ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/COonPt/COonPtAu.tex
(Generate patch)

Comparing trunk/COonPt/firstTry.tex (file contents):
Revision 3802 by jmichalk, Wed Dec 5 17:47:27 2012 UTC vs.
Revision 3805 by jmichalk, Wed Dec 5 22:20:07 2012 UTC

# Line 49 | Line 49 | High-index surfaces of catalytically active metals are
49   %
50  
51  
52 < High-index surfaces of catalytically active metals are an important area of exploration because they are typically more reactive than an ideal surface of the same metal. The greater number of low-coordinated surface atoms is likely responsible for this increased reactivity \cite{}. Additionally, the activity and specificity of many metals towards certain chemical processes has been shown to strongly depend on the structure of the surface \cite{}. Prior work has also shown that reaction conditions: high pressures, temperatures, etc. are able to cause reconstructions of the surface, either through changing the displayed surface facets or by changing the number and types of high-index sites available for reactions \cite{doi:10.1126/science.1197461,doi:10.1021/nn3015322, doi:10.1021/jp302379x}. A greater understanding of these high-index surfaces and the restructuring processes they undergo is needed as a prerequisite for more intelligent catalyst design. While current experimental work has started exploring systems at \emph{in situ} conditions, for a long time such experiments were limited to ideal surfaces in high vacuum. New techniques, such as ambient pressure XPS (AP-XPS) \cite{}, high-pressure XPS (HP-XPS) \cite{}, high-pressure STM \cite{}, environmental transmission electron microscopy (E-TEM) \cite{} and many others, are giving a clearer picture of what processes are occurring on metal surfaces when exposed to \emph{in situ} conditions. But all of these techniques still have difficulties, especially in observing what is occurring on the surfaces at an atomic level. Theoretical models and simulations in combination with experiment have proven their worth in explaining the underlying reasons for some of these reconstructions \cite{}.
52 > High-index surfaces of catalytically active metals are an important area of exploration because they are typically more reactive than an ideal surface of the same metal. The greater number of low-coordinated surface atoms is likely responsible for this increased reactivity \cite{}. Additionally, the activity and specificity of many metals towards certain chemical processes has been shown to strongly depend on the structure of the surface \cite{}. Prior work has also shown that reaction conditions, such as high pressures and high temperatures are able to cause reconstructions of the metallic surface, either through changing the displayed surface facets or by changing the number and types of high-index sites available for reactions \cite{doi:10.1126/science.1197461,doi:10.1021/nn3015322, doi:10.1021/jp302379x}. A greater understanding of these high-index surfaces and the restructuring processes they undergo is needed as a prerequisite for more intelligent catalyst design. While current experimental work has started exploring systems at \emph{in situ} conditions, for a long time such experiments were limited to ideal surfaces in high vacuum. New techniques, such as ambient pressure XPS (AP-XPS) \cite{}, high-pressure XPS (HP-XPS) \cite{}, high-pressure STM \cite{}, environmental transmission electron microscopy (E-TEM) \cite{} and many others, are providing clearer pictures of the processes that are occurring on metal surfaces under these conditions. Nevertheless, all of these techniques still have limitations, especially in observing what is occurring at an atomic level. Theoretical models and simulations in combination with experiment have proven their worth in explaining the underlying reasons for some of these reconstructions \cite{}.
53   \\
54 < By examining two different metal-CO systems the effect the metal and the metal-CO interaction plays can be elucidated. Our first system is composed of Platinum and CO and has been the subject of many experimental and theoretical studies primarily because of Platinum's strong reactivity toward CO oxidation. The focus has primarily been on absorption energies, preferred absorption sites, and catalytic activities. The second system we examined is composed of Gold and CO. The Gold-CO interaction is much weaker than the Platinum-CO interaction and it seems likely that this difference in attraction would lead to differences in any potential surface reconstructions.
54 > By examining two different metal-CO systems the effect that the metal and the metal-CO interaction plays can be elucidated. Our first system is composed of Platinum and CO and has been the subject of many experimental and theoretical studies primarily because of Platinum's strong reactivity toward CO oxidation. The focus has primarily been on adsorption energies, preferred adsorption sites, and catalytic activities. The second system we examined is composed of Gold and CO. The Gold-CO interaction is much weaker than the Platinum-CO interaction and it seems likely that this difference in attraction would lead to differences in any potential surface reconstructions.
55   %It has also been a good test for new quantum methods because of the difficulty with modeling the preference CO has for the atop binding site \cite{doi:10.1021/jp002302t}.
56 < %Now that dynamic surface events are known to play a role in many catalytic systems, additional research is being done to more closely examine many systems. Recent work by Tao et al. \cite{doi:10.1126/science.1182122} shows that a high-index platinum surface will undergo surface reconstructions when exposed to a small amount of CO, $\sim$~1 torr. Unexpectedly,  the reconstruction was metastable and reverted upon removal of the CO. Work by McCarthy et al. \cite{doi:10.1021/jp302379x} examined temperature programmed desorption's of CO from various Platinum samples and saw that species which had large amounts of low-coordinated surface atoms, highly sputtered surfaces or small nano particles, developed a higher temperature desorption peak, suggesting that binding of CO to the Platinum surface is strongly dependent on local geometry.
56 > %Now that dynamic surface events are known to play a role in many catalytic systems, additional research is being done to more closely examine many systems. Recent work by Tao et al. \cite{doi:10.1126/science.1182122} shows that a high-index platinum surface undergoes surface reconstructions when exposed to a small amount of CO, $\sim$~1 torr. Unexpectedly,  the reconstruction was metastable and reverted upon removal of the CO. Work by McCarthy et al. \cite{doi:10.1021/jp302379x} examined temperature programmed desorption's of CO from various Platinum samples and saw that species which had large amounts of low-coordinated surface atoms, highly sputtered surfaces or small nano particles, developed a higher temperature desorption peak, suggesting that binding of CO to the Platinum surface is strongly dependent on local geometry.
57  
58  
59  
60  
61  
62   \section{Simulation Methods}
63 < Our model systems are composed of nearly 4000 metal atoms cut along the 557 plane. This cut creates a stepped surface of 6x(111) surface plateaus separated by a single (100) atomic step height. The large number of low-coordination atoms along the step edges provide a suitable model for industrial catalysts which tend to have a prevalence of lower CN, i.e. more reactive, sites. Drawing from experimental conclusions, the reconstructions seen for the Pt 557 surface involve doubling of the step height and the formation of triangular motifs along the steps \cite{doi:10.1126/science.1182122}. To properly observe these changes, our system size need to be greater than the periodic phenomena we are examining. The large size and the long time scales needed precluded us from using expensive quantum approaches. Thus, a forcefield describing the Metal-Metal, CO-CO, and CO-Metal interactions was parameterized.
63 > Our model systems are composed of approximately 4000 metal atoms cut along the 557 plane. This cut creates a stepped surface of 6x(111) surface plateaus separated by a single (100) atomic step height. The large number of low-coordination atoms along the step edges provide a suitable model for industrial catalysts which tend to have a prevalence of lower CN, i.e. more reactive, sites. Drawing from experimental conclusions, the reconstructions seen for the Pt 557 surface involve doubling of the step height and the formation of triangular motifs along the steps \cite{doi:10.1126/science.1182122}. To properly observe these changes, our system size needs to be greater than the periodic phenomena we are examining. The large size and the long time scales needed precluded us from using expensive quantum approaches. Thus, a forcefield describing the Metal-Metal, CO-CO, and CO-Metal interactions was parameterized.
64   %Metal
65   \subsection{Metal}
66   Recent metallic forcefields, inspired by density-functional theory, including EAM\cite{doi:10.1103/PhysRevB.29.6443, doi:10.1103/PhysRevB.33.7983} and QSC\cite{} have become very popular for modeling novel metallic systems.  What makes these forcefields more suitable for metals than their pair-wise predecessors is that they work with the total electron density of the system in a manner akin to DFT. The energy contributed by a single atom is a function of the total background electron density at the point where the atom is to be embedded. The density at any given point is well-approximated by a linear superposition of the electron density as contributed by all the other atoms in the system. This description of the embedding energy allows this method to more accurately treat surfaces, alloys, and other non-bulk systems. The function describing the energy as related to the density is parameterized for each element, rather than by solving the Kohn-Sham equations which is what allows this method to be used for large systems. The embedding energy is completely enclosed within the functional $F_i[\rho_{h,i}]$ which is dependent on the host density $\rho_{h}$ at atom $i$. The density at $i$ is the sum of the density as generated by the rest of the metal. The $\phi_{ij}$ term is a purely repulsive pair-pair interaction parameterized from effective charge repulsions.
# Line 123 | Line 123 | To finish the forcefield, the cross-interactions betwe
123  
124   %Table of energies
125   \begin{table}[H]
126 < \caption{Absorption energies in eV}
126 > \caption{Adsorption energies in eV}
127   \centering
128   \begin{tabular}{| c | cc |}
129   \hline

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines