ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4379
Committed: Mon Oct 26 22:05:33 2015 UTC (8 years, 8 months ago) by gezelter
Content type: application/x-tex
File size: 11815 byte(s)
Log Message:
Edits

File Contents

# User Rev Content
1 skucera 4375 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint
2     \usepackage{graphicx} % needed for figures
3     \usepackage{dcolumn} % needed for some tables
4     \usepackage{bm} % for math
5     \usepackage{amssymb} % for math
6     %\usepackage{booktabs}
7     \usepackage[english]{babel}
8     \usepackage{multirow}
9     \usepackage{tablefootnote}
10     \usepackage{times}
11     \usepackage[version=3]{mhchem}
12     \usepackage{lineno}
13     \usepackage{gensymb}
14 gezelter 4376 \usepackage{multirow}
15 skucera 4375
16     \begin{document}
17    
18     \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
19     Gold Nanospheres}
20     \author{Kelsey M. Stocker}
21     \author{Suzanne M. Neidhart}
22     \author{J. Daniel Gezelter}
23     \email{gezelter@nd.edu}
24     \affiliation{Department of Chemistry and Biochemistry, University of
25     Notre Dame, Notre Dame, IN 46556}
26    
27     \maketitle
28     \vfill
29 gezelter 4379
30     Gold -- gold interactions were described by the quantum Sutton-Chen
31     (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
32     TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
33     located at the carbon centers for alkyl groups. Bonding interactions
34     were used for intra-molecular sites closer than 3 bonds. Effective
35     Lennard-Jones potentials were used for non-bonded interactions.
36    
37     The TraPPE-UA force field includes parameters for thiol
38     molecules\cite{TraPPE-UA.thiols} which were used for the
39     alkanethiolate molecules in our simulations. To derive suitable
40     parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
41     the S parameters from Luedtke and Landman\cite{landman:1998} and
42     modified the parameters for the CTS atom to maintain charge neutrality
43     in the molecule.
44    
45     To describe the interactions between metal (Au) and non-metal atoms,
46     potential energy terms were adapted from an adsorption study of alkyl
47     thiols on gold surfaces by Vlugt, \textit{et
48     al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
49     Lennard-Jones form of potential parameters for the interaction between
50     Au and pseudo-atoms CH$_x$ and S based on a well-established and
51     widely-used effective potential of Hautman and Klein for the Au(111)
52     surface.\cite{hautman:4994}
53    
54     \begin{table}[h]
55     \centering
56     \caption{Properties of the United atom sites. \label{tab:atypes}}
57     \begin{tabular}{ c|cccc }
58     \toprule
59     atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
60     \colrule
61 skucera 4378 CH3 & 15.04 & 0.1947 & 3.75 & \\
62     CH2 & 14.03 & 0.09141 & 3.95 & \\
63     CH & 13.02 & 0.01987 & 4.68 & \\
64     CHene & 13.02 & 0.09340 & 3.73 & \\
65     CH2ene & 14.03 & 0.16891 & 3.675 & \\
66 gezelter 4379 S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
67     CHar & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
68     CH2ar & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
69     \botrule
70 skucera 4378 \end{tabular}
71 gezelter 4379 \end{table}
72 skucera 4378
73 gezelter 4379 Parameters not found in the TraPPE-UA force field for the
74     intramolecular interactions of the conjugated and the penultimate
75     alkenethiolate ligands were calculated using constrained geometry
76     scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
77     the 6-31G(d,p) basis set. Structures were scanned starting at the
78     minimum energy gas phase structure for small ($C_4$) ligands. Only
79     one degree of freedom was constrained for any given scan -- all other
80     atoms were allowed to minimize subject to that constraint. The
81     resulting potential energy surfaces were fit to a harmonic potential
82     for the bond stretching,
83     \begin{equation}
84     V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
85     \end{equation}
86     and angle bending potentials,
87     \begin{equation}
88     V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
89     \end{equation}
90     Torsional potentials were fit to the TraPPE torsional function,
91     \begin{equation}
92     V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
93     \end{equation}
94 skucera 4375
95 gezelter 4379 Say something here about which molecules were used for which scans....
96    
97     The fit values for the bond, bend, and torsional parameters were in
98     relatively good agreement with similar parameters already present in
99     TraPPE.
100    
101    
102     to find an equilibrium bend angles $\theta_0$ and spring constants,
103     $k$. Torsional parameters were fit to the same part of the
104     penultimate ligand (\(S - CH_{2}- CH-CH)\)
105     for the rotation around the \( CH_{2}- CH\)
106     bond. This potential energy surface was then fit to
107    
108     \begin{table}[h]
109     \centering
110     \caption{Bond parameters. \label{tab:bond}}
111     \begin{tabular}{ cc|lll }
112     \toprule
113     $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
114     \colrule
115 gezelter 4376 CH3 & CH3 & 1.540 & 536 & \\
116     CH3 & CH2 & 1.540 & 536 & \\
117     CH3 & CH & 1.540 & 536 & \\
118     CH2 & CH2 & 1.540 & 536 & \\
119     CH2 & CH & 1.540 & 536 & \\
120     CH & CH & 1.540 & 536 & \\
121     Chene & CHene & 1.330 & 1098 & \\
122     CH2ene & CHene & 1.330 & 1098 & \\
123     CH3 & CHene & 1.540 & 634 & \\
124     CH2 & CHene & 1.540 & 634 & \\
125     S & CH2 & 1.820 & 444 & \\
126     CHar & CHar & 1.40 & 938 & \\
127     CHar & CH2 & 1.540 & 536 & \\
128     CHar & CH3 & 1.540 & 536 & \\
129     CH2ar & CHar & 1.40 & 938 & \\
130     S & CHar & 1.80384 & 527.951 & fit \\
131 gezelter 4379 \botrule
132 skucera 4375 \end{tabular}
133 gezelter 4379 \end{table}
134 skucera 4375
135 gezelter 4379 \begin{table}[h]
136     \centering
137     \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
138     \begin{tabular}{ ccc|lll }
139     \toprule
140 gezelter 4376 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
141 gezelter 4379 \colrule
142 gezelter 4376 CH2 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
143     CH3 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
144     CH3 & CH2 & CH3 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
145     CH3 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
146     CH2 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
147     CH3 & CH2 & CH & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
148     CHene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
149     CHene & CHene & CHene & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
150     CH2ene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
151     CHene & CHene & CH2 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
152     CH2 & CH2 & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
153     CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
154     CHar & CHar & CH2 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
155     CHar & CHar & CH3 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
156     CHar & CHar & CH2ar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
157     S & CH2 & CHene & 109.97 & 127.37 & fit \\
158     S & CH2 & CHar & 109.97 & 127.37 & fit \\
159     S & CHar & CHar & 123.911 & 138.093 & fit \\
160 gezelter 4379 \botrule
161 skucera 4375 \end{tabular}
162 gezelter 4379 \end{table}
163    
164     The conjugated system was fit to a bond, bend, and torsion. The
165     terminal bond for the shortest conjugated ligand \(CH-CH_2\)
166     was fit to a potential energy surface to find an equilibrium bond
167     length of 1.4 \AA and a spring constant of 938 kcal/mol using the
168     Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\).
169     A bend parameter for the beginning the longer conjugated ligands
170     (\(S - CH_2- CH)\),
171     was approximated to be equal to the shortest penultimate ligand
172     parameters found. For the shortest conjugated ligand the first bend
173     (\(S - CH- CH)\)
174     was fit a potential energy surface in the same manor as the
175     penultimate bend. The torsion for the first four atoms of the two
176     longer conjugated systems is equal to the torsion calculated for the
177     penultimate system.
178    
179     \begin{table}[h]
180     \centering
181     \caption{Torsion parameters. The central atoms are atoms $j$ and $k$, and wildcard atom types are denoted by ``X''. All $c_n$ parameters have units of kcal/mol. \label{tab:torsion}}
182     \begin{tabular}{ cccc|lllll }
183     \toprule
184     $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
185     \colrule
186 gezelter 4376 CH3 & CH2 & CH2 & CH3 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
187     CH3 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
188     CH3 & CH2 & CH2 & CH & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
189     CH2 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
190     CH2 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
191 gezelter 4379 CH3 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
192     X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
193     X & CHar & CHar & X & & & & & \\ \colrule
194 gezelter 4376 CH2 & CH2 & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
195     CH2 & CH2 & CH2 & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
196     CHene & CHene & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
197     CHar & CHar & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
198 gezelter 4379 \botrule
199 skucera 4375 \end{tabular}
200 gezelter 4379 \end{table}
201 skucera 4378
202 gezelter 4379 The conjugated system was fit to a bond, bend, and torsion. The
203     terminal bond for the shortest conjugated ligand \(CH-CH_2\)
204     was fit to a potential energy surface to find an equilibrium bond
205     length of 1.4 \AA and a spring constant of 938 kcal/mol using the
206     Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\).
207     A bend parameter for the beginning the longer conjugated ligands
208     (\(S - CH_2- CH)\),
209     was approximated to be equal to the shortest penultimate ligand
210     parameters found. For the shortest conjugated ligand the first bend
211     (\(S - CH- CH)\)
212     was fit a potential energy surface in the same manor as the
213     penultimate bend. The torsion for the first four atoms of the two
214     longer conjugated systems is equal to the torsion calculated for the
215     penultimate system.
216    
217     \begin{table}[h]
218     \centering
219     \caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}}
220     \begin{tabular}{ cc|ccc }
221     \toprule
222     $i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\
223     \colrule
224     Au &CH3 &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
225     Au &CH2 &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
226     Au &CHene &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
227     Au &CHar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
228     Au &CH2ar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
229     Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\
230     \botrule
231 skucera 4378 \end {tabular}
232 gezelter 4379 \end{table}
233 gezelter 4376 \newpage
234     \bibliographystyle{aip}
235     \bibliography{NPthiols}
236    
237 skucera 4375 \end{document}