ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4377
Committed: Mon Oct 26 19:05:01 2015 UTC (8 years, 8 months ago) by gezelter
Content type: application/x-tex
File size: 8432 byte(s)
Log Message:
edits

File Contents

# Content
1 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint
2 \usepackage{graphicx} % needed for figures
3 \usepackage{dcolumn} % needed for some tables
4 \usepackage{bm} % for math
5 \usepackage{amssymb} % for math
6 %\usepackage{booktabs}
7 \usepackage[english]{babel}
8 \usepackage{multirow}
9 \usepackage{tablefootnote}
10 \usepackage{times}
11 \usepackage[version=3]{mhchem}
12 \usepackage{lineno}
13 \usepackage{gensymb}
14 \usepackage{multirow}
15
16 \begin{document}
17
18 \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
19 Gold Nanospheres}
20 \author{Kelsey M. Stocker}
21 \author{Suzanne M. Neidhart}
22 \author{J. Daniel Gezelter}
23 \email{gezelter@nd.edu}
24 \affiliation{Department of Chemistry and Biochemistry, University of
25 Notre Dame, Notre Dame, IN 46556}
26
27 \maketitle
28 \vfill
29 \par Parameters not found in the TraPPE-UA force field for the intramolecular interactions of the conjugated and the penultimate alkenethiolate ligands were calculated using a potential energy surface scan at the B3LYP, 6-31G(d,p) level. Then all potential energy surfaces were fit to a Harmonic potential. A bend parameter for the beginning of the shortest penultimate thiolate ligand (\(S - CH_{2}- CH)\)was calculated by fitting \(V_{bend} = \frac{k}{2} (\theta - \theta_0)^2\) to the potential energy surface. To find an equilibrium bend angle at 109.97\degree and a spring constant of 127.37 \(kcal/mol/rad^2\). A torsional parameter was fit to the same part of the penultimate ligand (\(S - CH_{2}- CH-CH)\) for the rotation around the \( CH_{2}- CH\) bond. This potential energy surface was then fit to \(V_{tor} = c0 + c1 * [1 + \cos(\phi)] + c2 * [1 - \cos(2\phi)] + c3 * [1 + \cos(3\phi)]\).
30
31 \begin{tabular}{ |cc|cc|l| }
32 \hline
33 \multicolumn{5}{|c|}{Bond Parameters} \\
34 \hline
35 $i$&$j$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
36 \hline
37 CH3 & CH3 & 1.540 & 536 & \\
38 CH3 & CH2 & 1.540 & 536 & \\
39 CH3 & CH & 1.540 & 536 & \\
40 CH2 & CH2 & 1.540 & 536 & \\
41 CH2 & CH & 1.540 & 536 & \\
42 CH & CH & 1.540 & 536 & \\
43 Chene & CHene & 1.330 & 1098 & \\
44 CH2ene & CHene & 1.330 & 1098 & \\
45 CH3 & CHene & 1.540 & 634 & \\
46 CH2 & CHene & 1.540 & 634 & \\
47 S & CH2 & 1.820 & 444 & \\
48 CHar & CHar & 1.40 & 938 & \\
49 CHar & CH2 & 1.540 & 536 & \\
50 CHar & CH3 & 1.540 & 536 & \\
51 CH2ar & CHar & 1.40 & 938 & \\
52 S & CHar & 1.80384 & 527.951 & fit \\
53 \hline
54 \end{tabular}
55
56 Most
57 parameters are taken from references \bibpunct{}{}{,}{n}{}{,}
58 \protect\cite{TraPPE-UA.alkanes} and
59 \protect\cite{TraPPE-UA.thiols}. Cross-interactions with the Au
60 atoms were adapted from references
61 \protect\cite{landman:1998},~\protect\cite{vlugt:cpc2007154},~and
62 \protect\cite{hautman:4994}.
63
64
65 \begin{tabular}{ |ccc|cc|l| }
66 \hline
67 \multicolumn{6}{|c|}{Bend Parameters (central atom is atom $j$)} \\
68 \hline
69 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
70 \hline
71 CH2 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
72 CH3 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
73 CH3 & CH2 & CH3 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
74 CH3 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
75 CH2 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
76 CH3 & CH2 & CH & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
77 CHene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
78 CHene & CHene & CHene & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
79 CH2ene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
80 CHene & CHene & CH2 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
81 CH2 & CH2 & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
82 CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
83 CHar & CHar & CH2 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
84 CHar & CHar & CH3 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
85 CHar & CHar & CH2ar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
86 S & CH2 & CHene & 109.97 & 127.37 & fit \\
87 S & CH2 & CHar & 109.97 & 127.37 & fit \\
88 S & CHar & CHar & 123.911 & 138.093 & fit \\
89 \hline
90 \end{tabular}
91 \par The conjugated system was fit to a bond, bend, and torsion. The terminal bond for the shortest conjugated ligand \(CH-CH_2\) was fit to a potential energy surface to find an equilibrium bond length of 1.4 \AA and a spring constant of 938 kcal/mol using the Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\). A bend parameter for the beginning the longer conjugated ligands (\(S - CH_2- CH)\), was approximated to be equal to the shortest penultimate ligand parameters found. For the shortest conjugated ligand the first bend (\(S - CH- CH)\) was fit a potential energy surface in the same manor as the penultimate bend. The torsion for the first four atoms of the two longer conjugated systems is equal to the torsion calculated for the penultimate system.
92 \begin{tabular}{ |cccc|cccc|l| }
93 \hline
94 \multicolumn{9}{|c|}{Torsion Parameters (central atoms are atoms $j$ and $k$)} \\
95 \hline
96 $i$&$j$&$k$&$l$& c0&c1& c2 & c3 & source\\
97 \hline
98 CH3 & CH2 & CH2 & CH3 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
99 CH3 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
100 CH3 & CH2 & CH2 & CH & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
101 CH2 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
102 CH2 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
103 CH3 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \hline
104 X & CHene & CHene & X & \multicolumn{4}{|c|}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
105 X & CHar & CHar & X & & & & & \\ \hline
106 CH2 & CH2 & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
107 CH2 & CH2 & CH2 & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
108 CHene & CHene & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
109 CHar & CHar & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
110 \hline
111 \end{tabular}
112 \par The conjugated system was fit to a bond, bend, and torsion. The terminal bond for the shortest conjugated ligand \(CH-CH_2\) was fit to a potential energy surface to find an equilibrium bond length of 1.4 \AA and a spring constant of 938 kcal/mol using the Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\). A bend parameter for the beginning the longer conjugated ligands (\(S - CH_2- CH)\), was approximated to be equal to the shortest penultimate ligand parameters found. For the shortest conjugated ligand the first bend (\(S - CH- CH)\) was fit a potential energy surface in the same manor as the penultimate bend. The torsion for the first four atoms of the two longer conjugated systems is equal to the torsion calculated for the penultimate system.
113 \newpage
114 \bibliographystyle{aip}
115 \bibliography{NPthiols}
116
117 \end{document}