ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
(Generate patch)

Comparing trunk/NPthiols/Sup_Info.tex (file contents):
Revision 4380 by skucera, Tue Oct 27 01:30:49 2015 UTC vs.
Revision 4381 by gezelter, Tue Oct 27 16:39:50 2015 UTC

# Line 25 | Line 25
25    Notre Dame, Notre Dame, IN 46556}
26  
27   \maketitle
28 \vfill
29
28   Gold -- gold interactions were described by the quantum Sutton-Chen
29   (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
30   TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
# Line 34 | Line 32 | The TraPPE-UA force field includes parameters for thio
32   were used for intra-molecular sites closer than 3 bonds. Effective
33   Lennard-Jones potentials were used for non-bonded interactions.
34  
35 + \begin{table}[h]
36 + \centering
37 + \caption{Properties of the United atom sites. \label{tab:atypes}}
38 + \begin{tabular}{ c|cccc }
39 + \toprule
40 + atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
41 + \colrule
42 + \ce{CH3}    & 15.04 &         0.1947   &       3.75 & \\
43 + \ce{CH2}    & 14.03 &         0.09141  &       3.95 & \\
44 + \ce{CH}     & 13.02 &         0.01987  &       4.68 & \\
45 + \ce{CHene}  & 13.02 &         0.09340  &       3.73 & \\
46 + \ce{CH2ene} & 14.03 &         0.16891  &       3.675 & \\
47 + S & 32.0655 &              0.2504 &         4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
48 + \ce{CHar}  & 13.02     &      0.1004 &         3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
49 + \ce{CH2ar} & 14.03     &      0.1004 &         3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
50 + \botrule
51 + \end{tabular}
52 + \end{table}
53 +
54   The TraPPE-UA force field includes parameters for thiol
55   molecules\cite{TraPPE-UA.thiols} which were used for the
56   alkanethiolate molecules in our simulations.  To derive suitable
# Line 42 | Line 59 | To describe the interactions between metal (Au) and no
59   modified the parameters for the CTS atom to maintain charge neutrality
60   in the molecule.
61  
62 < To describe the interactions between metal (Au) and non-metal atoms,
63 < potential energy terms were adapted from an adsorption study of alkyl
47 < thiols on gold surfaces by Vlugt, \textit{et
48 <  al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
49 < Lennard-Jones form of potential parameters for the interaction between
50 < Au and pseudo-atoms CH$_x$ and S based on a well-established and
51 < widely-used effective potential of Hautman and Klein for the Au(111)
52 < surface.\cite{hautman:4994}
62 > Bonds are typically rigid in TraPPE-UA, and for flexible bonds, we
63 > utilized bond stretching spring constants from
64  
65   \begin{table}[h]
66   \centering
67 < \caption{Properties of the United atom sites. \label{tab:atypes}}
68 < \begin{tabular}{ c|cccc }
67 > \caption{Bond parameters. \label{tab:bond}}
68 > \begin{tabular}{ cc|lll }
69   \toprule
70 < atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
70 > $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
71   \colrule
72 < CH3    & 15.04 &         0.1947   &       3.75 & \\
73 < CH2    & 14.03 &         0.09141  &       3.95 & \\
74 < CH     & 13.02 &         0.01987  &       4.68 & \\
75 < CHene  & 13.02 &         0.09340  &       3.73 & \\
76 < CH2ene & 14.03 &         0.16891  &       3.675 & \\
77 < S & 32.0655 &              0.2504 &         4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
78 < CHar  & 13.02     &      0.1004 &         3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
79 < CH2ar & 14.03     &      0.1004 &         3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
72 > \ce{CH3}        &    \ce{CH3}  &                1.540   &       536             &  \\
73 > \ce{CH3}        &    \ce{CH2}  &                1.540   &       536             &  \\
74 > \ce{CH3}         &    \ce{CH}  &                1.540    &      536      &         \\
75 > \ce{CH2}        &    \ce{CH2}  &                1.540   &       536             &  \\
76 > \ce{CH2}         &    \ce{CH}  &                1.540    &      536      &         \\
77 > \ce{CH}  &    \ce{CH}  &                1.540    &      536      &         \\
78 > \ce{CHene}    &  \ce{CHene} &             1.330    &       1098    &         \\
79 > \ce{CH2ene}   &  \ce{CHene} &             1.330    &       1098    &         \\
80 > \ce{CH3}      &  \ce{CHene} &             1.540    &        634    &         \\
81 > \ce{CH2}      &  \ce{CHene} &             1.540    &        634    &         \\
82 > S        &    \ce{CH2} &             1.820    &        444    &         \\
83 > \ce{CHar}     &   \ce{CHar} &             1.40     &        938    & \\
84 > \ce{CHar}     &   \ce{CH2}  &             1.540    &        536    & \\
85 > \ce{CHar}     &   \ce{CH3}  &             1.540    &        536    & \\
86 > \ce{CH2ar}    &   \ce{CHar} &             1.40     &        938    &
87 >                                                                     \protect\cite{William-L.-Jorgensen:1996uq} \\
88 > S       &   \ce{CHar}  &                1.80384  &      527.951         & fit \\
89   \botrule
90   \end{tabular}
91   \end{table}
92  
93 +
94 + To describe the interactions between metal (Au) and non-metal atoms,
95 + potential energy terms were adapted from an adsorption study of alkyl
96 + thiols on gold surfaces by Vlugt, \textit{et
97 +  al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
98 + Lennard-Jones form of potential parameters for the interaction between
99 + Au and pseudo-atoms CH$_x$ and S based on a well-established and
100 + widely-used effective potential of Hautman and Klein for the Au(111)
101 + surface.\cite{hautman:4994}
102 +
103   Parameters not found in the TraPPE-UA force field for the
104   intramolecular interactions of the conjugated and the penultimate
105   alkenethiolate ligands were calculated using constrained geometry
# Line 92 | Line 122 | Say something here about which molecules were used for
122   V_\mathrm{tor} = c_0 + c_1  \left(1 + \cos\phi \right) + c_2  \left(1 - \cos 2\phi \right) + c_3  \left(1 + \cos 3 \phi \right).
123   \end{equation}
124  
125 < Say something here about which molecules were used for which scans.... I did the butadiene. I am not sure what molecule was used for the penultimate calculations, that was done when I first came to ND.
126 < Butadienethiolate was used for the shortest conjugated thiolate ligand. The molecule was made in Avogardo and a geometry optimization was performed before the scans of the bond, bend, and torsion were calculated.
125 > For the penultimate thiolate ligands, the model molecule used was
126 > 2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was
127 > scanned to fit an equilibrium angle and force constant, as well as one
128 > torsion (\ce{S-CH2-CHene-CHene}).  The parameters for these two
129 > potentials also served as model for the longer conjugated thiolate
130 > ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and
131 > torsion parameters for (\ce{S-CH2-CHar-CHar}).
132  
133 < The fit values for the bond, bend, and torsional parameters were in
134 < relatively good agreement with similar parameters already present in
135 < TraPPE.
133 > For the $C_4$ conjugated thiolate ligands, the model molecule for the
134 > quantum mechanical calculations was 1,3-Butadiene-1-thiol.  This
135 > ligand required fitting one bond (\ce{S-CHar}), and one bend angle
136 > (\ce{S-CHar-CHar}).
137  
138 + The geometries of the model molecules were optimized prior to
139 + performing the constrained angle scans, and the fit values for the
140 + bond, bend, and torsional parameters were in relatively good agreement
141 + with similar parameters already present in TraPPE.
142  
103 to find an equilibrium bend angles $\theta_0$ and spring constants,
104 $k$.  Torsional parameters were fit to the same part of the
105 penultimate ligand (\(S - CH_{2}- CH-CH)\)
106 for the rotation around the \( CH_{2}- CH\)
107 bond. This potential energy surface was then fit to
143  
144   \begin{table}[h]
145   \centering
111 \caption{Bond parameters. \label{tab:bond}}
112 \begin{tabular}{ cc|lll }
113 \toprule
114 $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
115 \colrule
116 CH3     &    CH3  &             1.540   &       536             &  \\
117 CH3     &    CH2  &             1.540   &       536             &  \\
118 CH3      &    CH  &             1.540    &      536      &         \\
119 CH2     &    CH2  &             1.540   &       536             &  \\
120 CH2      &    CH  &             1.540    &      536      &         \\
121 CH       &    CH  &             1.540    &      536      &         \\
122 Chene    &  CHene &             1.330    &       1098    &         \\
123 CH2ene   &  CHene &             1.330    &       1098    &         \\
124 CH3      &  CHene &             1.540    &        634    &         \\
125 CH2      &  CHene &             1.540    &        634    &         \\
126 S        &    CH2 &             1.820    &        444    &         \\
127 CHar     &   CHar &             1.40     &        938    & \\
128 CHar     &   CH2  &             1.540    &        536    & \\
129 CHar     &   CH3  &             1.540    &        536    & \\
130 CH2ar    &   CHar &             1.40     &        938    & \\
131 S       &   CHar  &             1.80384  &      527.951         & fit \\
132 \botrule
133 \end{tabular}
134 \end{table}
135
136 \begin{table}[h]
137 \centering
146   \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
147   \begin{tabular}{ ccc|lll }
148   \toprule
149   $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
150   \colrule
151 < CH2    &  CH2    &  S      &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
152 < CH3    &  CH2    &  S      &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
153 < CH3    &  CH2    &  CH3    &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
154 < CH3    &  CH2    &  CH2    &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
155 < CH2    &  CH2    &  CH2    &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
156 < CH3    &  CH2    &  CH     &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
157 < CHene  &  CHene  &  CH3    &         119.7  &   139.94& Ref. \protect\cite{Maerzke:2009qy}\\
158 < CHene  &  CHene  &  CHene  &         119.7  &   139.94& Ref. \protect\cite{Maerzke:2009qy}\\
159 < CH2ene &  CHene  &  CH3    &         119.7  &   139.94& Ref. \protect\cite{Maerzke:2009qy}\\
160 < CHene  &  CHene  &  CH2    &         119.7  &   139.94& Ref. \protect\cite{Maerzke:2009qy}\\
161 < CH2    &  CH2    &  CHene  &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
162 < CHar   &  CHar   &  CHar   &         120.0  &   126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
163 < CHar   &  CHar   &  CH2    &         120.0  &   140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
164 < CHar   &  CHar   &  CH3    &         120.0  &   140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
165 < CHar   &  CHar   &  CH2ar  &         120.0  &   126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
166 < S      &  CH2    &  CHene  &         109.97  &  127.37 & fit  \\
167 < S      &  CH2    &  CHar   &         109.97  &  127.37 & fit  \\
168 < S      &  CHar   &  CHar   &         123.911 & 138.093 & fit  \\
151 > \ce{CH2}    &  \ce{CH2}    &  S      &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
152 > \ce{CH3}    &  \ce{CH2}    &  S      &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
153 > \ce{CH3}    &  \ce{CH2}    &  \ce{CH3}    &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
154 > \ce{CH3}    &  \ce{CH2}    &  \ce{CH2}    &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
155 > \ce{CH2}    &  \ce{CH2}    &  \ce{CH2}    &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
156 > \ce{CH3}    &  \ce{CH2}    &  \ce{CH}     &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
157 > \ce{CHene}  &  \ce{CHene}  &  \ce{CH3}    &         119.7  &   139.94& Ref. \protect\cite{Maerzke:2009qy}\\
158 > \ce{CHene}  &  \ce{CHene}  &  \ce{CHene}  &         119.7  &   139.94& Ref. \protect\cite{Maerzke:2009qy}\\
159 > \ce{CH2ene} &  \ce{CHene}  &  \ce{CH3}    &         119.7  &   139.94& Ref. \protect\cite{Maerzke:2009qy}\\
160 > \ce{CHene}  &  \ce{CHene}  &  \ce{CH2}    &         119.7  &   139.94& Ref. \protect\cite{Maerzke:2009qy}\\
161 > \ce{CH2}    &  \ce{CH2}    &  \ce{CHene}  &         114.0  &   124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
162 > \ce{CHar}   &  \ce{CHar}   &  \ce{CHar}   &         120.0  &   126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
163 > \ce{CHar}   &  \ce{CHar}   &  \ce{CH2}    &         120.0  &   140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
164 > \ce{CHar}   &  \ce{CHar}   &  \ce{CH3}    &         120.0  &   140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
165 > \ce{CHar}   &  \ce{CHar}   &  \ce{CH2ar}  &         120.0  &   126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
166 > S      &  \ce{CH2}    &  \ce{CHene}  &         109.97  &  127.37 & fit  \\
167 > S      &  \ce{CH2}    &  \ce{CHar}   &         109.97  &  127.37 & fit  \\
168 > S      &  \ce{CHar}   &  \ce{CHar}   &         123.911 & 138.093 & fit  \\
169   \botrule
170   \end{tabular}
171   \end{table}
172  
165 The conjugated system was fit to a bond, bend, and torsion. The
166 terminal bond for the shortest conjugated ligand \(CH-CH_2\)
167 was fit to a potential energy surface to find an equilibrium bond
168 length of 1.4 \AA and a spring constant of 938 kcal/mol using the
169 Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\).
170 A bend parameter for the beginning the longer conjugated ligands
171 (\(S - CH_2- CH)\),
172 was approximated to be equal to the shortest penultimate ligand
173 parameters found. For the shortest conjugated ligand the first bend
174 (\(S - CH- CH)\)
175 was fit a potential energy surface in the same manor as the
176 penultimate bend. The torsion for the first four atoms of the two
177 longer conjugated systems is equal to the torsion calculated for the
178 penultimate system.
179
173   \begin{table}[h]
174   \centering
175 < \caption{Torsion parameters. The central atoms are atoms $j$ and $k$, and wildcard atom types are denoted by ``X''.  All $c_n$ parameters have units of kcal/mol. \label{tab:torsion}}
175 > \caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$,
176 >  and wildcard atom types are denoted by ``X''.  All $c_n$ parameters
177 >  have units of kcal/mol. The torsions around doubly-bonded carbons
178 >  are harmonic and assume a trans (180$\degree$) geometry.  The force
179 >  constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$.  \label{tab:torsion}}
180   \begin{tabular}{ cccc|lllll }
181   \toprule
182   $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
183   \colrule
184 < CH3   &   CH2   &  CH2    &  CH3     &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
185 < CH3   &   CH2   &  CH2    &  CH2     &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
186 < CH3   &   CH2   &  CH2    &  CH      &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
187 < CH2   &   CH2   &  CH2    &  CH2     &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
188 < CH2   &   CH2   &  CH2    &  S       &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
189 < CH3   &   CH2   &  CH2    &  S       &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
190 < X     &   CHene &   CHene &  X       &     \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
191 < X     &   CHar  &   CHar  &  X       &   & & & & \\ \colrule
192 < CH2   &   CH2   &   CHene &  CHene   &     1.368   &      0.1716  &  -0.2181  &  -0.56081  & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
193 < CH2   &   CH2   &   CH2   &  CHene   &     0.0     &      0.7055  &  -0.13551 &   1.5725   & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
194 < CHene &   CHene &   CH2   &   S      &     3.20753 &      0.207417&  -0.912929&  -0.958538 & fit \\
195 < CHar  &   CHar  &   CH2   &   S      &     3.20753 &      0.207417&  -0.912929&  -0.958538 & fit \\
184 > \ce{CH3}   &   \ce{CH2}   &  \ce{CH2}    &  \ce{CH3}     &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
185 > \ce{CH3}   &   \ce{CH2}   &  \ce{CH2}    &  \ce{CH2}     &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
186 > \ce{CH3}   &   \ce{CH2}   &  \ce{CH2}    &  \ce{CH}      &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
187 > \ce{CH2}   &   \ce{CH2}   &  \ce{CH2}    &  \ce{CH2}     &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
188 > \ce{CH2}   &   \ce{CH2}   &  \ce{CH2}    &  S       &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
189 > \ce{CH3}   &   \ce{CH2}   &  \ce{CH2}    &  S       &     0.0     &     0.7055   & -0.13551  &  1.5725    & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
190 > X     &   \ce{CHene} &   \ce{CHene} &  X       &     \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
191 > X     &   \ce{CHar}  &   \ce{CHar}  &  X       &   & & & & \\ \colrule
192 > \ce{CH2}   &   \ce{CH2}   &   \ce{CHene} &  \ce{CHene}   &     1.368   &      0.1716  &  -0.2181  &  -0.56081  & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
193 > \ce{CH2}   &   \ce{CH2}   &   \ce{CH2}   &  \ce{CHene}   &     0.0     &      0.7055  &  -0.13551 &   1.5725   & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
194 > \ce{CHene} &   \ce{CHene} &   \ce{CH2}   &   S      &     3.20753 &      0.207417&  -0.912929&  -0.958538 & fit \\
195 > \ce{CHar}  &   \ce{CHar}  &   \ce{CH2}   &   S      &     3.20753 &      0.207417&  -0.912929&  -0.958538 & fit \\
196   \botrule
197   \end{tabular}
198   \end{table}
199  
203 The conjugated system was fit to a bond, bend, and torsion. The
204 terminal bond for the shortest conjugated ligand \(CH-CH_2\)
205 was fit to a potential energy surface to find an equilibrium bond
206 length of 1.4 \AA and a spring constant of 938 kcal/mol using the
207 Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\).
208 A bend parameter for the beginning the longer conjugated ligands
209 (\(S - CH_2- CH)\),
210 was approximated to be equal to the shortest penultimate ligand
211 parameters found. For the shortest conjugated ligand the first bend
212 (\(S - CH- CH)\)
213 was fit a potential energy surface in the same manor as the
214 penultimate bend. The torsion for the first four atoms of the two
215 longer conjugated systems is equal to the torsion calculated for the
216 penultimate system.
217
200   \begin{table}[h]
201   \centering
202   \caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}}
# Line 222 | Line 204 | Au     &CH3    &3.54   &0.2146& Ref. \protect\cite{vlugt:cpc20
204   \toprule
205   $i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\
206   \colrule
207 < Au      &CH3    &3.54   &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
208 < Au      &CH2    &3.54   &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
209 < Au      &CHene  &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
210 < Au      &CHar   &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
211 < Au      &CH2ar  &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
207 > Au      &\ce{CH3}       &3.54   &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
208 > Au      &\ce{CH2}       &3.54   &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
209 > Au      &\ce{CHene}     &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
210 > Au      &\ce{CHar}      &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
211 > Au      &\ce{CH2ar}     &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
212   Au      &S      &2.40   &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\
213   \botrule
214   \end {tabular}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines