| 4 |
|
#include <cmath> |
| 5 |
|
|
| 6 |
|
#include "simError.h" |
| 7 |
– |
|
| 7 |
|
#include "MoLocator.hpp" |
| 8 |
|
|
| 9 |
+ |
MoLocator::MoLocator( MoleculeStamp* theStamp, ForceFields* theFF){ |
| 10 |
|
|
| 11 |
– |
MoLocator::MoLocator( MoleculeStamp* theStamp ){ |
| 12 |
– |
|
| 11 |
|
myStamp = theStamp; |
| 12 |
< |
nAtoms = myStamp->getNAtoms(); |
| 13 |
< |
|
| 16 |
< |
myCoords = NULL; |
| 17 |
< |
|
| 12 |
> |
myFF = theFF; |
| 13 |
> |
nIntegrableObjects = myStamp->getNIntegrable(); |
| 14 |
|
calcRefCoords(); |
| 15 |
|
} |
| 16 |
|
|
| 17 |
< |
MoLocator::~MoLocator(){ |
| 18 |
< |
|
| 19 |
< |
if( myCoords != NULL ) delete[] myCoords; |
| 20 |
< |
} |
| 17 |
> |
void MoLocator::placeMol( const Vector3d& offset, const Vector3d& ort, Molecule* mol){ |
| 18 |
> |
Vector3d newCoor; |
| 19 |
> |
Vector3d velocity(0.0, 0.0, 0.0); |
| 20 |
> |
Vector3d angMomentum(0.0, 0.0, 0.0); |
| 21 |
> |
double quaternion[4]; |
| 22 |
> |
vector<StuntDouble*> myIntegrableObjects; |
| 23 |
|
|
| 24 |
< |
void MoLocator::placeMol( double pos[3], double A[3][3], Atom** atomArray, |
| 25 |
< |
int atomIndex, SimState* myConfig ){ |
| 24 |
> |
quaternion[0] = 1.0; |
| 25 |
> |
quaternion[1] = 0.0; |
| 26 |
> |
quaternion[2] = 0.0; |
| 27 |
> |
quaternion[3] = 0.0; |
| 28 |
|
|
| 29 |
< |
int i,j,k; |
| 30 |
< |
double r[3], ji[3]; |
| 31 |
< |
double phi, theta, psi; |
| 32 |
< |
double sux, suy, suz; |
| 33 |
< |
double Axx, Axy, Axz, Ayx, Ayy, Ayz, Azx, Azy, Azz; |
| 34 |
< |
double ux, uy, uz, u, uSqr; |
| 35 |
< |
|
| 36 |
< |
AtomStamp* currAtom; |
| 37 |
< |
DirectionalAtom* dAtom; |
| 38 |
< |
double vel[3]; |
| 39 |
< |
for(i=0;i<3;i++)vel[i]=0.0; |
| 29 |
> |
myIntegrableObjects = mol->getIntegrableObjects(); |
| 30 |
|
|
| 31 |
< |
for(i=0; i<nAtoms; i++){ |
| 32 |
< |
|
| 33 |
< |
currAtom = myStamp->getAtom( i ); |
| 34 |
< |
j = atomIndex+i; |
| 31 |
> |
if(myIntegrableObjects.size() != nIntegrableObjects){ |
| 32 |
> |
sprintf( painCave.errMsg, |
| 33 |
> |
"MoLocator error.\n" |
| 34 |
> |
" The number of integrable objects of MoleculeStamp is not the same as that of Molecule\n"); |
| 35 |
> |
painCave.isFatal = 1; |
| 36 |
> |
simError(); |
| 37 |
|
|
| 38 |
< |
if( currAtom->haveOrientation()){ |
| 47 |
< |
|
| 48 |
< |
dAtom = new DirectionalAtom( j, myConfig); |
| 49 |
< |
atomArray[j] = dAtom; |
| 50 |
< |
atomArray[j]->setCoords(); |
| 51 |
< |
|
| 52 |
< |
// Directional Atoms have standard unit vectors which are oriented |
| 53 |
< |
// in space using the three Euler angles. |
| 54 |
< |
|
| 55 |
< |
phi = currAtom->getEulerPhi() * M_PI / 180.0; |
| 56 |
< |
theta = currAtom->getEulerTheta() * M_PI / 180.0; |
| 57 |
< |
psi = currAtom->getEulerPsi()* M_PI / 180.0; |
| 58 |
< |
|
| 59 |
< |
dAtom->setUnitFrameFromEuler(phi, theta, psi); |
| 60 |
< |
dAtom->setA( A ); |
| 61 |
< |
|
| 62 |
< |
ji[0] = 0.0; |
| 63 |
< |
ji[1] = 0.0; |
| 64 |
< |
ji[2] = 0.0; |
| 65 |
< |
dAtom->setJ( ji ); |
| 66 |
< |
|
| 67 |
< |
} |
| 68 |
< |
else{ |
| 69 |
< |
atomArray[j] = new Atom( j, myConfig); |
| 70 |
< |
atomArray[j]->setCoords(); |
| 71 |
< |
} |
| 38 |
> |
} |
| 39 |
|
|
| 40 |
< |
atomArray[j]->setType( currAtom->getType() ); |
| 74 |
< |
|
| 75 |
< |
for(k=0; k<3; k++) r[k] = myCoords[(i*3)+k]; |
| 40 |
> |
for(int i=0; i<nIntegrableObjects; i++) { |
| 41 |
|
|
| 42 |
< |
rotMe( r, A ); |
| 42 |
> |
newCoor = refCoords[i] + offset; |
| 43 |
> |
myIntegrableObjects[i]->setPos( newCoor.vec); |
| 44 |
> |
myIntegrableObjects[i]->setVel(velocity.vec); |
| 45 |
|
|
| 46 |
< |
for(k=0; k<3; k++) r[k] += pos[k]; |
| 47 |
< |
|
| 48 |
< |
atomArray[j]->setPos( r ); |
| 49 |
< |
|
| 83 |
< |
atomArray[j]->setVel( vel );; |
| 46 |
> |
if(myIntegrableObjects[i]->isDirectional()){ |
| 47 |
> |
myIntegrableObjects[i]->setQ(quaternion); |
| 48 |
> |
myIntegrableObjects[i]->setJ(angMomentum.vec); |
| 49 |
> |
} |
| 50 |
|
} |
| 85 |
– |
} |
| 51 |
|
|
| 52 |
+ |
} |
| 53 |
+ |
|
| 54 |
|
void MoLocator::calcRefCoords( void ){ |
| 55 |
+ |
AtomStamp* currAtomStamp; |
| 56 |
+ |
int nAtoms; |
| 57 |
+ |
int nRigidBodies; |
| 58 |
+ |
vector<double> mass; |
| 59 |
+ |
Vector3d coor; |
| 60 |
+ |
Vector3d refMolCom; |
| 61 |
+ |
int nAtomsInRb; |
| 62 |
+ |
double totMassInRb; |
| 63 |
+ |
double currAtomMass; |
| 64 |
|
|
| 65 |
< |
int i,j,k; |
| 90 |
< |
AtomStamp* currAtom; |
| 91 |
< |
double centerX, centerY, centerZ; |
| 92 |
< |
double smallX, smallY, smallZ; |
| 93 |
< |
double bigX, bigY, bigZ; |
| 94 |
< |
double dx, dy, dz; |
| 95 |
< |
double dsqr; |
| 96 |
< |
|
| 65 |
> |
double totMass; |
| 66 |
|
|
| 67 |
< |
centerX = 0.0; |
| 68 |
< |
centerY = 0.0; |
| 69 |
< |
centerZ = 0.0; |
| 67 |
> |
mass.resize(nIntegrableObjects); |
| 68 |
> |
|
| 69 |
> |
nAtoms= myStamp->getNAtoms(); |
| 70 |
> |
nRigidBodies = myStamp->getNRigidBodies(); |
| 71 |
|
|
| 72 |
< |
for(i=0; i<nAtoms; i++){ |
| 73 |
< |
|
| 74 |
< |
currAtom = myStamp->getAtom(i); |
| 75 |
< |
if( !currAtom->havePosition() ){ |
| 72 |
> |
// |
| 73 |
> |
for(size_t i=0; i<nAtoms; i++){ |
| 74 |
> |
|
| 75 |
> |
currAtomStamp = myStamp->getAtom(i); |
| 76 |
> |
|
| 77 |
> |
if( !currAtomStamp->havePosition() ){ |
| 78 |
|
sprintf( painCave.errMsg, |
| 79 |
< |
"MoLocator error.\n" |
| 80 |
< |
" Component %s, atom %s does not have a position specified.\n" |
| 81 |
< |
" This means MoLocator cannot initalize it's position.\n", |
| 82 |
< |
myStamp->getID(), |
| 83 |
< |
currAtom->getType() ); |
| 79 |
> |
"MoLocator error.\n" |
| 80 |
> |
" Component %s, atom %s does not have a position specified.\n" |
| 81 |
> |
" This means MoLocator cannot initalize it's position.\n", |
| 82 |
> |
myStamp->getID(), |
| 83 |
> |
currAtomStamp->getType() ); |
| 84 |
> |
|
| 85 |
|
painCave.isFatal = 1; |
| 86 |
|
simError(); |
| 87 |
|
} |
| 88 |
|
|
| 89 |
< |
|
| 90 |
< |
centerX += currAtom->getPosX(); |
| 91 |
< |
centerY += currAtom->getPosY(); |
| 92 |
< |
centerZ += currAtom->getPosZ(); |
| 93 |
< |
} |
| 89 |
> |
//if atom belongs to rigidbody, just skip it |
| 90 |
> |
if(myStamp->isAtomInRigidBody(i)) |
| 91 |
> |
continue; |
| 92 |
> |
//get mass and the reference coordinate |
| 93 |
> |
else{ |
| 94 |
> |
currAtomMass = myFF->getAtomTypeMass(currAtomStamp->getType()); |
| 95 |
> |
mass.push_back(currAtomMass); |
| 96 |
> |
coor.x = currAtomStamp->getPosX(); |
| 97 |
> |
coor.y = currAtomStamp->getPosY(); |
| 98 |
> |
coor.z = currAtomStamp->getPosZ(); |
| 99 |
> |
refCoords.push_back(coor); |
| 100 |
|
|
| 101 |
< |
centerX /= nAtoms; |
| 123 |
< |
centerY /= nAtoms; |
| 124 |
< |
centerZ /= nAtoms; |
| 125 |
< |
|
| 126 |
< |
myCoords = new double[nAtoms*3]; |
| 127 |
< |
|
| 128 |
< |
j = 0; |
| 129 |
< |
for(i=0; i<nAtoms; i++){ |
| 130 |
< |
|
| 131 |
< |
currAtom = myStamp->getAtom(i); |
| 132 |
< |
j = i*3; |
| 133 |
< |
|
| 134 |
< |
myCoords[j] = currAtom->getPosX() - centerX; |
| 135 |
< |
myCoords[j+1] = currAtom->getPosY() - centerY; |
| 136 |
< |
myCoords[j+2] = currAtom->getPosZ() - centerZ; |
| 101 |
> |
} |
| 102 |
|
} |
| 138 |
– |
|
| 139 |
– |
smallX = myCoords[0]; |
| 140 |
– |
smallY = myCoords[1]; |
| 141 |
– |
smallZ = myCoords[2]; |
| 103 |
|
|
| 104 |
< |
bigX = myCoords[0]; |
| 105 |
< |
bigY = myCoords[1]; |
| 106 |
< |
bigZ = myCoords[2]; |
| 104 |
> |
for(int i = 0; i < nRigidBodies; i++){ |
| 105 |
> |
coor.x = 0; |
| 106 |
> |
coor.y = 0; |
| 107 |
> |
coor.z = 0; |
| 108 |
> |
totMassInRb = 0; |
| 109 |
|
|
| 110 |
< |
j=0; |
| 148 |
< |
for(i=1; i<nAtoms; i++){ |
| 149 |
< |
j= i*3; |
| 150 |
< |
|
| 151 |
< |
if( myCoords[j] < smallX ) smallX = myCoords[j]; |
| 152 |
< |
if( myCoords[j+1] < smallY ) smallY = myCoords[j+1]; |
| 153 |
< |
if( myCoords[j+2] < smallZ ) smallZ = myCoords[j+2]; |
| 110 |
> |
for(int j = 0; j < nAtomsInRb; j++){ |
| 111 |
|
|
| 112 |
< |
if( myCoords[j] > bigX ) bigX = myCoords[j]; |
| 113 |
< |
if( myCoords[j+1] > bigY ) bigY = myCoords[j+1]; |
| 114 |
< |
if( myCoords[j+2] > bigZ ) bigZ = myCoords[j+2]; |
| 112 |
> |
currAtomMass = myFF->getAtomTypeMass(currAtomStamp->getType()); |
| 113 |
> |
totMassInRb += currAtomMass; |
| 114 |
> |
|
| 115 |
> |
coor.x += currAtomStamp->getPosX() * currAtomMass; |
| 116 |
> |
coor.y += currAtomStamp->getPosY() * currAtomMass; |
| 117 |
> |
coor.z += currAtomStamp->getPosZ() * currAtomMass; |
| 118 |
> |
} |
| 119 |
> |
|
| 120 |
> |
mass.push_back(totMassInRb); |
| 121 |
> |
coor /= totMassInRb; |
| 122 |
> |
refCoords.push_back(coor); |
| 123 |
|
} |
| 124 |
|
|
| 125 |
< |
|
| 126 |
< |
dx = bigX - smallX; |
| 127 |
< |
dy = bigY - smallY; |
| 128 |
< |
dz = bigZ - smallZ; |
| 164 |
< |
|
| 165 |
< |
dsqr = (dx * dx) + (dy * dy) + (dz * dz); |
| 166 |
< |
maxLength = sqrt( dsqr ); |
| 167 |
< |
} |
| 168 |
< |
|
| 169 |
< |
void MoLocator::rotMe( double r[3], double A[3][3] ){ |
| 170 |
< |
|
| 171 |
< |
double rt[3]; |
| 172 |
< |
int i,j; |
| 173 |
< |
|
| 174 |
< |
for(i=0; i<3; i++) rt[i] = r[i]; |
| 175 |
< |
|
| 176 |
< |
for(i=0; i<3; i++){ |
| 177 |
< |
r[i] = 0.0; |
| 178 |
< |
for(j=0; j<3; j++){ |
| 179 |
< |
r[i] += A[i][j] * rt[j]; |
| 180 |
< |
} |
| 125 |
> |
//calculate the reference center of mass |
| 126 |
> |
for(int i = 0; i < nIntegrableObjects; i++){ |
| 127 |
> |
refMolCom += refCoords[i] * mass[i]; |
| 128 |
> |
totMass += mass[i]; |
| 129 |
|
} |
| 130 |
< |
} |
| 130 |
> |
refMolCom / = totMass; |
| 131 |
|
|
| 132 |
< |
void getRandomRot( double rot[3][3] ){ |
| 133 |
< |
|
| 134 |
< |
double theta, phi, psi; |
| 135 |
< |
double cosTheta; |
| 188 |
< |
|
| 189 |
< |
// select random phi, psi, and cosTheta |
| 190 |
< |
|
| 191 |
< |
phi = 2.0 * M_PI * drand48(); |
| 192 |
< |
psi = 2.0 * M_PI * drand48(); |
| 193 |
< |
cosTheta = (2.0 * drand48()) - 1.0; // sample cos -1 to 1 |
| 194 |
< |
|
| 195 |
< |
theta = acos( cosTheta ); |
| 196 |
< |
|
| 197 |
< |
getEulerRot( theta, phi, psi, rot ); |
| 132 |
> |
//move the reference center of mass to (0,0,0) and adjust the reference coordinate |
| 133 |
> |
//of the integrabel objects |
| 134 |
> |
for(int i = 0; i < nIntegrableObjects; i++) |
| 135 |
> |
refCoords[i] -= refMolCom; |
| 136 |
|
} |
| 137 |
|
|
| 200 |
– |
|
| 201 |
– |
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ){ |
| 202 |
– |
|
| 203 |
– |
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
| 204 |
– |
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
| 205 |
– |
rot[0][2] = sin(theta) * sin(psi); |
| 206 |
– |
|
| 207 |
– |
rot[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
| 208 |
– |
rot[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
| 209 |
– |
rot[1][2] = sin(theta) * cos(psi); |
| 210 |
– |
|
| 211 |
– |
rot[2][0] = sin(phi) * sin(theta); |
| 212 |
– |
rot[2][1] = -cos(phi) * sin(theta); |
| 213 |
– |
rot[2][2] = cos(theta); |
| 214 |
– |
} |
| 215 |
– |
|