
337     \bibitem{delfatti99}
338     N.~{Del Fatti}, C.~Voisin, F.~Chevy, F.~Vallee and C.~Flytzanis, Coherent
339     acoustic mode oscillation and damping in silver nanoparticles. 110:
340     11484--11487 (1999).
341    
342     \bibitem{henglein99}
343     J.~H. Hodak, A.~Henglein and G.~V. Hartland, Size dependent properties of au
344     particles: Coherent excitation and dephasing of acoustic vibrational modes.
345     111: 8613--8621 (1999).
346    
347     \bibitem{hartland02a}
348     G.~V. Hartland, Coherent vibrational motion in metal particles: Determination
349     of the vibrational amplitude and excitation mechanism. 116: 8048--8055
350     (2002).
351    
352     \bibitem{hartland02c}
353     J.~E. Sader, G.~V. Hartland and P.~Mulvaney, Theory of acoustic breathing modes
354     of core-shell nanoparticles. 106: 1399--1402 (2002).
355    
356     \bibitem{HuM._jp020581+}
357     M.~Hu and G.~Hartland, Heat dissipation for {A}u particles in aqueous solution:
358     Relaxation time versus size. {\em Journal of Physical Chemistry B\/},
359     106(28): 7029--7033 (2002).
360    
361     \bibitem{hartland02d}
362     M.~Hu and G.~V. Hartland, Photophysics of metal nanoparticles: Heat dissipation
363     and coherent excitation of phonon modes. {\em Proceeding of SPIE\/}, 4803
364     (July 2002).
365    
366     \bibitem{Simon2001}
367     D.~T. Simon and M.~R. Geller, Electron-phonon dynamics in an ensemble of nearly
368     isolated nanoparticles. 64: 115412 (2001).
369    
370     \bibitem{HartlandG.V._jp0276092}
371     G.~Hartland, M.~Hu and J.~Sader, Softening of the symmetric breathing mode in
372     gold particles by laser-induced heating. {\em Journal of Physical Chemistry
373     B\/}, 107(30): 7472--7478 (2003).
374    
375     \bibitem{Hartland00}
376     J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic
377     breathing modes in bimetallic core-shell nanoparticles. 104: 5053--5055
378     (2000).
379    
380     \bibitem{Voter:87}
381     A.~Voter and S.~Chen, Accurate interatomic potentials for ni, al, and ni3al.
382     {\em Mat. Res. Soc. Symp. Proc.\/}, 82: 175 (1987).
383    
384     \bibitem{plimpton93}
385     S.~J. Plimpton and B.~A. Hendrickson, Parallel molecular dynamics with the
386     embedded atom method. {\em MRS Proceedings\/}, 291: 37 (1993).
387    
388     \bibitem{hoover85}
389     W.~G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. 31:
390     1695 (1985).
391    
392     \bibitem{barber96quickhull}
393     C.~B. Barber, D.~P. Dobkin and H.~Huhdanpaa, The quickhull algorithm for convex
394     hulls. {\em ACM Transactions on Mathematical Software\/}, 22(4): 469--483
395     (1996).
396    
397     \bibitem{qhull}
398     Qhull (1993), software library is available from the National Science and
399     Technology Research Center for Computation and Visualization of Geometric
400     Structures (The Geometry Center), University of Minnesota. {\tt
401     http://www.geom.umn.edu/software/qhull/}.
402    
403     \bibitem{BernePecora}
404     B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Dover
405     Publications, Inc., Mineola, New York (2000).
406    
407     \bibitem{melchionna93}
408     S.~Melchionna, G.~Ciccotti and B.~L. Holian, Hoover {\sc npt} dynamics for
409     systems varying in shape and size. {\em Mol. Phys.\/}, 78: 533--544 (1993).
410    
411     \bibitem{Lamb1882}
412     H.~Lamb, On the vibrations of an elastic sphere. {\em Proc. London Math.
413     Soc.\/}, 13: 189--212 (1882).
414    
415     \bibitem{Cerullo1999}
416     G.~Cerullo, S.~D. Silvestri and U.~Banin, Size-dependent dynamics of coherent
417     acoustic phonons in nanocrystal quantum dots. 60: 1928--1932 (1999).
418    
419     \bibitem{Iida1988}
420     T.~Iida and R.~I.~L. Guthrie, {\em The Physical Properties of Liquid Metals\/}.
421     Clarendon Press, Oxford (1988).
422    
423     \bibitem{West:2003fk}
424     J.~West and N.~Halas, Engineered nanomaterials for biophotonics applications:
425     Improving sensing, imaging, and therapeutics (2003), Annu. Rev. Biomed. Eng.
426    
427     \bibitem{Hu:2006lr}
428     M.~Hu, J.~Chen, Z.-Y. Li, L.~Au, G.~V. Hartland, X.~Li, M.~Marquez and Y.~Xia,
429     Gold nanostructures: engineering their plasmonic properties for biomedical
430     applications (2006), Chem. Soc. Rev.
431    
432     \bibitem{Dick:2002qy}
433     K.~Dick, T.~Dhanasekaran, Z.~Zhang and D.~Meisel, Size-dependent melting of
434     silica-encapsulated gold nanoparticles. {\em J. Amer. Chem. Soc.\/}, 124:
435     2312--2317 (2002).
436    
437     \bibitem{Mafune01}
438     F.~Mafune, J.~Kohno, Y.~Takeda and T.~Kondow, Dissociation and aggregation of
439     gold nanoparticles under laser irradiation. {\em J. Phys. Chem. B\/},
440     105(38): 9050--9056 (Sep 2001).
441    
442     \bibitem{Link:2000lr}
443     S.~Link and M.~A. El-Sayed, Shape and size dependence of radiative,
444     non-radiative and photothermal properties of gold nanocrystals. {\em
445     International Reviews in Physical Chemistry\/}, 19(3): 409--453 (2000).
446    
447     \bibitem{Plech:2003yq}
448     A.~Plech, S.~Kurbitz, K.~Berg, H.~Graener, G.~Berg, S.~Gresillon, M.~Kaempfe,
449     J.~Feldmann, M.~Wulff and G.~von Plessen, Time-resolved x-ray diffraction on
450     laser-excited metal nanoparticles. {\em Europhys. Lett.\/}, 61: 762--768
451     (2003).
452    
453     \bibitem{plech:195423}
454     A.~Plech, V.~Kotaidis, S.~Gresillon, C.~Dahmen and G.~von Plessen,
455     Laser-induced heating and melting of gold nanoparticles studied by
456     time-resolved x-ray scattering. {\em Phys. Rev. B\/}, 70(19): 195423 (2004).
457    
458     \bibitem{Plech:2007rt}
459     A.~Plech, R.~Cerna, V.~Kotaidis, F.~Hudert, A.~Bartels and T.~Dekorsy, A
460     surface phase transition of supported gold nanoparticles. {\em Nano Lett.\/},
461     7: 1026--1031 (2007).
462    
463     \bibitem{Hodak:2000rb}
464     J.~H. Hodak, A.~Henglein, M.~Giersig and G.~V. Hartland, Laser-induced
465     inter-diffusion in {A}u{A}g core-shell nanoparticles. {\em J. Phys. Chem.
466     B\/}, 104: 11708 -- 11718 (2000).
467    
468     \bibitem{Hartland:2003lr}
469     G.~Hartland, S.~Guillaudeu and J.~Hodak, Laser-induced alloying in metal
470     nanoparticles: Controlling spectral properties with light (2003), Molecules
471     As Components of Electronic Devices.
472    
473     \bibitem{Petrova:2007qy}
474     H.~Petrova, M.~Hu and G.~V. Hartland, Photothermal properties of gold
475     nanoparticles. {\em Zeitschrift Fur Physikalische Chemie-International
476     Journal of Research In Physical Chemistry \& Chemical Physics\/}, 221:
477     361--376 (2007).
478    
479     \bibitem{Hu:2004lr}
480     M.~Hu, H.~Petrova and G.~V. Hartland, Investigation of the properties of gold
481     nanoparticles in aqueous solution at extremely high lattice temperatures.
482     {\em Chem. Phys. Let.\/}, 391(4-6): 220--225 (Jun 2004).
483    
484     \bibitem{Wilson:2002uq}
485     O.~Wilson, X.~Hu, D.~Cahill and P.~Braun, Colloidal metal particles as probes
486     of nanoscale thermal transport in fluids. {\em Phys. Rev. B\/}, 66 (2002).
487    
488     \bibitem{VardemanC.F._jp051575r}
489     C.~Vardeman, P.~Conforti, M.~Sprague and J.~Gezelter, Breathing mode dynamics
490     and elastic properties of gold nanoparticles. {\em Journal of Physical
491     Chemistry B\/}, 109(35): 16695--16699 (2005).
492    
493     \bibitem{Greer:1995qy}
494     A.~L. Greer, Metallic glasses. {\em Science\/}, 267(5206): 1947--1953 (mar
495     1995).
496    
497     \bibitem{Vardeman-II:2001jn}
498     C.~F. {Vardeman II} and J.~D. Gezelter, Comparing models for diffusion in
499     supercooled liquids: The eutectic composition of the {A}g-{C}u alloy. {\em J.
500     Phys. Chem. A\/}, 105(12): 2568 (2001).
501    
502     \bibitem{Massalski:1986rt}
503     T.~B. Massalski, J.~L. Murray, L.~H. Bennett and H.~Baker, {\em Binary alloy
504     phase diagrams\/}. American Society for Metals, Metals Park, Ohio (1986).
505    
506     \bibitem{Ma:2005fk}
507     E.~Ma, Alloys created between immiscible elements. {\em Progress in Materials
508     Science\/}, 50(4): 413--509 (2005).
509    
510     \bibitem{najafabadi:3144}
511     R.~Najafabadi, D.~J. Srolovitz, E.~Ma and M.~Atzmon, Thermodynamic properties
512     of metastable ag-cu alloys. {\em Journal of Applied Physics\/}, 74(5):
513     3144--3149 (1993).
514    
515     \bibitem{sheng:184203}
516     H.~W. Sheng, J.~H. He and E.~Ma, Molecular dynamics simulation studies of
517     atomic-level structures in rapidly quenched ag-cu nonequilibrium alloys. {\em
518     Phys. Rev. B\/}, 65(18): 184203 (2002).
519    
520     \bibitem{Malyavantham:2004cu}
521     G.~Malyavantham, D.~T. O'Brien, M.~F. Becker, J.~W. Keto and D.~Kovar, Au-cu
522     nanoparticles produced by laser ablation of mixtures of au and cu
523     microparticles. {\em Journal of Nanoparticle Research\/}, 6(6): 661 --664
524     (2004).
525    
526     \bibitem{Kim:2003lv}
527     M.~Kim, H.~Na, K.~C. Lee, E.~A. Yoo and M.~Lee, Preperation and
528     characterization of au-ag and au-cu alloy nanoparticles in chloroform. {\em
529     J. Mat. Chem\/}, 13(7): 1789--1792 (2003).
530    
531     \bibitem{De:1996ta}
532     G.~De, M.~Gusso, L.~Tapfer, M.~Catalano, F.~Gonella, G.~Mattei, P.~Mazzoldi and
533     G.~Battaglin, Annealing behavior of silver, copper, and silver--copper
534     nanoclusters in a silica matrix synthesized by the sol-gel technique. {\em
535     Journal of Applied Physics\/}, 80(12): 6734--6739 (1996).
536    
537     \bibitem{Magruder:1994rg}
538     R.~H. Magruder, III, D.~H. Osborne, Jr. and R.~A. Zuhr, Non-linear optical
539     properties of nanometer dimension ag---cu particles in silica formed by
540     sequential ion implantation (1994).
541    
542     \bibitem{gonzalo:5163}
543     J.~Gonzalo, D.~Babonneau, C.~N. Afonso and J.-P. Barnes, Optical response of
544     mixed ag-cu nanocrystals produced by pulsed laser deposition. {\em Journal of
545     Applied Physics\/}, 96(9): 5163--5168 (2004).
546    
547     \bibitem{HengleinA._jp992950g}
548     A.~Henglein, Formation and absorption spectrum of copper nanoparticles from the
549     radiolytic reduction of cu(cn)2-. {\em Journal of Physical Chemistry B\/},
550     104(6): 1206--1211 (2000).
551    
552     \bibitem{Kob:1999fk}
553     W.~Kob, Computer simulations of supercooled liquids and glasses. {\em Journal
554     of Physics: Condensed Matter\/}, 11(10): R85--R115 (1999).
555    
556     \bibitem{Steinhardt:1983mo}
557     P.~J. Steinhardt, D.~R. Nelson and M.~Ronchetti, Bond-orientational order in
558     liquids and glasses. {\em Phys. Rev. B\/}, 28(2): 784--804 (1983).
559    
560     \bibitem{Chen:2004ec}
561     Y.~Chen, X.~Bian, J.~Zhang, Y.~Zhang and L.~Wang, Structure and dynamics of
562     gold nanocluster under cooling conditions. {\em Modelling and Simulation in
563     Materials Science and Engineering\/}, 12(3): 373--379 (2004).
564    
565     \bibitem{Cleveland:1997jb}
566     C.~L. Cleveland, U.~Landman, T.~G. Schaaff, M.~N. Shafigullin, P.~W. Stephens
567     and R.~L. Whetten, Structural evolution of smaller gold nanocrystals: The
568     truncated decahedral motif. {\em Phys. Rev. Lett.\/}, 79: 1873--1876 (1997).
569    
570     \bibitem{Cleveland:1997gu}
571     C.~L. Cleveland, U.~Landman, M.~N. Shafigullin, P.~W. Stephens and R.~L.
572     Whetten, Structural evolution of larger gold clusters. {\em Z. Phys. D\/},
573     40: 503--508 (1997).
574    
575     \bibitem{Gafner:2004bg}
576     Y.~Y. Gafner, S.~L. Gafner and P.~Entel, Formation of an icosahedral structure
577     during crystallization of nickel nanoclusters. {\em Phys. Sol. State\/},
578     46(7): 1327--1330 (2004).
579    
580     \bibitem{Qi:2001nn}
581     Y.~Qi, T.~Cagin, W.~L. Johnson and W.~A.~G. III, Melting and crystallization in
582     ni nanoclusters: The mesoscale regime. {\em The Journal of Chemical
583     Physics\/}, 115(1): 385--394 (2001).
584    
585     \bibitem{Strandburg:1992qy}
586     K.~J. Strandburg, {\em Bond-orientational order in condensed matter systems\/}.
587     Springer-Verlag, New York (1992).
588    
589     \bibitem{Breaux:rz}
590     G.~A. Breaux, B.~Cao and M.~F. Jarrold, Second-order phase transitions in
591     amorphous gallium clusters. {\em J. Phys. Chem. B\/}, 10.1021/jp052887x
592     (2005).
593    
594     \bibitem{Wang:2003fk}
595     W.~Wang, P.~Wen, D.~Zhao, M.~Pan and R.~Wang, Relationship between glass
596     transition temperature and debye temperature in bulk metallic glasses. {\em
597     J. Mater. Res.\/}, 18: 2747--2751 (2003).
598    
599     \bibitem{Alcoutlabi:2005kx}
600     M.~Alcoutlabi and G.~McKenna, Effects of confinement on material behaviour at
601     the nanometre size scale. {\em J. Phys.: Condens. Matter\/}, 17: R461--R524
602     (2005).
603    
604     \bibitem{Jiang:2005lr}
605     H.~Jiang, K.~sik Moon and C.~P. Wong, Synthesis of ag-cu alloy nanoparticles
606     for lead-free interconnect materials. {\em Advanced Packaging Materials:
607     Processes, Properties and Interfaces, 2005. Proceedings. International
608     Symposium on\/}, pages 173--177 (2005).
609    
610     \bibitem{BROOKS:1985kx}
611     C.~BROOKS, A.~BRUNGER and M.~KARPLUS, Active-site dynamics in protein molecules
612     - a stochastic boundary molecular-dynamics approach. {\em Biopolymers\/}, 24:
613     843--865 (1985).
614    
615     \bibitem{BROOKS:1983uq}
616     C.~BROOKS and M.~KARPLUS, Deformable stochastic boundaries in
617     molecular-dynamics. {\em Journal of Chemical Physics\/}, 79: 6312--6325
618     (1983).
619    
620     \bibitem{BRUNGER:1984fj}
621     A.~BRUNGER, C.~BROOKS and M.~KARPLUS, Stochastic boundary-conditions for
622     molecular-dynamics simulations of st2 water. {\em Chemical Physics
623     Letters\/}, 105: 495--500 (1984).
624    
625     \bibitem{kotaidis:184702}
626     V.~Kotaidis, C.~Dahmen, G.~von Plessen, F.~Springer and A.~Plech, Excitation of
627     nanoscale vapor bubbles at the surface of gold nanoparticles in water. {\em
628     The Journal of Chemical Physics\/}, 124(18): 184702 (2006).
629    
630     \bibitem{Sankaranarayanan:2005lr}
631     S.~Sankaranarayanan, V.~Bhethanabotla and B.~Joseph, Molecular dynamics
632     simulation study of the melting of pd-pt nanoclusters. {\em Phys. Rev. B\/},
633     71 (2005).
634    
635     \bibitem{Chui:2003fk}
636     Y.~Chui and K.~Chan, Analyses of surface and core atoms in a platinum
637     nanoparticle. {\em Phys. Chem. Chem. Phys.\/}, 5: 2869--2874 (2003).
638    
639     \bibitem{Wang:2005qy}
640     G.~Wang, M.~Van~Hove, P.~Ross and M.~Baskes, Surface structures of
641     cubo-octahedral pt-mo catalyst nanoparticles from monte carlo simulations.
642     {\em J. Phys. Chem. B\/}, 109: 11683--11692 (2005).
643    
644     \bibitem{Medasani:2007uq}
645     B.~Medasani, Y.~H. Park and I.~Vasiliev, Theoretical study of the surface
646     energy, stress, and lattice contraction of silver nanoparticles. {\em Phys.
647     Rev. B\/}, 75 (2007).
648    
649     \bibitem{PhysRevB.59.3527}
650     Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics
651     simulations of glass formation and crystallization in binary liquid
652     metals:\quad{}{C}u-{A}g and {C}u-{N}i. {\em Phys. Rev. B\/}, 59(5):
653     3527--3533 (Feb 1999).
654    
655     \bibitem{MURRAY:1984lr}
656     J.~L. Murray, Calculations of stable and metastable equilibrium diagrams of the
657     ag-cu and cd-zn systems. {\em Metall Trans\/}, 15(2): 261--268 (1984).
658    
659     \bibitem{19521106}
660     F.~C. Frank, Supercooling of liquids. {\em Proceedings of the Royal Society of
661     London. Series A, Mathematical and Physical Sciences\/}, 215(1120): 43--46
662     (nov 1952).
663    
664     \bibitem{19871127}
665     P.~J. Steinhardt, Icosahedral solids: A new phase of matter? {\em Science\/},
666     238(4831): 1242--1247 (nov 1987).
667    
668     \bibitem{HOARE:1976fk}
669     M.~HOARE, Stability and local order in simple amorphous packings. {\em Annals
670     of the New York Academy of Sciences\/}, 279: 186--207 (1976).
671    
672     \bibitem{PhysRevLett.60.2295}
673     H.~J\'onsson and H.~C. Andersen, Icosahedral ordering in the lennard-jones
674     liquid and glass. {\em Phys. Rev. Lett.\/}, 60(22): 2295--2298 (May 1988).
675    
676     \bibitem{PhysRevLett.89.275502}
677     H.-S. Nam, N.~M. Hwang, B.~D. Yu and J.-K. Yoon, Formation of an icosahedral
678     structure during the freezing of gold nanoclusters: Surface-induced
679     mechanism. {\em Phys. Rev. Lett.\/}, 89(27): 275502 (Dec 2002).
680    
681     \bibitem{Waal:1995lr}
682     B.~W. van~de Waal, On the origin of second-peak splitting in the static
683     structure factor of metallic glasses. {\em Journal of Non-Crystalline
684     Solids\/}, 189(1-2): 118--128 (1995).
685    
686     \bibitem{HoneycuttJ.Dana_j100303a014}
687     J.~D. Honeycutt and H.~C. Andersen, Molecular dynamics study of melting and
688     freezing of small lennard-jones clusters. {\em Journal of Physical
689     Chemistry\/}, 91(19): 4950--4963 (1987).
690    
691     \bibitem{Iwamatsu:2007lr}
692     M.~Iwamatsu, Icosahedral binary clusters of glass-forming lennard-jones binary
693     alloy. {\em Materials Science and Engineering: A\/}, 449-451: 975--978
694     (2007).
695    
696     \bibitem{hsu:4974}
697     C.~S. Hsu and A.~Rahman, Interaction potentials and their effect on crystal
698     nucleation and symmetry. {\em The Journal of Chemical Physics\/}, 71(12):
699     4974--4986 (1979).
700    
701     \bibitem{nose:1803}
702     S.~Nose and F.~Yonezawa, Isothermal--isobaric computer simulations of melting
703     and crystallization of a lennard-jones system. {\em The Journal of Chemical
704     Physics\/}, 84(3): 1803--1814 (1986).
705    
706     \bibitem{duijneveldt:4655}
707     J.~S. van Duijneveldt and D.~Frenkel, Computer simulation study of free energy
708     barriers in crystal nucleation. {\em The Journal of Chemical Physics\/},
709     96(6): 4655--4668 (1992).
710    
711     \bibitem{Zhu:1997lr}
712     L.~Zhu and A.~E. DePristo, Microstructures of bimetallic clusters: Bond order
713     metal simulator for disordered alloys. {\em Journal of Catalysis\/}, 167(2):
714     400--407 (1997).
715    
716     \bibitem{MainardiD.S._la0014306}
717     D.~Mainardi and P.~Balbuena, Monte carlo simulation of {C}u-{N}i nanoclusters:
718     Surface segregation studies. {\em Langmuir\/}, 17(6): 2047--2050 (2001).
719    
720     \bibitem{HuangS.-P._jp0204206}
721     S.-P. Huang and P.~Balbuena, Melting of bimetallic {C}u-{N}i nanoclusters. {\em
722     Journal of Physical Chemistry B\/}, 106(29): 7225--7236 (2002).
723    
724     \bibitem{Ramirez-Caballero:2006lr}
725     G.~E. Ramirez~Caballero and P.~B. Balbuena, Surface segregation phenomena in
726     {P}t{P}d nanoparticles: dependence on nanocluster size. {\em Molecular
727     Simulation\/}, 32(3/4): 297--303 (2006).
728    
729     \end{thebibliography}