ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4381
Committed: Tue Oct 27 16:39:50 2015 UTC (8 years, 8 months ago) by gezelter
Content type: application/x-tex
File size: 11828 byte(s)
Log Message:
Edits

File Contents

# User Rev Content
1 skucera 4375 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint
2     \usepackage{graphicx} % needed for figures
3     \usepackage{dcolumn} % needed for some tables
4     \usepackage{bm} % for math
5     \usepackage{amssymb} % for math
6     %\usepackage{booktabs}
7     \usepackage[english]{babel}
8     \usepackage{multirow}
9     \usepackage{tablefootnote}
10     \usepackage{times}
11     \usepackage[version=3]{mhchem}
12     \usepackage{lineno}
13     \usepackage{gensymb}
14 gezelter 4376 \usepackage{multirow}
15 skucera 4375
16     \begin{document}
17    
18     \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
19     Gold Nanospheres}
20     \author{Kelsey M. Stocker}
21     \author{Suzanne M. Neidhart}
22     \author{J. Daniel Gezelter}
23     \email{gezelter@nd.edu}
24     \affiliation{Department of Chemistry and Biochemistry, University of
25     Notre Dame, Notre Dame, IN 46556}
26    
27     \maketitle
28 gezelter 4379 Gold -- gold interactions were described by the quantum Sutton-Chen
29     (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
30     TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
31     located at the carbon centers for alkyl groups. Bonding interactions
32     were used for intra-molecular sites closer than 3 bonds. Effective
33     Lennard-Jones potentials were used for non-bonded interactions.
34    
35 gezelter 4381 \begin{table}[h]
36     \centering
37     \caption{Properties of the United atom sites. \label{tab:atypes}}
38     \begin{tabular}{ c|cccc }
39     \toprule
40     atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
41     \colrule
42     \ce{CH3} & 15.04 & 0.1947 & 3.75 & \\
43     \ce{CH2} & 14.03 & 0.09141 & 3.95 & \\
44     \ce{CH} & 13.02 & 0.01987 & 4.68 & \\
45     \ce{CHene} & 13.02 & 0.09340 & 3.73 & \\
46     \ce{CH2ene} & 14.03 & 0.16891 & 3.675 & \\
47     S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
48     \ce{CHar} & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
49     \ce{CH2ar} & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
50     \botrule
51     \end{tabular}
52     \end{table}
53    
54 gezelter 4379 The TraPPE-UA force field includes parameters for thiol
55     molecules\cite{TraPPE-UA.thiols} which were used for the
56     alkanethiolate molecules in our simulations. To derive suitable
57     parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
58     the S parameters from Luedtke and Landman\cite{landman:1998} and
59     modified the parameters for the CTS atom to maintain charge neutrality
60     in the molecule.
61    
62 gezelter 4381 Bonds are typically rigid in TraPPE-UA, and for flexible bonds, we
63     utilized bond stretching spring constants from
64    
65     \begin{table}[h]
66     \centering
67     \caption{Bond parameters. \label{tab:bond}}
68     \begin{tabular}{ cc|lll }
69     \toprule
70     $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
71     \colrule
72     \ce{CH3} & \ce{CH3} & 1.540 & 536 & \\
73     \ce{CH3} & \ce{CH2} & 1.540 & 536 & \\
74     \ce{CH3} & \ce{CH} & 1.540 & 536 & \\
75     \ce{CH2} & \ce{CH2} & 1.540 & 536 & \\
76     \ce{CH2} & \ce{CH} & 1.540 & 536 & \\
77     \ce{CH} & \ce{CH} & 1.540 & 536 & \\
78     \ce{CHene} & \ce{CHene} & 1.330 & 1098 & \\
79     \ce{CH2ene} & \ce{CHene} & 1.330 & 1098 & \\
80     \ce{CH3} & \ce{CHene} & 1.540 & 634 & \\
81     \ce{CH2} & \ce{CHene} & 1.540 & 634 & \\
82     S & \ce{CH2} & 1.820 & 444 & \\
83     \ce{CHar} & \ce{CHar} & 1.40 & 938 & \\
84     \ce{CHar} & \ce{CH2} & 1.540 & 536 & \\
85     \ce{CHar} & \ce{CH3} & 1.540 & 536 & \\
86     \ce{CH2ar} & \ce{CHar} & 1.40 & 938 &
87     \protect\cite{William-L.-Jorgensen:1996uq} \\
88     S & \ce{CHar} & 1.80384 & 527.951 & fit \\
89     \botrule
90     \end{tabular}
91     \end{table}
92    
93    
94 gezelter 4379 To describe the interactions between metal (Au) and non-metal atoms,
95     potential energy terms were adapted from an adsorption study of alkyl
96     thiols on gold surfaces by Vlugt, \textit{et
97     al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
98     Lennard-Jones form of potential parameters for the interaction between
99     Au and pseudo-atoms CH$_x$ and S based on a well-established and
100     widely-used effective potential of Hautman and Klein for the Au(111)
101     surface.\cite{hautman:4994}
102    
103     Parameters not found in the TraPPE-UA force field for the
104     intramolecular interactions of the conjugated and the penultimate
105     alkenethiolate ligands were calculated using constrained geometry
106     scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
107     the 6-31G(d,p) basis set. Structures were scanned starting at the
108     minimum energy gas phase structure for small ($C_4$) ligands. Only
109     one degree of freedom was constrained for any given scan -- all other
110     atoms were allowed to minimize subject to that constraint. The
111     resulting potential energy surfaces were fit to a harmonic potential
112     for the bond stretching,
113     \begin{equation}
114     V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
115     \end{equation}
116     and angle bending potentials,
117     \begin{equation}
118     V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
119     \end{equation}
120     Torsional potentials were fit to the TraPPE torsional function,
121     \begin{equation}
122     V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
123     \end{equation}
124 skucera 4375
125 gezelter 4381 For the penultimate thiolate ligands, the model molecule used was
126     2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was
127     scanned to fit an equilibrium angle and force constant, as well as one
128     torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two
129     potentials also served as model for the longer conjugated thiolate
130     ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and
131     torsion parameters for (\ce{S-CH2-CHar-CHar}).
132 gezelter 4379
133 gezelter 4381 For the $C_4$ conjugated thiolate ligands, the model molecule for the
134     quantum mechanical calculations was 1,3-Butadiene-1-thiol. This
135     ligand required fitting one bond (\ce{S-CHar}), and one bend angle
136     (\ce{S-CHar-CHar}).
137 gezelter 4379
138 gezelter 4381 The geometries of the model molecules were optimized prior to
139     performing the constrained angle scans, and the fit values for the
140     bond, bend, and torsional parameters were in relatively good agreement
141     with similar parameters already present in TraPPE.
142 gezelter 4379
143    
144     \begin{table}[h]
145     \centering
146     \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
147     \begin{tabular}{ ccc|lll }
148     \toprule
149 gezelter 4376 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
150 gezelter 4379 \colrule
151 gezelter 4381 \ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
152     \ce{CH3} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
153     \ce{CH3} & \ce{CH2} & \ce{CH3} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
154     \ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
155     \ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
156     \ce{CH3} & \ce{CH2} & \ce{CH} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
157     \ce{CHene} & \ce{CHene} & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
158     \ce{CHene} & \ce{CHene} & \ce{CHene} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
159     \ce{CH2ene} & \ce{CHene} & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
160     \ce{CHene} & \ce{CHene} & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
161     \ce{CH2} & \ce{CH2} & \ce{CHene} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
162     \ce{CHar} & \ce{CHar} & \ce{CHar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
163     \ce{CHar} & \ce{CHar} & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
164     \ce{CHar} & \ce{CHar} & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
165     \ce{CHar} & \ce{CHar} & \ce{CH2ar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
166     S & \ce{CH2} & \ce{CHene} & 109.97 & 127.37 & fit \\
167     S & \ce{CH2} & \ce{CHar} & 109.97 & 127.37 & fit \\
168     S & \ce{CHar} & \ce{CHar} & 123.911 & 138.093 & fit \\
169 gezelter 4379 \botrule
170 skucera 4375 \end{tabular}
171 gezelter 4379 \end{table}
172    
173     \begin{table}[h]
174     \centering
175 gezelter 4381 \caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$,
176     and wildcard atom types are denoted by ``X''. All $c_n$ parameters
177     have units of kcal/mol. The torsions around doubly-bonded carbons
178     are harmonic and assume a trans (180$\degree$) geometry. The force
179     constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}}
180 gezelter 4379 \begin{tabular}{ cccc|lllll }
181     \toprule
182     $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
183     \colrule
184 gezelter 4381 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH3} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
185     \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
186     \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
187     \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
188     \ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
189     \ce{CH3} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
190     X & \ce{CHene} & \ce{CHene} & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
191     X & \ce{CHar} & \ce{CHar} & X & & & & & \\ \colrule
192     \ce{CH2} & \ce{CH2} & \ce{CHene} & \ce{CHene} & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
193     \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CHene} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
194     \ce{CHene} & \ce{CHene} & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
195     \ce{CHar} & \ce{CHar} & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
196 gezelter 4379 \botrule
197 skucera 4375 \end{tabular}
198 gezelter 4379 \end{table}
199 skucera 4378
200 gezelter 4379 \begin{table}[h]
201     \centering
202     \caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}}
203     \begin{tabular}{ cc|ccc }
204     \toprule
205     $i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\
206     \colrule
207 gezelter 4381 Au &\ce{CH3} &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
208     Au &\ce{CH2} &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
209     Au &\ce{CHene} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
210     Au &\ce{CHar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
211     Au &\ce{CH2ar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
212 gezelter 4379 Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\
213     \botrule
214 skucera 4378 \end {tabular}
215 gezelter 4379 \end{table}
216 gezelter 4376 \newpage
217     \bibliographystyle{aip}
218     \bibliography{NPthiols}
219    
220 skucera 4375 \end{document}