ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4384
Committed: Wed Oct 28 14:54:40 2015 UTC (8 years, 8 months ago) by gezelter
Content type: application/x-tex
File size: 12625 byte(s)
Log Message:
Latest edits

File Contents

# User Rev Content
1 gezelter 4384 \documentclass[aps,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4-1}
2 skucera 4375 \usepackage{graphicx} % needed for figures
3     \usepackage{dcolumn} % needed for some tables
4     \usepackage{bm} % for math
5     \usepackage{amssymb} % for math
6 gezelter 4384 \usepackage{booktabs}
7 skucera 4375 \usepackage[english]{babel}
8     \usepackage{multirow}
9     \usepackage{times}
10     \usepackage[version=3]{mhchem}
11     \usepackage{lineno}
12     \usepackage{gensymb}
13 gezelter 4376 \usepackage{multirow}
14 skucera 4375
15     \begin{document}
16    
17     \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
18     Gold Nanospheres}
19     \author{Kelsey M. Stocker}
20     \author{Suzanne M. Neidhart}
21     \author{J. Daniel Gezelter}
22     \email{gezelter@nd.edu}
23     \affiliation{Department of Chemistry and Biochemistry, University of
24     Notre Dame, Notre Dame, IN 46556}
25 gezelter 4384 \date{\today}
26 skucera 4375
27 gezelter 4384 \begin{abstract}
28     This document supplies force field parameters for the united-atom
29     sites, bond, bend, and torsion parameters, as well as the cross
30     interactions between the united-atom sites and the gold atoms. These
31     parameters were used in the simulations presented in the main text.
32     \end{abstract}
33    
34    
35 skucera 4375 \maketitle
36 gezelter 4384
37 gezelter 4379 Gold -- gold interactions were described by the quantum Sutton-Chen
38     (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
39     TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
40     located at the carbon centers for alkyl groups. Bonding interactions
41     were used for intra-molecular sites closer than 3 bonds. Effective
42     Lennard-Jones potentials were used for non-bonded interactions.
43    
44 gezelter 4381 \begin{table}[h]
45 gezelter 4384 \bibpunct{}{}{,}{n}{}{,}
46 gezelter 4381 \centering
47     \caption{Properties of the United atom sites. \label{tab:atypes}}
48     \begin{tabular}{ c|cccc }
49     \toprule
50     atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
51     \colrule
52     \ce{CH3} & 15.04 & 0.1947 & 3.75 & \\
53     \ce{CH2} & 14.03 & 0.09141 & 3.95 & \\
54 gezelter 4384 CH & 13.02 & 0.01987 & 4.68 & \\
55     CHene & 13.02 & 0.09340 & 3.73 & \\
56 gezelter 4381 \ce{CH2ene} & 14.03 & 0.16891 & 3.675 & \\
57     S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
58 gezelter 4384 CHar & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
59 gezelter 4381 \ce{CH2ar} & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
60     \botrule
61     \end{tabular}
62 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
63 gezelter 4381 \end{table}
64    
65 gezelter 4379 The TraPPE-UA force field includes parameters for thiol
66     molecules\cite{TraPPE-UA.thiols} which were used for the
67     alkanethiolate molecules in our simulations. To derive suitable
68     parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
69     the S parameters from Luedtke and Landman\cite{landman:1998} and
70     modified the parameters for the CTS atom to maintain charge neutrality
71     in the molecule.
72    
73 gezelter 4383 Bonds are typically rigid in TraPPE-UA, so although we used
74     equilibrium bond distances from TraPPE-UA, for flexible bonds, we
75     adapted bond stretching spring constants from the OPLS-AA force
76     field.\cite{Jorgensen:1996sf}
77 gezelter 4381
78     \begin{table}[h]
79 gezelter 4384 \bibpunct{}{}{,}{n}{}{,}
80 gezelter 4381 \centering
81     \caption{Bond parameters. \label{tab:bond}}
82     \begin{tabular}{ cc|lll }
83     \toprule
84     $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
85     \colrule
86 gezelter 4383 \ce{CH3} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf}\\
87     \ce{CH3} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
88 gezelter 4384 \ce{CH3} & CH & 1.540 & 536 & \\
89 gezelter 4383 \ce{CH2} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
90 gezelter 4384 \ce{CH2} & CH & 1.540 & 536 & \\
91     CH & CH & 1.540 & 536 & \\
92     CHene & CHene & 1.330 & 1098 & \\
93     \ce{CH2ene} & CHene & 1.330 & 1098 & \\
94     \ce{CH3} & CHene & 1.540 & 634 & \\
95     \ce{CH2} & CHene & 1.540 & 634 & \\
96 gezelter 4381 S & \ce{CH2} & 1.820 & 444 & \\
97 gezelter 4384 CHar & CHar & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
98     CHar & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
99     CHar & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
100     \ce{CH2ar} & CHar & 1.40 & 938 & Refs. and \protect\cite{Jorgensen:1996sf} \\
101     S & CHar & 1.80384 & 527.951 & This Work \\
102 gezelter 4381 \botrule
103     \end{tabular}
104 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
105 gezelter 4381 \end{table}
106    
107 gezelter 4379 To describe the interactions between metal (Au) and non-metal atoms,
108     potential energy terms were adapted from an adsorption study of alkyl
109     thiols on gold surfaces by Vlugt, \textit{et
110     al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
111     Lennard-Jones form of potential parameters for the interaction between
112     Au and pseudo-atoms CH$_x$ and S based on a well-established and
113     widely-used effective potential of Hautman and Klein for the Au(111)
114     surface.\cite{hautman:4994}
115    
116     Parameters not found in the TraPPE-UA force field for the
117     intramolecular interactions of the conjugated and the penultimate
118     alkenethiolate ligands were calculated using constrained geometry
119     scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
120     the 6-31G(d,p) basis set. Structures were scanned starting at the
121     minimum energy gas phase structure for small ($C_4$) ligands. Only
122     one degree of freedom was constrained for any given scan -- all other
123     atoms were allowed to minimize subject to that constraint. The
124     resulting potential energy surfaces were fit to a harmonic potential
125     for the bond stretching,
126     \begin{equation}
127     V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
128     \end{equation}
129     and angle bending potentials,
130     \begin{equation}
131     V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
132     \end{equation}
133     Torsional potentials were fit to the TraPPE torsional function,
134     \begin{equation}
135     V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
136     \end{equation}
137 skucera 4375
138 gezelter 4381 For the penultimate thiolate ligands, the model molecule used was
139     2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was
140     scanned to fit an equilibrium angle and force constant, as well as one
141     torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two
142     potentials also served as model for the longer conjugated thiolate
143     ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and
144     torsion parameters for (\ce{S-CH2-CHar-CHar}).
145 gezelter 4379
146 gezelter 4381 For the $C_4$ conjugated thiolate ligands, the model molecule for the
147     quantum mechanical calculations was 1,3-Butadiene-1-thiol. This
148     ligand required fitting one bond (\ce{S-CHar}), and one bend angle
149     (\ce{S-CHar-CHar}).
150 gezelter 4379
151 gezelter 4381 The geometries of the model molecules were optimized prior to
152     performing the constrained angle scans, and the fit values for the
153     bond, bend, and torsional parameters were in relatively good agreement
154     with similar parameters already present in TraPPE.
155 gezelter 4379
156    
157     \begin{table}[h]
158 gezelter 4384 \bibpunct{}{}{,}{n}{,}{,}
159 gezelter 4379 \centering
160     \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
161     \begin{tabular}{ ccc|lll }
162     \toprule
163 gezelter 4376 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
164 gezelter 4379 \colrule
165 gezelter 4381 \ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
166     \ce{CH3} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
167     \ce{CH3} & \ce{CH2} & \ce{CH3} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
168     \ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
169     \ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
170 gezelter 4384 \ce{CH3} & \ce{CH2} & CH & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
171     CHene & CHene & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
172     CHene & CHene & CHene & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
173     \ce{CH2ene} & CHene & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
174     CHene & CHene & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
175     \ce{CH2} & \ce{CH2} & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
176     CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
177     CHar & CHar & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
178     CHar & CHar & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
179     CHar & CHar & \ce{CH2ar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
180     S & \ce{CH2} & CHene & 109.97 & 127.37 & This work \\
181     S & \ce{CH2} & CHar & 109.97 & 127.37 & This work \\
182     S & CHar & CHar & 123.911 & 138.093 & This work \\
183 gezelter 4379 \botrule
184 skucera 4375 \end{tabular}
185 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
186 gezelter 4379 \end{table}
187    
188     \begin{table}[h]
189 gezelter 4384 \bibpunct{}{}{,}{n}{,}{,}
190 gezelter 4379 \centering
191 gezelter 4381 \caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$,
192     and wildcard atom types are denoted by ``X''. All $c_n$ parameters
193 gezelter 4383 have units of kcal/mol. The torsions around carbon-carbon double bonds
194 gezelter 4381 are harmonic and assume a trans (180$\degree$) geometry. The force
195     constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}}
196 gezelter 4379 \begin{tabular}{ cccc|lllll }
197     \toprule
198     $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
199     \colrule
200 gezelter 4381 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH3} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
201     \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
202 gezelter 4384 \ce{CH3} & \ce{CH2} & \ce{CH2} & CH & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
203 gezelter 4381 \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
204     \ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
205     \ce{CH3} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
206 gezelter 4384 X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
207     X & CHar & CHar & X & & & & & \\ \colrule
208     \ce{CH2} & \ce{CH2} & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
209     \ce{CH2} & \ce{CH2} & \ce{CH2} & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
210     CHene & CHene & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & This work \\
211     CHar & CHar & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & This work \\
212 gezelter 4379 \botrule
213 skucera 4375 \end{tabular}
214 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
215 gezelter 4379 \end{table}
216 skucera 4378
217 gezelter 4379 \begin{table}[h]
218 gezelter 4384 \bibpunct{}{}{,}{n}{,}{,}
219 gezelter 4379 \centering
220     \caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}}
221     \begin{tabular}{ cc|ccc }
222     \toprule
223     $i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\
224     \colrule
225 gezelter 4381 Au &\ce{CH3} &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
226     Au &\ce{CH2} &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
227 gezelter 4384 Au &CHene &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
228     Au &CHar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
229 gezelter 4381 Au &\ce{CH2ar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
230 gezelter 4379 Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\
231     \botrule
232 skucera 4378 \end {tabular}
233 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
234 gezelter 4379 \end{table}
235 gezelter 4384
236 gezelter 4376 \newpage
237     \bibliographystyle{aip}
238     \bibliography{NPthiols}
239 skucera 4375 \end{document}