ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-1.0/libmdtools/Integrator.cpp
Revision: 1334
Committed: Fri Jul 16 18:58:03 2004 UTC (19 years, 11 months ago) by gezelter
File size: 18661 byte(s)
Log Message:
Initial import of OOPSE-1.0 source tree

File Contents

# User Rev Content
1 gezelter 1334 #include <iostream>
2     #include <stdlib.h>
3     #include <math.h>
4     #ifdef IS_MPI
5     #include "mpiSimulation.hpp"
6     #include <unistd.h>
7     #endif //is_mpi
8    
9     #ifdef PROFILE
10     #include "mdProfile.hpp"
11     #endif // profile
12    
13     #include "Integrator.hpp"
14     #include "simError.h"
15    
16    
17     template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
18     ForceFields* the_ff){
19     info = theInfo;
20     myFF = the_ff;
21     isFirst = 1;
22    
23     molecules = info->molecules;
24     nMols = info->n_mol;
25    
26     // give a little love back to the SimInfo object
27    
28     if (info->the_integrator != NULL){
29     delete info->the_integrator;
30     }
31    
32     nAtoms = info->n_atoms;
33     integrableObjects = info->integrableObjects;
34    
35    
36     // check for constraints
37    
38     constrainedA = NULL;
39     constrainedB = NULL;
40     constrainedDsqr = NULL;
41     moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45     nConstrained = 0;
46    
47     checkConstraints();
48    
49     }
50    
51     template<typename T> Integrator<T>::~Integrator(){
52    
53     if (nConstrained){
54     delete[] constrainedA;
55     delete[] constrainedB;
56     delete[] constrainedDsqr;
57     delete[] moving;
58     delete[] moved;
59     delete[] oldPos;
60     }
61    
62     }
63    
64    
65     template<typename T> void Integrator<T>::checkConstraints(void){
66     isConstrained = 0;
67    
68     Constraint* temp_con;
69     Constraint* dummy_plug;
70     temp_con = new Constraint[info->n_SRI];
71     nConstrained = 0;
72     int constrained = 0;
73    
74     SRI** theArray;
75     for (int i = 0; i < nMols; i++){
76    
77     theArray = (SRI * *) molecules[i].getMyBonds();
78     for (int j = 0; j < molecules[i].getNBonds(); j++){
79     constrained = theArray[j]->is_constrained();
80    
81     if (constrained){
82     dummy_plug = theArray[j]->get_constraint();
83     temp_con[nConstrained].set_a(dummy_plug->get_a());
84     temp_con[nConstrained].set_b(dummy_plug->get_b());
85     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86    
87     nConstrained++;
88     constrained = 0;
89     }
90     }
91    
92     theArray = (SRI * *) molecules[i].getMyBends();
93     for (int j = 0; j < molecules[i].getNBends(); j++){
94     constrained = theArray[j]->is_constrained();
95    
96     if (constrained){
97     dummy_plug = theArray[j]->get_constraint();
98     temp_con[nConstrained].set_a(dummy_plug->get_a());
99     temp_con[nConstrained].set_b(dummy_plug->get_b());
100     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101    
102     nConstrained++;
103     constrained = 0;
104     }
105     }
106    
107     theArray = (SRI * *) molecules[i].getMyTorsions();
108     for (int j = 0; j < molecules[i].getNTorsions(); j++){
109     constrained = theArray[j]->is_constrained();
110    
111     if (constrained){
112     dummy_plug = theArray[j]->get_constraint();
113     temp_con[nConstrained].set_a(dummy_plug->get_a());
114     temp_con[nConstrained].set_b(dummy_plug->get_b());
115     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116    
117     nConstrained++;
118     constrained = 0;
119     }
120     }
121     }
122    
123    
124     if (nConstrained > 0){
125     isConstrained = 1;
126    
127     if (constrainedA != NULL)
128     delete[] constrainedA;
129     if (constrainedB != NULL)
130     delete[] constrainedB;
131     if (constrainedDsqr != NULL)
132     delete[] constrainedDsqr;
133    
134     constrainedA = new int[nConstrained];
135     constrainedB = new int[nConstrained];
136     constrainedDsqr = new double[nConstrained];
137    
138     for (int i = 0; i < nConstrained; i++){
139     constrainedA[i] = temp_con[i].get_a();
140     constrainedB[i] = temp_con[i].get_b();
141     constrainedDsqr[i] = temp_con[i].get_dsqr();
142     }
143    
144    
145     // save oldAtoms to check for lode balancing later on.
146    
147     oldAtoms = nAtoms;
148    
149     moving = new int[nAtoms];
150     moved = new int[nAtoms];
151    
152     oldPos = new double[nAtoms * 3];
153     }
154    
155     delete[] temp_con;
156     }
157    
158    
159     template<typename T> void Integrator<T>::integrate(void){
160    
161     double runTime = info->run_time;
162     double sampleTime = info->sampleTime;
163     double statusTime = info->statusTime;
164     double thermalTime = info->thermalTime;
165     double resetTime = info->resetTime;
166    
167     double difference;
168     double currSample;
169     double currThermal;
170     double currStatus;
171     double currReset;
172    
173     int calcPot, calcStress;
174    
175     tStats = new Thermo(info);
176     statOut = new StatWriter(info);
177     dumpOut = new DumpWriter(info);
178    
179     atoms = info->atoms;
180    
181     dt = info->dt;
182     dt2 = 0.5 * dt;
183    
184     readyCheck();
185    
186     // remove center of mass drift velocity (in case we passed in a configuration
187     // that was drifting
188     tStats->removeCOMdrift();
189    
190     // initialize the retraints if necessary
191     if (info->useSolidThermInt && !info->useLiquidThermInt) {
192     myFF->initRestraints();
193     }
194    
195     // initialize the forces before the first step
196    
197     calcForce(1, 1);
198    
199     //execute constraint algorithm to make sure at the very beginning the system is constrained
200     if(nConstrained){
201     preMove();
202     constrainA();
203     calcForce(1, 1);
204     constrainB();
205     }
206    
207     if (info->setTemp){
208     thermalize();
209     }
210    
211     calcPot = 0;
212     calcStress = 0;
213     currSample = sampleTime + info->getTime();
214     currThermal = thermalTime+ info->getTime();
215     currStatus = statusTime + info->getTime();
216     currReset = resetTime + info->getTime();
217    
218     dumpOut->writeDump(info->getTime());
219     statOut->writeStat(info->getTime());
220    
221    
222     #ifdef IS_MPI
223     strcpy(checkPointMsg, "The integrator is ready to go.");
224     MPIcheckPoint();
225     #endif // is_mpi
226    
227     while (info->getTime() < runTime && !stopIntegrator()){
228     difference = info->getTime() + dt - currStatus;
229     if (difference > 0 || fabs(difference) < 1e-4 ){
230     calcPot = 1;
231     calcStress = 1;
232     }
233    
234     #ifdef PROFILE
235     startProfile( pro1 );
236     #endif
237    
238     integrateStep(calcPot, calcStress);
239    
240     #ifdef PROFILE
241     endProfile( pro1 );
242    
243     startProfile( pro2 );
244     #endif // profile
245    
246     info->incrTime(dt);
247    
248     if (info->setTemp){
249     if (info->getTime() >= currThermal){
250     thermalize();
251     currThermal += thermalTime;
252     }
253     }
254    
255     if (info->getTime() >= currSample){
256     dumpOut->writeDump(info->getTime());
257     currSample += sampleTime;
258     }
259    
260     if (info->getTime() >= currStatus){
261     statOut->writeStat(info->getTime());
262     calcPot = 0;
263     calcStress = 0;
264     currStatus += statusTime;
265     }
266    
267     if (info->resetIntegrator){
268     if (info->getTime() >= currReset){
269     this->resetIntegrator();
270     currReset += resetTime;
271     }
272     }
273    
274     #ifdef PROFILE
275     endProfile( pro2 );
276     #endif //profile
277    
278     #ifdef IS_MPI
279     strcpy(checkPointMsg, "successfully took a time step.");
280     MPIcheckPoint();
281     #endif // is_mpi
282     }
283    
284     // dump out a file containing the omega values for the final configuration
285     if (info->useSolidThermInt && !info->useLiquidThermInt)
286     myFF->dumpzAngle();
287    
288    
289     delete dumpOut;
290     delete statOut;
291     }
292    
293     template<typename T> void Integrator<T>::integrateStep(int calcPot,
294     int calcStress){
295     // Position full step, and velocity half step
296    
297     #ifdef PROFILE
298     startProfile(pro3);
299     #endif //profile
300    
301     //save old state (position, velocity etc)
302     preMove();
303     #ifdef PROFILE
304     endProfile(pro3);
305    
306     startProfile(pro4);
307     #endif // profile
308    
309     moveA();
310    
311     #ifdef PROFILE
312     endProfile(pro4);
313    
314     startProfile(pro5);
315     #endif//profile
316    
317    
318     #ifdef IS_MPI
319     strcpy(checkPointMsg, "Succesful moveA\n");
320     MPIcheckPoint();
321     #endif // is_mpi
322    
323     // calc forces
324     calcForce(calcPot, calcStress);
325    
326     #ifdef IS_MPI
327     strcpy(checkPointMsg, "Succesful doForces\n");
328     MPIcheckPoint();
329     #endif // is_mpi
330    
331     #ifdef PROFILE
332     endProfile( pro5 );
333    
334     startProfile( pro6 );
335     #endif //profile
336    
337     // finish the velocity half step
338    
339     moveB();
340    
341     #ifdef PROFILE
342     endProfile(pro6);
343     #endif // profile
344    
345     #ifdef IS_MPI
346     strcpy(checkPointMsg, "Succesful moveB\n");
347     MPIcheckPoint();
348     #endif // is_mpi
349     }
350    
351    
352     template<typename T> void Integrator<T>::moveA(void){
353     size_t i, j;
354     DirectionalAtom* dAtom;
355     double Tb[3], ji[3];
356     double vel[3], pos[3], frc[3];
357     double mass;
358     double omega;
359    
360     for (i = 0; i < integrableObjects.size() ; i++){
361     integrableObjects[i]->getVel(vel);
362     integrableObjects[i]->getPos(pos);
363     integrableObjects[i]->getFrc(frc);
364    
365     mass = integrableObjects[i]->getMass();
366    
367     for (j = 0; j < 3; j++){
368     // velocity half step
369     vel[j] += (dt2 * frc[j] / mass) * eConvert;
370     // position whole step
371     pos[j] += dt * vel[j];
372     }
373    
374     integrableObjects[i]->setVel(vel);
375     integrableObjects[i]->setPos(pos);
376    
377     if (integrableObjects[i]->isDirectional()){
378    
379     // get and convert the torque to body frame
380    
381     integrableObjects[i]->getTrq(Tb);
382     integrableObjects[i]->lab2Body(Tb);
383    
384     // get the angular momentum, and propagate a half step
385    
386     integrableObjects[i]->getJ(ji);
387    
388     for (j = 0; j < 3; j++)
389     ji[j] += (dt2 * Tb[j]) * eConvert;
390    
391     this->rotationPropagation( integrableObjects[i], ji );
392    
393     integrableObjects[i]->setJ(ji);
394     }
395     }
396    
397     if(nConstrained)
398     constrainA();
399     }
400    
401    
402     template<typename T> void Integrator<T>::moveB(void){
403     int i, j;
404     double Tb[3], ji[3];
405     double vel[3], frc[3];
406     double mass;
407    
408     for (i = 0; i < integrableObjects.size(); i++){
409     integrableObjects[i]->getVel(vel);
410     integrableObjects[i]->getFrc(frc);
411    
412     mass = integrableObjects[i]->getMass();
413    
414     // velocity half step
415     for (j = 0; j < 3; j++)
416     vel[j] += (dt2 * frc[j] / mass) * eConvert;
417    
418     integrableObjects[i]->setVel(vel);
419    
420     if (integrableObjects[i]->isDirectional()){
421    
422     // get and convert the torque to body frame
423    
424     integrableObjects[i]->getTrq(Tb);
425     integrableObjects[i]->lab2Body(Tb);
426    
427     // get the angular momentum, and propagate a half step
428    
429     integrableObjects[i]->getJ(ji);
430    
431     for (j = 0; j < 3; j++)
432     ji[j] += (dt2 * Tb[j]) * eConvert;
433    
434    
435     integrableObjects[i]->setJ(ji);
436     }
437     }
438    
439     if(nConstrained)
440     constrainB();
441     }
442    
443    
444     template<typename T> void Integrator<T>::preMove(void){
445     int i, j;
446     double pos[3];
447    
448     if (nConstrained){
449     for (i = 0; i < nAtoms; i++){
450     atoms[i]->getPos(pos);
451    
452     for (j = 0; j < 3; j++){
453     oldPos[3 * i + j] = pos[j];
454     }
455     }
456     }
457     }
458    
459     template<typename T> void Integrator<T>::constrainA(){
460     int i, j;
461     int done;
462     double posA[3], posB[3];
463     double velA[3], velB[3];
464     double pab[3];
465     double rab[3];
466     int a, b, ax, ay, az, bx, by, bz;
467     double rma, rmb;
468     double dx, dy, dz;
469     double rpab;
470     double rabsq, pabsq, rpabsq;
471     double diffsq;
472     double gab;
473     int iteration;
474    
475     for (i = 0; i < nAtoms; i++){
476     moving[i] = 0;
477     moved[i] = 1;
478     }
479    
480     iteration = 0;
481     done = 0;
482     while (!done && (iteration < maxIteration)){
483     done = 1;
484     for (i = 0; i < nConstrained; i++){
485     a = constrainedA[i];
486     b = constrainedB[i];
487    
488     ax = (a * 3) + 0;
489     ay = (a * 3) + 1;
490     az = (a * 3) + 2;
491    
492     bx = (b * 3) + 0;
493     by = (b * 3) + 1;
494     bz = (b * 3) + 2;
495    
496     if (moved[a] || moved[b]){
497     atoms[a]->getPos(posA);
498     atoms[b]->getPos(posB);
499    
500     for (j = 0; j < 3; j++)
501     pab[j] = posA[j] - posB[j];
502    
503     //periodic boundary condition
504    
505     info->wrapVector(pab);
506    
507     pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
508    
509     rabsq = constrainedDsqr[i];
510     diffsq = rabsq - pabsq;
511    
512     // the original rattle code from alan tidesley
513     if (fabs(diffsq) > (tol * rabsq * 2)){
514     rab[0] = oldPos[ax] - oldPos[bx];
515     rab[1] = oldPos[ay] - oldPos[by];
516     rab[2] = oldPos[az] - oldPos[bz];
517    
518     info->wrapVector(rab);
519    
520     rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
521    
522     rpabsq = rpab * rpab;
523    
524    
525     if (rpabsq < (rabsq * -diffsq)){
526     #ifdef IS_MPI
527     a = atoms[a]->getGlobalIndex();
528     b = atoms[b]->getGlobalIndex();
529     #endif //is_mpi
530     sprintf(painCave.errMsg,
531     "Constraint failure in constrainA at atom %d and %d.\n", a,
532     b);
533     painCave.isFatal = 1;
534     simError();
535     }
536    
537     rma = 1.0 / atoms[a]->getMass();
538     rmb = 1.0 / atoms[b]->getMass();
539    
540     gab = diffsq / (2.0 * (rma + rmb) * rpab);
541    
542     dx = rab[0] * gab;
543     dy = rab[1] * gab;
544     dz = rab[2] * gab;
545    
546     posA[0] += rma * dx;
547     posA[1] += rma * dy;
548     posA[2] += rma * dz;
549    
550     atoms[a]->setPos(posA);
551    
552     posB[0] -= rmb * dx;
553     posB[1] -= rmb * dy;
554     posB[2] -= rmb * dz;
555    
556     atoms[b]->setPos(posB);
557    
558     dx = dx / dt;
559     dy = dy / dt;
560     dz = dz / dt;
561    
562     atoms[a]->getVel(velA);
563    
564     velA[0] += rma * dx;
565     velA[1] += rma * dy;
566     velA[2] += rma * dz;
567    
568     atoms[a]->setVel(velA);
569    
570     atoms[b]->getVel(velB);
571    
572     velB[0] -= rmb * dx;
573     velB[1] -= rmb * dy;
574     velB[2] -= rmb * dz;
575    
576     atoms[b]->setVel(velB);
577    
578     moving[a] = 1;
579     moving[b] = 1;
580     done = 0;
581     }
582     }
583     }
584    
585     for (i = 0; i < nAtoms; i++){
586     moved[i] = moving[i];
587     moving[i] = 0;
588     }
589    
590     iteration++;
591     }
592    
593     if (!done){
594     sprintf(painCave.errMsg,
595     "Constraint failure in constrainA, too many iterations: %d\n",
596     iteration);
597     painCave.isFatal = 1;
598     simError();
599     }
600    
601     }
602    
603     template<typename T> void Integrator<T>::constrainB(void){
604     int i, j;
605     int done;
606     double posA[3], posB[3];
607     double velA[3], velB[3];
608     double vxab, vyab, vzab;
609     double rab[3];
610     int a, b, ax, ay, az, bx, by, bz;
611     double rma, rmb;
612     double dx, dy, dz;
613     double rvab;
614     double gab;
615     int iteration;
616    
617     for (i = 0; i < nAtoms; i++){
618     moving[i] = 0;
619     moved[i] = 1;
620     }
621    
622     done = 0;
623     iteration = 0;
624     while (!done && (iteration < maxIteration)){
625     done = 1;
626    
627     for (i = 0; i < nConstrained; i++){
628     a = constrainedA[i];
629     b = constrainedB[i];
630    
631     ax = (a * 3) + 0;
632     ay = (a * 3) + 1;
633     az = (a * 3) + 2;
634    
635     bx = (b * 3) + 0;
636     by = (b * 3) + 1;
637     bz = (b * 3) + 2;
638    
639     if (moved[a] || moved[b]){
640     atoms[a]->getVel(velA);
641     atoms[b]->getVel(velB);
642    
643     vxab = velA[0] - velB[0];
644     vyab = velA[1] - velB[1];
645     vzab = velA[2] - velB[2];
646    
647     atoms[a]->getPos(posA);
648     atoms[b]->getPos(posB);
649    
650     for (j = 0; j < 3; j++)
651     rab[j] = posA[j] - posB[j];
652    
653     info->wrapVector(rab);
654    
655     rma = 1.0 / atoms[a]->getMass();
656     rmb = 1.0 / atoms[b]->getMass();
657    
658     rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
659    
660     gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
661    
662     if (fabs(gab) > tol){
663     dx = rab[0] * gab;
664     dy = rab[1] * gab;
665     dz = rab[2] * gab;
666    
667     velA[0] += rma * dx;
668     velA[1] += rma * dy;
669     velA[2] += rma * dz;
670    
671     atoms[a]->setVel(velA);
672    
673     velB[0] -= rmb * dx;
674     velB[1] -= rmb * dy;
675     velB[2] -= rmb * dz;
676    
677     atoms[b]->setVel(velB);
678    
679     moving[a] = 1;
680     moving[b] = 1;
681     done = 0;
682     }
683     }
684     }
685    
686     for (i = 0; i < nAtoms; i++){
687     moved[i] = moving[i];
688     moving[i] = 0;
689     }
690    
691     iteration++;
692     }
693    
694     if (!done){
695     sprintf(painCave.errMsg,
696     "Constraint failure in constrainB, too many iterations: %d\n",
697     iteration);
698     painCave.isFatal = 1;
699     simError();
700     }
701     }
702    
703     template<typename T> void Integrator<T>::rotationPropagation
704     ( StuntDouble* sd, double ji[3] ){
705    
706     double angle;
707     double A[3][3], I[3][3];
708     int i, j, k;
709    
710     // use the angular velocities to propagate the rotation matrix a
711     // full time step
712    
713     sd->getA(A);
714     sd->getI(I);
715    
716     if (sd->isLinear()) {
717     i = sd->linearAxis();
718     j = (i+1)%3;
719     k = (i+2)%3;
720    
721     angle = dt2 * ji[j] / I[j][j];
722     this->rotate( k, i, angle, ji, A );
723    
724     angle = dt * ji[k] / I[k][k];
725     this->rotate( i, j, angle, ji, A);
726    
727     angle = dt2 * ji[j] / I[j][j];
728     this->rotate( k, i, angle, ji, A );
729    
730     } else {
731     // rotate about the x-axis
732     angle = dt2 * ji[0] / I[0][0];
733     this->rotate( 1, 2, angle, ji, A );
734    
735     // rotate about the y-axis
736     angle = dt2 * ji[1] / I[1][1];
737     this->rotate( 2, 0, angle, ji, A );
738    
739     // rotate about the z-axis
740     angle = dt * ji[2] / I[2][2];
741     sd->addZangle(angle);
742     this->rotate( 0, 1, angle, ji, A);
743    
744     // rotate about the y-axis
745     angle = dt2 * ji[1] / I[1][1];
746     this->rotate( 2, 0, angle, ji, A );
747    
748     // rotate about the x-axis
749     angle = dt2 * ji[0] / I[0][0];
750     this->rotate( 1, 2, angle, ji, A );
751    
752     }
753     sd->setA( A );
754     }
755    
756     template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
757     double angle, double ji[3],
758     double A[3][3]){
759     int i, j, k;
760     double sinAngle;
761     double cosAngle;
762     double angleSqr;
763     double angleSqrOver4;
764     double top, bottom;
765     double rot[3][3];
766     double tempA[3][3];
767     double tempJ[3];
768    
769     // initialize the tempA
770    
771     for (i = 0; i < 3; i++){
772     for (j = 0; j < 3; j++){
773     tempA[j][i] = A[i][j];
774     }
775     }
776    
777     // initialize the tempJ
778    
779     for (i = 0; i < 3; i++)
780     tempJ[i] = ji[i];
781    
782     // initalize rot as a unit matrix
783    
784     rot[0][0] = 1.0;
785     rot[0][1] = 0.0;
786     rot[0][2] = 0.0;
787    
788     rot[1][0] = 0.0;
789     rot[1][1] = 1.0;
790     rot[1][2] = 0.0;
791    
792     rot[2][0] = 0.0;
793     rot[2][1] = 0.0;
794     rot[2][2] = 1.0;
795    
796     // use a small angle aproximation for sin and cosine
797    
798     angleSqr = angle * angle;
799     angleSqrOver4 = angleSqr / 4.0;
800     top = 1.0 - angleSqrOver4;
801     bottom = 1.0 + angleSqrOver4;
802    
803     cosAngle = top / bottom;
804     sinAngle = angle / bottom;
805    
806     rot[axes1][axes1] = cosAngle;
807     rot[axes2][axes2] = cosAngle;
808    
809     rot[axes1][axes2] = sinAngle;
810     rot[axes2][axes1] = -sinAngle;
811    
812     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
813    
814     for (i = 0; i < 3; i++){
815     ji[i] = 0.0;
816     for (k = 0; k < 3; k++){
817     ji[i] += rot[i][k] * tempJ[k];
818     }
819     }
820    
821     // rotate the Rotation matrix acording to:
822     // A[][] = A[][] * transpose(rot[][])
823    
824    
825     // NOte for as yet unknown reason, we are performing the
826     // calculation as:
827     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
828    
829     for (i = 0; i < 3; i++){
830     for (j = 0; j < 3; j++){
831     A[j][i] = 0.0;
832     for (k = 0; k < 3; k++){
833     A[j][i] += tempA[i][k] * rot[j][k];
834     }
835     }
836     }
837     }
838    
839     template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
840     myFF->doForces(calcPot, calcStress);
841     }
842    
843     template<typename T> void Integrator<T>::thermalize(){
844     tStats->velocitize();
845     }
846    
847     template<typename T> double Integrator<T>::getConservedQuantity(void){
848     return tStats->getTotalE();
849     }
850     template<typename T> string Integrator<T>::getAdditionalParameters(void){
851     //By default, return a null string
852     //The reason we use string instead of char* is that if we use char*, we will
853     //return a pointer point to local variable which might cause problem
854     return string();
855     }