--- trunk/COonPt/firstTry.tex 2013/03/19 15:01:59 3880 +++ trunk/COonPt/firstTry.tex 2013/03/19 18:08:24 3881 @@ -20,13 +20,14 @@ \usepackage{graphicx} \usepackage{multirow} \usepackage{multicol} +\usepackage{epstopdf} \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions % \usepackage[square, comma, sort&compress]{natbib} \usepackage{url} \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight -9.0in \textwidth 6.5in \brokenpenalty=10000 +9.0in \textwidth 6.5in \brokenpenalty=1110000 % double space list of tables and figures %\AtBeginDelayedFloats{\renewcomand{\baselinestretch}{1.66}} @@ -471,7 +472,7 @@ the 50\% Pt system, experienced this reconstruction. %Evolution of surface \begin{figure}[H] -\includegraphics[width=\linewidth]{ProgressionOfDoubleLayerFormation_yellowCircle.png} +\includegraphics[width=\linewidth]{EPS_ProgressionOfDoubleLayerFormation.pdf} \caption{The Pt(557) / 50\% CO system at a sequence of times after initial exposure to the CO: (a) 258~ps, (b) 19~ns, (c) 31.2~ns, and (d) 86.1~ns. Disruption of the (557) step-edges occurs quickly. The @@ -530,7 +531,7 @@ diffusion constants are shown in Figure \ref{fig:diff} %Diffusion graph \begin{figure}[H] -\includegraphics[width=\linewidth]{DiffusionComparison_errorXY_remade_20ns.pdf} +\includegraphics[width=\linewidth]{Portrait_DiffusionComparison_1.pdf} \caption{Diffusion constants for mobile surface atoms along directions parallel ($\mathbf{D}_{\parallel}$) and perpendicular ($\mathbf{D}_{\perp}$) to the (557) step-edges as a function of CO @@ -671,7 +672,7 @@ Energies associated with each configuration are displa %energy graph corresponding to sketch graphic \begin{figure}[H] -\includegraphics[width=\linewidth]{stepSeparationComparison.pdf} +\includegraphics[width=\linewidth]{Portrait_SeparationComparison.pdf} \caption{The energy curves directly correspond to the labeled model surface in Figure \ref{fig:SketchGraphic}. All energy curves are relative to their initial configuration so the energy of a and h do not have the @@ -704,7 +705,7 @@ difference in energies and makes the process energetic %lambda progression of Pt -> shoving its way into the step \begin{figure}[H] -\includegraphics[width=\linewidth]{lambdaProgression_atopCO_withLambda.png} +\includegraphics[width=\linewidth]{EPS_rxnCoord.pdf} \caption{ Various points along a reaction coordinate are displayed in the figure. The mechanism of edge traversal is examined in the presence of CO. The approximate barrier for the displayed process is 20~kcal/mol. However, the $\Delta E$ of this process @@ -748,7 +749,7 @@ It is possible with longer simulation times that the %breaking of the double layer upon removal of CO \begin{figure}[H] -\includegraphics[width=\linewidth]{doubleLayerBreaking_greenBlue_whiteLetters.png} +\includegraphics[width=\linewidth]{EPS_doubleLayerBreaking.pdf} \caption{(A) 0~ps, (B) 100~ps, (C) 1~ns, after the removal of CO. The presence of the CO helped maintain the stability of the double layer and its microfaceting of the double layer into a (111) configuration. This microfacet immediately reverts to the original (100) step