ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/UseTheForce/DarkSide/shapes.F90
Revision: 1717
Committed: Fri Nov 5 21:04:33 2004 UTC (19 years, 8 months ago) by chrisfen
File size: 50277 byte(s)
Log Message:
current status of the debugging process

File Contents

# Content
1 module shapes
2
3 use force_globals
4 use definitions
5 use atype_module
6 use vector_class
7 use simulation
8 use status
9 use lj
10 #ifdef IS_MPI
11 use mpiSimulation
12 #endif
13 implicit none
14
15 PRIVATE
16
17 INTEGER, PARAMETER:: CHEBYSHEV_TN = 1
18 INTEGER, PARAMETER:: CHEBYSHEV_UN = 2
19 INTEGER, PARAMETER:: LAGUERRE = 3
20 INTEGER, PARAMETER:: HERMITE = 4
21 INTEGER, PARAMETER:: SH_COS = 0
22 INTEGER, PARAMETER:: SH_SIN = 1
23
24 logical, save :: haveShapeMap = .false.
25
26 public :: do_shape_pair
27 public :: newShapeType
28 public :: complete_Shape_FF
29
30
31 type, private :: Shape
32 integer :: atid
33 integer :: nContactFuncs
34 integer :: nRangeFuncs
35 integer :: nStrengthFuncs
36 integer :: bigL
37 integer :: bigM
38 integer, pointer, dimension(:) :: ContactFuncLValue => null()
39 integer, pointer, dimension(:) :: ContactFuncMValue => null()
40 integer, pointer, dimension(:) :: ContactFunctionType => null()
41 real(kind=dp), pointer, dimension(:) :: ContactFuncCoefficient => null()
42 integer, pointer, dimension(:) :: RangeFuncLValue => null()
43 integer, pointer, dimension(:) :: RangeFuncMValue => null()
44 integer, pointer, dimension(:) :: RangeFunctionType => null()
45 real(kind=dp), pointer, dimension(:) :: RangeFuncCoefficient => null()
46 integer, pointer, dimension(:) :: StrengthFuncLValue => null()
47 integer, pointer, dimension(:) :: StrengthFuncMValue => null()
48 integer, pointer, dimension(:) :: StrengthFunctionType => null()
49 real(kind=dp), pointer, dimension(:) :: StrengthFuncCoefficient => null()
50 logical :: isLJ
51 real ( kind = dp ) :: epsilon
52 real ( kind = dp ) :: sigma
53 end type Shape
54
55 type, private :: ShapeList
56 integer :: n_shapes = 0
57 integer :: currentShape = 0
58 type (Shape), pointer :: Shapes(:) => null()
59 integer, pointer :: atidToShape(:) => null()
60 end type ShapeList
61
62 type(ShapeList), save :: ShapeMap
63
64 integer :: lmax
65
66 contains
67
68 subroutine newShapeType(nContactFuncs, ContactFuncLValue, &
69 ContactFuncMValue, ContactFunctionType, ContactFuncCoefficient, &
70 nRangeFuncs, RangeFuncLValue, RangeFuncMValue, RangeFunctionType, &
71 RangeFuncCoefficient, nStrengthFuncs, StrengthFuncLValue, &
72 StrengthFuncMValue, StrengthFunctionType, StrengthFuncCoefficient, &
73 myATID, status)
74
75 integer :: nContactFuncs
76 integer :: nRangeFuncs
77 integer :: nStrengthFuncs
78 integer :: shape_ident
79 integer :: status
80 integer :: myATID
81 integer :: bigL
82 integer :: bigM
83 integer :: j, me, nShapeTypes, nLJTypes, ntypes, current, alloc_stat
84 integer, pointer :: MatchList(:) => null()
85
86 integer, dimension(nContactFuncs) :: ContactFuncLValue
87 integer, dimension(nContactFuncs) :: ContactFuncMValue
88 integer, dimension(nContactFuncs) :: ContactFunctionType
89 real(kind=dp), dimension(nContactFuncs) :: ContactFuncCoefficient
90 integer, dimension(nRangeFuncs) :: RangeFuncLValue
91 integer, dimension(nRangeFuncs) :: RangeFuncMValue
92 integer, dimension(nRangeFuncs) :: RangeFunctionType
93 real(kind=dp), dimension(nRangeFuncs) :: RangeFuncCoefficient
94 integer, dimension(nStrengthFuncs) :: StrengthFuncLValue
95 integer, dimension(nStrengthFuncs) :: StrengthFuncMValue
96 integer, dimension(nStrengthFuncs) :: StrengthFunctionType
97 real(kind=dp), dimension(nStrengthFuncs) :: StrengthFuncCoefficient
98
99 status = 0
100 ! check to see if this is the first time into this routine...
101 if (.not.associated(ShapeMap%Shapes)) then
102
103 call getMatchingElementList(atypes, "is_Shape", .true., &
104 nShapeTypes, MatchList)
105
106 call getMatchingElementList(atypes, "is_LennardJones", .true., &
107 nLJTypes, MatchList)
108
109 ShapeMap%n_shapes = nShapeTypes + nLJTypes
110
111 allocate(ShapeMap%Shapes(nShapeTypes + nLJTypes))
112
113 ntypes = getSize(atypes)
114
115 allocate(ShapeMap%atidToShape(0:ntypes))
116 end if
117
118 ShapeMap%currentShape = ShapeMap%currentShape + 1
119 current = ShapeMap%currentShape
120
121 call allocateShape(nContactFuncs, nRangeFuncs, nStrengthFuncs, &
122 ShapeMap%Shapes(current), stat=alloc_stat)
123 if (alloc_stat .ne. 0) then
124 status = -1
125 return
126 endif
127
128 call getElementProperty(atypes, myATID, 'c_ident', me)
129
130 ShapeMap%atidToShape(me) = current
131 ShapeMap%Shapes(current)%atid = me
132 ShapeMap%Shapes(current)%nContactFuncs = nContactFuncs
133 ShapeMap%Shapes(current)%nRangeFuncs = nRangeFuncs
134 ShapeMap%Shapes(current)%nStrengthFuncs = nStrengthFuncs
135 ShapeMap%Shapes(current)%ContactFuncLValue = ContactFuncLValue
136 ShapeMap%Shapes(current)%ContactFuncMValue = ContactFuncMValue
137 ShapeMap%Shapes(current)%ContactFunctionType = ContactFunctionType
138 ShapeMap%Shapes(current)%ContactFuncCoefficient = ContactFuncCoefficient
139 ShapeMap%Shapes(current)%RangeFuncLValue = RangeFuncLValue
140 ShapeMap%Shapes(current)%RangeFuncMValue = RangeFuncMValue
141 ShapeMap%Shapes(current)%RangeFunctionType = RangeFunctionType
142 ShapeMap%Shapes(current)%RangeFuncCoefficient = RangeFuncCoefficient
143 ShapeMap%Shapes(current)%StrengthFuncLValue = StrengthFuncLValue
144 ShapeMap%Shapes(current)%StrengthFuncMValue = StrengthFuncMValue
145 ShapeMap%Shapes(current)%StrengthFunctionType = StrengthFunctionType
146 ShapeMap%Shapes(current)%StrengthFuncCoefficient = StrengthFuncCoefficient
147
148 bigL = -1
149 bigM = -1
150
151 do j = 1, ShapeMap%Shapes(current)%nContactFuncs
152 if (ShapeMap%Shapes(current)%ContactFuncLValue(j) .gt. bigL) then
153 bigL = ShapeMap%Shapes(current)%ContactFuncLValue(j)
154 endif
155 if (ShapeMap%Shapes(current)%ContactFuncMValue(j) .gt. bigM) then
156 bigM = ShapeMap%Shapes(current)%ContactFuncMValue(j)
157 endif
158 enddo
159 do j = 1, ShapeMap%Shapes(current)%nRangeFuncs
160 if (ShapeMap%Shapes(current)%RangeFuncLValue(j) .gt. bigL) then
161 bigL = ShapeMap%Shapes(current)%RangeFuncLValue(j)
162 endif
163 if (ShapeMap%Shapes(current)%RangeFuncMValue(j) .gt. bigM) then
164 bigM = ShapeMap%Shapes(current)%RangeFuncMValue(j)
165 endif
166 enddo
167 do j = 1, ShapeMap%Shapes(current)%nStrengthFuncs
168 if (ShapeMap%Shapes(current)%StrengthFuncLValue(j) .gt. bigL) then
169 bigL = ShapeMap%Shapes(current)%StrengthFuncLValue(j)
170 endif
171 if (ShapeMap%Shapes(current)%StrengthFuncMValue(j) .gt. bigM) then
172 bigM = ShapeMap%Shapes(current)%StrengthFuncMValue(j)
173 endif
174 enddo
175
176 ShapeMap%Shapes(current)%bigL = bigL
177 ShapeMap%Shapes(current)%bigM = bigM
178
179 end subroutine newShapeType
180
181 subroutine allocateShape(nContactFuncs, nRangeFuncs, nStrengthFuncs, &
182 myShape, stat)
183
184 integer, intent(in) :: nContactFuncs, nRangeFuncs, nStrengthFuncs
185 type(Shape), intent(inout) :: myShape
186 integer, intent(out) :: stat
187 integer :: alloc_stat
188
189 stat = 0
190 if (associated(myShape%contactFuncLValue)) then
191 deallocate(myShape%contactFuncLValue)
192 endif
193 allocate(myShape%contactFuncLValue(nContactFuncs), stat = alloc_stat)
194 if (alloc_stat .ne. 0) then
195 stat = -1
196 return
197 endif
198 if (associated(myShape%contactFuncMValue)) then
199 deallocate(myShape%contactFuncMValue)
200 endif
201 allocate(myShape%contactFuncMValue(nContactFuncs), stat = alloc_stat)
202 if (alloc_stat .ne. 0) then
203 stat = -1
204 return
205 endif
206 if (associated(myShape%contactFunctionType)) then
207 deallocate(myShape%contactFunctionType)
208 endif
209 allocate(myShape%contactFunctionType(nContactFuncs), stat = alloc_stat)
210 if (alloc_stat .ne. 0) then
211 stat = -1
212 return
213 endif
214 if (associated(myShape%contactFuncCoefficient)) then
215 deallocate(myShape%contactFuncCoefficient)
216 endif
217 allocate(myShape%contactFuncCoefficient(nContactFuncs), stat = alloc_stat)
218 if (alloc_stat .ne. 0) then
219 stat = -1
220 return
221 endif
222
223 if (associated(myShape%rangeFuncLValue)) then
224 deallocate(myShape%rangeFuncLValue)
225 endif
226 allocate(myShape%rangeFuncLValue(nRangeFuncs), stat = alloc_stat)
227 if (alloc_stat .ne. 0) then
228 stat = -1
229 return
230 endif
231 if (associated(myShape%rangeFuncMValue)) then
232 deallocate(myShape%rangeFuncMValue)
233 endif
234 allocate(myShape%rangeFuncMValue(nRangeFuncs), stat = alloc_stat)
235 if (alloc_stat .ne. 0) then
236 stat = -1
237 return
238 endif
239 if (associated(myShape%rangeFunctionType)) then
240 deallocate(myShape%rangeFunctionType)
241 endif
242 allocate(myShape%rangeFunctionType(nRangeFuncs), stat = alloc_stat)
243 if (alloc_stat .ne. 0) then
244 stat = -1
245 return
246 endif
247 if (associated(myShape%rangeFuncCoefficient)) then
248 deallocate(myShape%rangeFuncCoefficient)
249 endif
250 allocate(myShape%rangeFuncCoefficient(nRangeFuncs), stat = alloc_stat)
251 if (alloc_stat .ne. 0) then
252 stat = -1
253 return
254 endif
255
256 if (associated(myShape%strengthFuncLValue)) then
257 deallocate(myShape%strengthFuncLValue)
258 endif
259 allocate(myShape%strengthFuncLValue(nStrengthFuncs), stat = alloc_stat)
260 if (alloc_stat .ne. 0) then
261 stat = -1
262 return
263 endif
264 if (associated(myShape%strengthFuncMValue)) then
265 deallocate(myShape%strengthFuncMValue)
266 endif
267 allocate(myShape%strengthFuncMValue(nStrengthFuncs), stat = alloc_stat)
268 if (alloc_stat .ne. 0) then
269 stat = -1
270 return
271 endif
272 if (associated(myShape%strengthFunctionType)) then
273 deallocate(myShape%strengthFunctionType)
274 endif
275 allocate(myShape%strengthFunctionType(nStrengthFuncs), stat = alloc_stat)
276 if (alloc_stat .ne. 0) then
277 stat = -1
278 return
279 endif
280 if (associated(myShape%strengthFuncCoefficient)) then
281 deallocate(myShape%strengthFuncCoefficient)
282 endif
283 allocate(myShape%strengthFuncCoefficient(nStrengthFuncs), stat=alloc_stat)
284 if (alloc_stat .ne. 0) then
285 stat = -1
286 return
287 endif
288
289 return
290
291 end subroutine allocateShape
292
293 subroutine complete_Shape_FF(status)
294 integer :: status
295 integer :: i, j, l, m, lm, function_type
296 real(kind=dp) :: thisDP, sigma
297 integer :: alloc_stat, iTheta, iPhi, nSteps, nAtypes, thisIP, current
298 logical :: thisProperty
299
300 status = 0
301 if (ShapeMap%currentShape == 0) then
302 call handleError("init_Shape_FF", "No members in ShapeMap")
303 status = -1
304 return
305 end if
306
307 nAtypes = getSize(atypes)
308
309 if (nAtypes == 0) then
310 status = -1
311 return
312 end if
313
314 ! atypes comes from c side
315 do i = 0, nAtypes
316
317 call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
318
319 if (thisProperty) then
320
321 ShapeMap%currentShape = ShapeMap%currentShape + 1
322 current = ShapeMap%currentShape
323
324 call getElementProperty(atypes, i, "c_ident", thisIP)
325 ShapeMap%atidToShape(thisIP) = current
326 ShapeMap%Shapes(current)%atid = thisIP
327
328 ShapeMap%Shapes(current)%isLJ = .true.
329
330 ShapeMap%Shapes(current)%epsilon = getEpsilon(thisIP)
331 ShapeMap%Shapes(current)%sigma = getSigma(thisIP)
332
333 endif
334
335 end do
336
337 haveShapeMap = .true.
338
339 end subroutine complete_Shape_FF
340
341 subroutine do_shape_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, &
342 pot, A, f, t, do_pot)
343
344 INTEGER, PARAMETER:: LMAX = 64
345 INTEGER, PARAMETER:: MMAX = 64
346
347 integer, intent(in) :: atom1, atom2
348 real (kind=dp), intent(inout) :: rij, r2
349 real (kind=dp), dimension(3), intent(in) :: d
350 real (kind=dp), dimension(3), intent(inout) :: fpair
351 real (kind=dp) :: pot, vpair, sw, dswdr
352 real (kind=dp), dimension(9,nLocal) :: A
353 real (kind=dp), dimension(3,nLocal) :: f
354 real (kind=dp), dimension(3,nLocal) :: t
355 logical, intent(in) :: do_pot
356
357 real (kind=dp) :: r3, r5, rt2, rt3, rt5, rt6, rt11, rt12, rt126
358 integer :: atid1, atid2, st1, st2
359 integer :: l, m, lm, id1, id2, localError, function_type
360 real (kind=dp) :: sigma_i, s_i, eps_i, sigma_j, s_j, eps_j
361 real (kind=dp) :: coeff
362 real (kind=dp) :: pot_temp
363
364 real (kind=dp) :: dsigmaidx, dsigmaidy, dsigmaidz
365 real (kind=dp) :: dsigmaidux, dsigmaiduy, dsigmaiduz
366 real (kind=dp) :: dsigmajdx, dsigmajdy, dsigmajdz
367 real (kind=dp) :: dsigmajdux, dsigmajduy, dsigmajduz
368
369 real (kind=dp) :: dsidx, dsidy, dsidz
370 real (kind=dp) :: dsidux, dsiduy, dsiduz
371 real (kind=dp) :: dsjdx, dsjdy, dsjdz
372 real (kind=dp) :: dsjdux, dsjduy, dsjduz
373
374 real (kind=dp) :: depsidx, depsidy, depsidz
375 real (kind=dp) :: depsidux, depsiduy, depsiduz
376 real (kind=dp) :: depsjdx, depsjdy, depsjdz
377 real (kind=dp) :: depsjdux, depsjduy, depsjduz
378
379 real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2
380
381 real (kind=dp) :: sti2, stj2
382
383 real (kind=dp) :: proji, proji3, projj, projj3
384 real (kind=dp) :: cti, ctj, cpi, cpj, spi, spj
385 real (kind=dp) :: Phunc, sigma, s, eps, rtdenom, rt
386
387 real (kind=dp) :: dctidx, dctidy, dctidz
388 real (kind=dp) :: dctidux, dctiduy, dctiduz
389 real (kind=dp) :: dctjdx, dctjdy, dctjdz
390 real (kind=dp) :: dctjdux, dctjduy, dctjduz
391
392 real (kind=dp) :: dcpidx, dcpidy, dcpidz
393 real (kind=dp) :: dcpidux, dcpiduy, dcpiduz
394 real (kind=dp) :: dcpjdx, dcpjdy, dcpjdz
395 real (kind=dp) :: dcpjdux, dcpjduy, dcpjduz
396
397 real (kind=dp) :: dspidx, dspidy, dspidz
398 real (kind=dp) :: dspidux, dspiduy, dspiduz
399 real (kind=dp) :: dspjdx, dspjdy, dspjdz
400 real (kind=dp) :: dspjdux, dspjduy, dspjduz
401
402 real (kind=dp) :: dPhuncdX, dPhuncdY, dPhuncdZ
403 real (kind=dp) :: dPhuncdUx, dPhuncdUy, dPhuncdUz
404
405 real (kind=dp) :: dsigmadxi, dsigmadyi, dsigmadzi
406 real (kind=dp) :: dsigmaduxi, dsigmaduyi, dsigmaduzi
407 real (kind=dp) :: dsigmadxj, dsigmadyj, dsigmadzj
408 real (kind=dp) :: dsigmaduxj, dsigmaduyj, dsigmaduzj
409
410 real (kind=dp) :: dsdxi, dsdyi, dsdzi
411 real (kind=dp) :: dsduxi, dsduyi, dsduzi
412 real (kind=dp) :: dsdxj, dsdyj, dsdzj
413 real (kind=dp) :: dsduxj, dsduyj, dsduzj
414
415 real (kind=dp) :: depsdxi, depsdyi, depsdzi
416 real (kind=dp) :: depsduxi, depsduyi, depsduzi
417 real (kind=dp) :: depsdxj, depsdyj, depsdzj
418 real (kind=dp) :: depsduxj, depsduyj, depsduzj
419
420 real (kind=dp) :: drtdxi, drtdyi, drtdzi
421 real (kind=dp) :: drtduxi, drtduyi, drtduzi
422 real (kind=dp) :: drtdxj, drtdyj, drtdzj
423 real (kind=dp) :: drtduxj, drtduyj, drtduzj
424
425 real (kind=dp) :: drdxi, drdyi, drdzi
426 real (kind=dp) :: drduxi, drduyi, drduzi
427 real (kind=dp) :: drdxj, drdyj, drdzj
428 real (kind=dp) :: drduxj, drduyj, drduzj
429
430 real (kind=dp) :: dvdxi, dvdyi, dvdzi
431 real (kind=dp) :: dvduxi, dvduyi, dvduzi
432 real (kind=dp) :: dvdxj, dvdyj, dvdzj
433 real (kind=dp) :: dvduxj, dvduyj, dvduzj
434
435 real (kind=dp) :: fxi, fyi, fzi, fxj, fyj, fzj
436 real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj
437 real (kind=dp) :: fxii, fyii, fzii, fxij, fyij, fzij
438 real (kind=dp) :: fxji, fyji, fzji, fxjj, fyjj, fzjj
439 real (kind=dp) :: fxradial, fyradial, fzradial
440
441 real (kind=dp) :: plm_i(0:LMAX,0:MMAX), dlm_i(0:LMAX,0:MMAX)
442 real (kind=dp) :: plm_j(0:LMAX,0:MMAX), dlm_j(0:LMAX,0:MMAX)
443 real (kind=dp) :: tm_i(0:MMAX), dtm_i(0:MMAX), um_i(0:MMAX), dum_i(0:MMAX)
444 real (kind=dp) :: tm_j(0:MMAX), dtm_j(0:MMAX), um_j(0:MMAX), dum_j(0:MMAX)
445
446 if (.not.haveShapeMap) then
447 call handleError("calc_shape", "NO SHAPEMAP!!!!")
448 return
449 endif
450
451 !! We assume that the rotation matrices have already been calculated
452 !! and placed in the A array.
453
454 r3 = r2*rij
455 r5 = r3*r2
456
457 drdxi = -d(1) / rij
458 drdyi = -d(2) / rij
459 drdzi = -d(3) / rij
460
461 drdxj = d(1) / rij
462 drdyj = d(2) / rij
463 drdzj = d(3) / rij
464
465 ! find the atom type id (atid) for each atom:
466 #ifdef IS_MPI
467 atid1 = atid_Row(atom1)
468 atid2 = atid_Col(atom2)
469 #else
470 atid1 = atid(atom1)
471 atid2 = atid(atom2)
472 #endif
473
474 ! use the atid to find the shape type (st) for each atom:
475 st1 = ShapeMap%atidToShape(atid1)
476 st2 = ShapeMap%atidToShape(atid2)
477
478 if (ShapeMap%Shapes(st1)%isLJ) then
479
480 sigma_i = ShapeMap%Shapes(st1)%sigma
481 s_i = ShapeMap%Shapes(st1)%sigma
482 eps_i = ShapeMap%Shapes(st1)%epsilon
483 dsigmaidx = 0.0d0
484 dsigmaidy = 0.0d0
485 dsigmaidz = 0.0d0
486 dsigmaidux = 0.0d0
487 dsigmaiduy = 0.0d0
488 dsigmaiduz = 0.0d0
489 dsidx = 0.0d0
490 dsidy = 0.0d0
491 dsidz = 0.0d0
492 dsidux = 0.0d0
493 dsiduy = 0.0d0
494 dsiduz = 0.0d0
495 depsidx = 0.0d0
496 depsidy = 0.0d0
497 depsidz = 0.0d0
498 depsidux = 0.0d0
499 depsiduy = 0.0d0
500 depsiduz = 0.0d0
501 else
502
503 #ifdef IS_MPI
504 ! rotate the inter-particle separation into the two different
505 ! body-fixed coordinate systems:
506
507 xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
508 yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
509 zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
510
511 #else
512 ! rotate the inter-particle separation into the two different
513 ! body-fixed coordinate systems:
514
515 xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
516 yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
517 zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
518
519 #endif
520
521 xi2 = xi*xi
522 yi2 = yi*yi
523 zi2 = zi*zi
524 cti = zi / rij
525
526 if (cti .gt. 1.0_dp) cti = 1.0_dp
527 if (cti .lt. -1.0_dp) cti = -1.0_dp
528
529 dctidx = - zi * xi / r3
530 dctidy = - zi * yi / r3
531 dctidz = 1.0d0 / rij - zi2 / r3
532 dctidux = - (zi * xi2) / r3
533 dctiduy = - (zi * yi2) / r3
534 dctiduz = zi / rij - (zi2 * zi) / r3
535
536 ! this is an attempt to try to truncate the singularity when
537 ! sin(theta) is near 0.0:
538
539 sti2 = 1.0_dp - cti*cti
540 if (dabs(sti2) .lt. 1.0d-12) then
541 proji = sqrt(rij * 1.0d-12)
542 dcpidx = 1.0d0 / proji
543 dcpidy = 0.0d0
544 dcpidux = xi / proji
545 dcpiduy = 0.0d0
546 dspidx = 0.0d0
547 dspidy = 1.0d0 / proji
548 dspidux = 0.0d0
549 dspiduy = yi / proji
550 else
551 proji = sqrt(xi2 + yi2)
552 proji3 = proji*proji*proji
553 dcpidx = 1.0d0 / proji - xi2 / proji3
554 dcpidy = - xi * yi / proji3
555 dcpidux = xi / proji - (xi2 * xi) / proji3
556 dcpiduy = - (xi * yi2) / proji3
557 dspidx = - xi * yi / proji3
558 dspidy = 1.0d0 / proji - yi2 / proji3
559 dspidux = - (yi * xi2) / proji3
560 dspiduy = yi / proji - (yi2 * yi) / proji3
561 endif
562
563 cpi = xi / proji
564 dcpidz = 0.0d0
565 dcpiduz = 0.0d0
566
567 spi = yi / proji
568 dspidz = 0.0d0
569 dspiduz = 0.0d0
570
571 call Associated_Legendre(cti, ShapeMap%Shapes(st1)%bigM, &
572 ShapeMap%Shapes(st1)%bigL, LMAX, &
573 plm_i, dlm_i)
574
575 call Orthogonal_Polynomial(cpi, ShapeMap%Shapes(st1)%bigM, MMAX, &
576 CHEBYSHEV_TN, tm_i, dtm_i)
577 call Orthogonal_Polynomial(cpi, ShapeMap%Shapes(st1)%bigM, MMAX, &
578 CHEBYSHEV_UN, um_i, dum_i)
579
580 sigma_i = 0.0d0
581 s_i = 0.0d0
582 eps_i = 0.0d0
583 dsigmaidx = 0.0d0
584 dsigmaidy = 0.0d0
585 dsigmaidz = 0.0d0
586 dsigmaidux = 0.0d0
587 dsigmaiduy = 0.0d0
588 dsigmaiduz = 0.0d0
589 dsidx = 0.0d0
590 dsidy = 0.0d0
591 dsidz = 0.0d0
592 dsidux = 0.0d0
593 dsiduy = 0.0d0
594 dsiduz = 0.0d0
595 depsidx = 0.0d0
596 depsidy = 0.0d0
597 depsidz = 0.0d0
598 depsidux = 0.0d0
599 depsiduy = 0.0d0
600 depsiduz = 0.0d0
601
602 do lm = 1, ShapeMap%Shapes(st1)%nContactFuncs
603 l = ShapeMap%Shapes(st1)%ContactFuncLValue(lm)
604 m = ShapeMap%Shapes(st1)%ContactFuncMValue(lm)
605 coeff = ShapeMap%Shapes(st1)%ContactFuncCoefficient(lm)
606 function_type = ShapeMap%Shapes(st1)%ContactFunctionType(lm)
607
608 if ((function_type .eq. SH_COS).or.(m.eq.0)) then
609 Phunc = coeff * tm_i(m)
610 dPhuncdX = coeff * dtm_i(m) * dcpidx
611 dPhuncdY = coeff * dtm_i(m) * dcpidy
612 dPhuncdZ = coeff * dtm_i(m) * dcpidz
613 dPhuncdUz = coeff * dtm_i(m) * dcpidux
614 dPhuncdUy = coeff * dtm_i(m) * dcpiduy
615 dPhuncdUz = coeff * dtm_i(m) * dcpiduz
616 else
617 Phunc = coeff * spi * um_i(m-1)
618 dPhuncdX = coeff * (spi * dum_i(m-1) * dcpidx + dspidx *um_i(m-1))
619 dPhuncdY = coeff * (spi * dum_i(m-1) * dcpidy + dspidy *um_i(m-1))
620 dPhuncdZ = coeff * (spi * dum_i(m-1) * dcpidz + dspidz *um_i(m-1))
621 dPhuncdUx = coeff*(spi * dum_i(m-1)*dcpidux + dspidux *um_i(m-1))
622 dPhuncdUy = coeff*(spi * dum_i(m-1)*dcpiduy + dspiduy *um_i(m-1))
623 dPhuncdUz = coeff*(spi * dum_i(m-1)*dcpiduz + dspiduz *um_i(m-1))
624 endif
625
626 sigma_i = sigma_i + plm_i(m,l)*Phunc
627
628 dsigmaidx = dsigmaidx + plm_i(m,l)*dPhuncdX + &
629 Phunc * dlm_i(m,l) * dctidx
630 dsigmaidy = dsigmaidy + plm_i(m,l)*dPhuncdY + &
631 Phunc * dlm_i(m,l) * dctidy
632 dsigmaidz = dsigmaidz + plm_i(m,l)*dPhuncdZ + &
633 Phunc * dlm_i(m,l) * dctidz
634
635 dsigmaidux = dsigmaidux + plm_i(m,l)* dPhuncdUx + &
636 Phunc * dlm_i(m,l) * dctidux
637 dsigmaiduy = dsigmaiduy + plm_i(m,l)* dPhuncdUy + &
638 Phunc * dlm_i(m,l) * dctiduy
639 dsigmaiduz = dsigmaiduz + plm_i(m,l)* dPhuncdUz + &
640 Phunc * dlm_i(m,l) * dctiduz
641
642 end do
643
644 do lm = 1, ShapeMap%Shapes(st1)%nRangeFuncs
645 l = ShapeMap%Shapes(st1)%RangeFuncLValue(lm)
646 m = ShapeMap%Shapes(st1)%RangeFuncMValue(lm)
647 coeff = ShapeMap%Shapes(st1)%RangeFuncCoefficient(lm)
648 function_type = ShapeMap%Shapes(st1)%RangeFunctionType(lm)
649
650 if ((function_type .eq. SH_COS).or.(m.eq.0)) then
651 Phunc = coeff * tm_i(m)
652 dPhuncdX = coeff * dtm_i(m) * dcpidx
653 dPhuncdY = coeff * dtm_i(m) * dcpidy
654 dPhuncdZ = coeff * dtm_i(m) * dcpidz
655 dPhuncdUz = coeff * dtm_i(m) * dcpidux
656 dPhuncdUy = coeff * dtm_i(m) * dcpiduy
657 dPhuncdUz = coeff * dtm_i(m) * dcpiduz
658 else
659 Phunc = coeff * spi * um_i(m-1)
660 dPhuncdX = coeff * (spi * dum_i(m-1) * dcpidx + dspidx *um_i(m-1))
661 dPhuncdY = coeff * (spi * dum_i(m-1) * dcpidy + dspidy *um_i(m-1))
662 dPhuncdZ = coeff * (spi * dum_i(m-1) * dcpidz + dspidz *um_i(m-1))
663 dPhuncdUx = coeff*(spi * dum_i(m-1)*dcpidux + dspidux *um_i(m-1))
664 dPhuncdUy = coeff*(spi * dum_i(m-1)*dcpiduy + dspiduy *um_i(m-1))
665 dPhuncdUz = coeff*(spi * dum_i(m-1)*dcpiduz + dspiduz *um_i(m-1))
666 endif
667
668 s_i = s_i + plm_i(m,l)*Phunc
669
670 dsidx = dsidx + plm_i(m,l)*dPhuncdX + &
671 Phunc * dlm_i(m,l) * dctidx
672 dsidy = dsidy + plm_i(m,l)*dPhuncdY + &
673 Phunc * dlm_i(m,l) * dctidy
674 dsidz = dsidz + plm_i(m,l)*dPhuncdZ + &
675 Phunc * dlm_i(m,l) * dctidz
676
677 dsidux = dsidux + plm_i(m,l)* dPhuncdUx + &
678 Phunc * dlm_i(m,l) * dctidux
679 dsiduy = dsiduy + plm_i(m,l)* dPhuncdUy + &
680 Phunc * dlm_i(m,l) * dctiduy
681 dsiduz = dsiduz + plm_i(m,l)* dPhuncdUz + &
682 Phunc * dlm_i(m,l) * dctiduz
683
684 end do
685
686 do lm = 1, ShapeMap%Shapes(st1)%nStrengthFuncs
687 l = ShapeMap%Shapes(st1)%StrengthFuncLValue(lm)
688 m = ShapeMap%Shapes(st1)%StrengthFuncMValue(lm)
689 coeff = ShapeMap%Shapes(st1)%StrengthFuncCoefficient(lm)
690 function_type = ShapeMap%Shapes(st1)%StrengthFunctionType(lm)
691
692 if ((function_type .eq. SH_COS).or.(m.eq.0)) then
693 Phunc = coeff * tm_i(m)
694 dPhuncdX = coeff * dtm_i(m) * dcpidx
695 dPhuncdY = coeff * dtm_i(m) * dcpidy
696 dPhuncdZ = coeff * dtm_i(m) * dcpidz
697 dPhuncdUz = coeff * dtm_i(m) * dcpidux
698 dPhuncdUy = coeff * dtm_i(m) * dcpiduy
699 dPhuncdUz = coeff * dtm_i(m) * dcpiduz
700 else
701 Phunc = coeff * spi * um_i(m-1)
702 dPhuncdX = coeff * (spi * dum_i(m-1) * dcpidx + dspidx *um_i(m-1))
703 dPhuncdY = coeff * (spi * dum_i(m-1) * dcpidy + dspidy *um_i(m-1))
704 dPhuncdZ = coeff * (spi * dum_i(m-1) * dcpidz + dspidz *um_i(m-1))
705 dPhuncdUx = coeff*(spi * dum_i(m-1)*dcpidux + dspidux *um_i(m-1))
706 dPhuncdUy = coeff*(spi * dum_i(m-1)*dcpiduy + dspiduy *um_i(m-1))
707 dPhuncdUz = coeff*(spi * dum_i(m-1)*dcpiduz + dspiduz *um_i(m-1))
708 endif
709
710 eps_i = eps_i + plm_i(m,l)*Phunc
711
712 depsidx = depsidx + plm_i(m,l)*dPhuncdX + &
713 Phunc * dlm_i(m,l) * dctidx
714 depsidy = depsidy + plm_i(m,l)*dPhuncdY + &
715 Phunc * dlm_i(m,l) * dctidy
716 depsidz = depsidz + plm_i(m,l)*dPhuncdZ + &
717 Phunc * dlm_i(m,l) * dctidz
718
719 depsidux = depsidux + plm_i(m,l)* dPhuncdUx + &
720 Phunc * dlm_i(m,l) * dctidux
721 depsiduy = depsiduy + plm_i(m,l)* dPhuncdUy + &
722 Phunc * dlm_i(m,l) * dctiduy
723 depsiduz = depsiduz + plm_i(m,l)* dPhuncdUz + &
724 Phunc * dlm_i(m,l) * dctiduz
725
726 end do
727
728 endif
729
730 ! now do j:
731
732 if (ShapeMap%Shapes(st2)%isLJ) then
733 sigma_j = ShapeMap%Shapes(st2)%sigma
734 s_j = ShapeMap%Shapes(st2)%sigma
735 eps_j = ShapeMap%Shapes(st2)%epsilon
736 dsigmajdx = 0.0d0
737 dsigmajdy = 0.0d0
738 dsigmajdz = 0.0d0
739 dsigmajdux = 0.0d0
740 dsigmajduy = 0.0d0
741 dsigmajduz = 0.0d0
742 dsjdx = 0.0d0
743 dsjdy = 0.0d0
744 dsjdz = 0.0d0
745 dsjdux = 0.0d0
746 dsjduy = 0.0d0
747 dsjduz = 0.0d0
748 depsjdx = 0.0d0
749 depsjdy = 0.0d0
750 depsjdz = 0.0d0
751 depsjdux = 0.0d0
752 depsjduy = 0.0d0
753 depsjduz = 0.0d0
754 else
755
756 #ifdef IS_MPI
757 ! rotate the inter-particle separation into the two different
758 ! body-fixed coordinate systems:
759 ! negative sign because this is the vector from j to i:
760
761 xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
762 yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
763 zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
764 #else
765 ! rotate the inter-particle separation into the two different
766 ! body-fixed coordinate systems:
767 ! negative sign because this is the vector from j to i:
768
769 xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
770 yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
771 zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
772 #endif
773
774 xj2 = xj*xj
775 yj2 = yj*yj
776 zj2 = zj*zj
777 ctj = zj / rij
778
779 if (ctj .gt. 1.0_dp) ctj = 1.0_dp
780 if (ctj .lt. -1.0_dp) ctj = -1.0_dp
781
782 dctjdx = - zj * xj / r3
783 dctjdy = - zj * yj / r3
784 dctjdz = 1.0d0 / rij - zj2 / r3
785 dctjdux = - (zi * xj2) / r3
786 dctjduy = - (zj * yj2) / r3
787 dctjduz = zj / rij - (zj2 * zj) / r3
788
789 ! this is an attempt to try to truncate the singularity when
790 ! sin(theta) is near 0.0:
791
792 stj2 = 1.0_dp - ctj*ctj
793 if (dabs(stj2) .lt. 1.0d-12) then
794 projj = sqrt(rij * 1.0d-12)
795 dcpjdx = 1.0d0 / projj
796 dcpjdy = 0.0d0
797 dcpjdux = xj / projj
798 dcpjduy = 0.0d0
799 dspjdx = 0.0d0
800 dspjdy = 1.0d0 / projj
801 dspjdux = 0.0d0
802 dspjduy = yj / projj
803 else
804 projj = sqrt(xj2 + yj2)
805 projj3 = projj*projj*projj
806 dcpjdx = 1.0d0 / projj - xj2 / projj3
807 dcpjdy = - xj * yj / projj3
808 dcpjdux = xj / projj - (xj2 * xj) / projj3
809 dcpjduy = - (xj * yj2) / projj3
810 dspjdx = - xj * yj / projj3
811 dspjdy = 1.0d0 / projj - yj2 / projj3
812 dspjdux = - (yj * xj2) / projj3
813 dspjduy = yj / projj - (yj2 * yj) / projj3
814 endif
815
816 cpj = xj / projj
817 dcpjdz = 0.0d0
818 dcpjduz = 0.0d0
819
820 spj = yj / projj
821 dspjdz = 0.0d0
822 dspjduz = 0.0d0
823
824
825 write(*,*) 'dcpdu = ' ,dcpidux, dcpiduy, dcpiduz
826 write(*,*) 'dcpdu = ' ,dcpjdux, dcpjduy, dcpjduz
827 call Associated_Legendre(ctj, ShapeMap%Shapes(st2)%bigM, &
828 ShapeMap%Shapes(st2)%bigL, LMAX, &
829 plm_j, dlm_j)
830
831 call Orthogonal_Polynomial(cpj, ShapeMap%Shapes(st2)%bigM, MMAX, &
832 CHEBYSHEV_TN, tm_j, dtm_j)
833 call Orthogonal_Polynomial(cpj, ShapeMap%Shapes(st2)%bigM, MMAX, &
834 CHEBYSHEV_UN, um_j, dum_j)
835
836 sigma_j = 0.0d0
837 s_j = 0.0d0
838 eps_j = 0.0d0
839 dsigmajdx = 0.0d0
840 dsigmajdy = 0.0d0
841 dsigmajdz = 0.0d0
842 dsigmajdux = 0.0d0
843 dsigmajduy = 0.0d0
844 dsigmajduz = 0.0d0
845 dsjdx = 0.0d0
846 dsjdy = 0.0d0
847 dsjdz = 0.0d0
848 dsjdux = 0.0d0
849 dsjduy = 0.0d0
850 dsjduz = 0.0d0
851 depsjdx = 0.0d0
852 depsjdy = 0.0d0
853 depsjdz = 0.0d0
854 depsjdux = 0.0d0
855 depsjduy = 0.0d0
856 depsjduz = 0.0d0
857
858 do lm = 1, ShapeMap%Shapes(st2)%nContactFuncs
859 l = ShapeMap%Shapes(st2)%ContactFuncLValue(lm)
860 m = ShapeMap%Shapes(st2)%ContactFuncMValue(lm)
861 coeff = ShapeMap%Shapes(st2)%ContactFuncCoefficient(lm)
862 function_type = ShapeMap%Shapes(st2)%ContactFunctionType(lm)
863
864 if ((function_type .eq. SH_COS).or.(m.eq.0)) then
865 Phunc = coeff * tm_j(m)
866 dPhuncdX = coeff * dtm_j(m) * dcpjdx
867 dPhuncdY = coeff * dtm_j(m) * dcpjdy
868 dPhuncdZ = coeff * dtm_j(m) * dcpjdz
869 dPhuncdUz = coeff * dtm_j(m) * dcpjdux
870 dPhuncdUy = coeff * dtm_j(m) * dcpjduy
871 dPhuncdUz = coeff * dtm_j(m) * dcpjduz
872 else
873 Phunc = coeff * spj * um_j(m-1)
874 dPhuncdX = coeff * (spj * dum_j(m-1) * dcpjdx + dspjdx *um_j(m-1))
875 dPhuncdY = coeff * (spj * dum_j(m-1) * dcpjdy + dspjdy *um_j(m-1))
876 dPhuncdZ = coeff * (spj * dum_j(m-1) * dcpjdz + dspjdz *um_j(m-1))
877 dPhuncdUx = coeff*(spj * dum_j(m-1)*dcpjdux + dspjdux *um_j(m-1))
878 dPhuncdUy = coeff*(spj * dum_j(m-1)*dcpjduy + dspjduy *um_j(m-1))
879 dPhuncdUz = coeff*(spj * dum_j(m-1)*dcpjduz + dspjduz *um_j(m-1))
880 endif
881
882 sigma_j = sigma_j + plm_j(m,l)*Phunc
883
884 dsigmajdx = dsigmajdx + plm_j(m,l)*dPhuncdX + &
885 Phunc * dlm_j(m,l) * dctjdx
886 dsigmajdy = dsigmajdy + plm_j(m,l)*dPhuncdY + &
887 Phunc * dlm_j(m,l) * dctjdy
888 dsigmajdz = dsigmajdz + plm_j(m,l)*dPhuncdZ + &
889 Phunc * dlm_j(m,l) * dctjdz
890
891 dsigmajdux = dsigmajdux + plm_j(m,l)* dPhuncdUx + &
892 Phunc * dlm_j(m,l) * dctjdux
893 dsigmajduy = dsigmajduy + plm_j(m,l)* dPhuncdUy + &
894 Phunc * dlm_j(m,l) * dctjduy
895 dsigmajduz = dsigmajduz + plm_j(m,l)* dPhuncdUz + &
896 Phunc * dlm_j(m,l) * dctjduz
897
898 end do
899
900 do lm = 1, ShapeMap%Shapes(st2)%nRangeFuncs
901 l = ShapeMap%Shapes(st2)%RangeFuncLValue(lm)
902 m = ShapeMap%Shapes(st2)%RangeFuncMValue(lm)
903 coeff = ShapeMap%Shapes(st2)%RangeFuncCoefficient(lm)
904 function_type = ShapeMap%Shapes(st2)%RangeFunctionType(lm)
905
906 if ((function_type .eq. SH_COS).or.(m.eq.0)) then
907 Phunc = coeff * tm_j(m)
908 dPhuncdX = coeff * dtm_j(m) * dcpjdx
909 dPhuncdY = coeff * dtm_j(m) * dcpjdy
910 dPhuncdZ = coeff * dtm_j(m) * dcpjdz
911 dPhuncdUz = coeff * dtm_j(m) * dcpjdux
912 dPhuncdUy = coeff * dtm_j(m) * dcpjduy
913 dPhuncdUz = coeff * dtm_j(m) * dcpjduz
914 else
915 Phunc = coeff * spj * um_j(m-1)
916 dPhuncdX = coeff * (spj * dum_j(m-1) * dcpjdx + dspjdx *um_j(m-1))
917 dPhuncdY = coeff * (spj * dum_j(m-1) * dcpjdy + dspjdy *um_j(m-1))
918 dPhuncdZ = coeff * (spj * dum_j(m-1) * dcpjdz + dspjdz *um_j(m-1))
919 dPhuncdUx = coeff*(spj * dum_j(m-1)*dcpjdux + dspjdux *um_j(m-1))
920 dPhuncdUy = coeff*(spj * dum_j(m-1)*dcpjduy + dspjduy *um_j(m-1))
921 dPhuncdUz = coeff*(spj * dum_j(m-1)*dcpjduz + dspjduz *um_j(m-1))
922 endif
923
924 s_j = s_j + plm_j(m,l)*Phunc
925
926 dsjdx = dsjdx + plm_j(m,l)*dPhuncdX + &
927 Phunc * dlm_j(m,l) * dctjdx
928 dsjdy = dsjdy + plm_j(m,l)*dPhuncdY + &
929 Phunc * dlm_j(m,l) * dctjdy
930 dsjdz = dsjdz + plm_j(m,l)*dPhuncdZ + &
931 Phunc * dlm_j(m,l) * dctjdz
932
933 dsjdux = dsjdux + plm_j(m,l)* dPhuncdUx + &
934 Phunc * dlm_j(m,l) * dctjdux
935 dsjduy = dsjduy + plm_j(m,l)* dPhuncdUy + &
936 Phunc * dlm_j(m,l) * dctjduy
937 dsjduz = dsjduz + plm_j(m,l)* dPhuncdUz + &
938 Phunc * dlm_j(m,l) * dctjduz
939
940 end do
941
942 do lm = 1, ShapeMap%Shapes(st2)%nStrengthFuncs
943 l = ShapeMap%Shapes(st2)%StrengthFuncLValue(lm)
944 m = ShapeMap%Shapes(st2)%StrengthFuncMValue(lm)
945 coeff = ShapeMap%Shapes(st2)%StrengthFuncCoefficient(lm)
946 function_type = ShapeMap%Shapes(st2)%StrengthFunctionType(lm)
947
948 if ((function_type .eq. SH_COS).or.(m.eq.0)) then
949 Phunc = coeff * tm_j(m)
950 dPhuncdX = coeff * dtm_j(m) * dcpjdx
951 dPhuncdY = coeff * dtm_j(m) * dcpjdy
952 dPhuncdZ = coeff * dtm_j(m) * dcpjdz
953 dPhuncdUz = coeff * dtm_j(m) * dcpjdux
954 dPhuncdUy = coeff * dtm_j(m) * dcpjduy
955 dPhuncdUz = coeff * dtm_j(m) * dcpjduz
956 else
957 Phunc = coeff * spj * um_j(m-1)
958 dPhuncdX = coeff * (spj * dum_j(m-1) * dcpjdx + dspjdx *um_j(m-1))
959 dPhuncdY = coeff * (spj * dum_j(m-1) * dcpjdy + dspjdy *um_j(m-1))
960 dPhuncdZ = coeff * (spj * dum_j(m-1) * dcpjdz + dspjdz *um_j(m-1))
961 dPhuncdUx = coeff*(spj * dum_j(m-1)*dcpjdux + dspjdux *um_j(m-1))
962 dPhuncdUy = coeff*(spj * dum_j(m-1)*dcpjduy + dspjduy *um_j(m-1))
963 dPhuncdUz = coeff*(spj * dum_j(m-1)*dcpjduz + dspjduz *um_j(m-1))
964 endif
965
966 write(*,*) 'l,m = ', l, m, coeff, dPhuncdUx, dPhuncdUy, dPhuncdUz
967
968 eps_j = eps_j + plm_j(m,l)*Phunc
969
970 depsjdx = depsjdx + plm_j(m,l)*dPhuncdX + &
971 Phunc * dlm_j(m,l) * dctjdx
972 depsjdy = depsjdy + plm_j(m,l)*dPhuncdY + &
973 Phunc * dlm_j(m,l) * dctjdy
974 depsjdz = depsjdz + plm_j(m,l)*dPhuncdZ + &
975 Phunc * dlm_j(m,l) * dctjdz
976
977 depsjdux = depsjdux + plm_j(m,l)* dPhuncdUx + &
978 Phunc * dlm_j(m,l) * dctjdux
979 depsjduy = depsjduy + plm_j(m,l)* dPhuncdUy + &
980 Phunc * dlm_j(m,l) * dctjduy
981 depsjduz = depsjduz + plm_j(m,l)* dPhuncdUz + &
982 Phunc * dlm_j(m,l) * dctjduz
983
984 end do
985
986 endif
987
988 ! phew, now let's assemble the potential energy:
989
990 sigma = 0.5*(sigma_i + sigma_j)
991
992 dsigmadxi = 0.5*dsigmaidx
993 dsigmadyi = 0.5*dsigmaidy
994 dsigmadzi = 0.5*dsigmaidz
995 dsigmaduxi = 0.5*dsigmaidux
996 dsigmaduyi = 0.5*dsigmaiduy
997 dsigmaduzi = 0.5*dsigmaiduz
998
999 dsigmadxj = 0.5*dsigmajdx
1000 dsigmadyj = 0.5*dsigmajdy
1001 dsigmadzj = 0.5*dsigmajdz
1002 dsigmaduxj = 0.5*dsigmajdux
1003 dsigmaduyj = 0.5*dsigmajduy
1004 dsigmaduzj = 0.5*dsigmajduz
1005
1006 s = 0.5*(s_i + s_j)
1007
1008 dsdxi = 0.5*dsidx
1009 dsdyi = 0.5*dsidy
1010 dsdzi = 0.5*dsidz
1011 dsduxi = 0.5*dsidux
1012 dsduyi = 0.5*dsiduy
1013 dsduzi = 0.5*dsiduz
1014
1015 dsdxj = 0.5*dsjdx
1016 dsdyj = 0.5*dsjdy
1017 dsdzj = 0.5*dsjdz
1018 dsduxj = 0.5*dsjdux
1019 dsduyj = 0.5*dsjduy
1020 dsduzj = 0.5*dsjduz
1021
1022 eps = sqrt(eps_i * eps_j)
1023
1024 depsdxi = eps_j * depsidx / (2.0d0 * eps)
1025 depsdyi = eps_j * depsidy / (2.0d0 * eps)
1026 depsdzi = eps_j * depsidz / (2.0d0 * eps)
1027 depsduxi = eps_j * depsidux / (2.0d0 * eps)
1028 depsduyi = eps_j * depsiduy / (2.0d0 * eps)
1029 depsduzi = eps_j * depsiduz / (2.0d0 * eps)
1030
1031 depsdxj = eps_i * depsjdx / (2.0d0 * eps)
1032 depsdyj = eps_i * depsjdy / (2.0d0 * eps)
1033 depsdzj = eps_i * depsjdz / (2.0d0 * eps)
1034 depsduxj = eps_i * depsjdux / (2.0d0 * eps)
1035 depsduyj = eps_i * depsjduy / (2.0d0 * eps)
1036 depsduzj = eps_i * depsjduz / (2.0d0 * eps)
1037
1038 !!$ write(*,*) 'depsidu = ', depsidux, depsiduy, depsiduz
1039 !!$ write(*,*) 'depsjdu = ', depsjdux, depsjduy, depsjduz
1040 !!$
1041 !!$ write(*,*) 'depsdui = ', depsduxi, depsduyi, depsduzi
1042 !!$ write(*,*) 'depsduj = ', depsduxj, depsduyj, depsduzj
1043 !!$
1044 !!$ write(*,*) 's, sig, eps = ', s, sigma, eps
1045
1046 rtdenom = rij-sigma+s
1047 rt = s / rtdenom
1048
1049 drtdxi = (dsdxi + rt * (drdxi - dsigmadxi + dsdxi)) / rtdenom
1050 drtdyi = (dsdyi + rt * (drdyi - dsigmadyi + dsdyi)) / rtdenom
1051 drtdzi = (dsdzi + rt * (drdzi - dsigmadzi + dsdzi)) / rtdenom
1052 drtduxi = (dsduxi + rt * (drduxi - dsigmaduxi + dsduxi)) / rtdenom
1053 drtduyi = (dsduyi + rt * (drduyi - dsigmaduyi + dsduyi)) / rtdenom
1054 drtduzi = (dsduzi + rt * (drduzi - dsigmaduzi + dsduzi)) / rtdenom
1055 drtdxj = (dsdxj + rt * (drdxj - dsigmadxj + dsdxj)) / rtdenom
1056 drtdyj = (dsdyj + rt * (drdyj - dsigmadyj + dsdyj)) / rtdenom
1057 drtdzj = (dsdzj + rt * (drdzj - dsigmadzj + dsdzj)) / rtdenom
1058 drtduxj = (dsduxj + rt * (drduxj - dsigmaduxj + dsduxj)) / rtdenom
1059 drtduyj = (dsduyj + rt * (drduyj - dsigmaduyj + dsduyj)) / rtdenom
1060 drtduzj = (dsduzj + rt * (drduzj - dsigmaduzj + dsduzj)) / rtdenom
1061
1062 rt2 = rt*rt
1063 rt3 = rt2*rt
1064 rt5 = rt2*rt3
1065 rt6 = rt3*rt3
1066 rt11 = rt5*rt6
1067 rt12 = rt6*rt6
1068 rt126 = rt12 - rt6
1069
1070 pot_temp = 4.0d0 * eps * rt126
1071
1072 vpair = vpair + pot_temp
1073 if (do_pot) then
1074 #ifdef IS_MPI
1075 pot_row(atom1) = pot_row(atom1) + 0.5d0*pot_temp*sw
1076 pot_col(atom2) = pot_col(atom2) + 0.5d0*pot_temp*sw
1077 #else
1078 pot = pot + pot_temp*sw
1079 #endif
1080 endif
1081
1082 !!$ write(*,*) 'drtdu, depsdu = ', drtduxi, depsduxi
1083
1084 dvdxi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdxi + 4.0d0*depsdxi*rt126
1085 dvdyi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdyi + 4.0d0*depsdyi*rt126
1086 dvdzi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdzi + 4.0d0*depsdzi*rt126
1087 dvduxi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduxi + 4.0d0*depsduxi*rt126
1088 dvduyi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduyi + 4.0d0*depsduyi*rt126
1089 dvduzi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduzi + 4.0d0*depsduzi*rt126
1090
1091 dvdxj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdxj + 4.0d0*depsdxj*rt126
1092 dvdyj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdyj + 4.0d0*depsdyj*rt126
1093 dvdzj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdzj + 4.0d0*depsdzj*rt126
1094 dvduxj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduxj + 4.0d0*depsduxj*rt126
1095 dvduyj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduyj + 4.0d0*depsduyj*rt126
1096 dvduzj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduzj + 4.0d0*depsduzj*rt126
1097
1098 ! do the torques first since they are easy:
1099 ! remember that these are still in the body fixed axes
1100
1101
1102 !!$ write(*,*) 'sw = ', sw
1103 !!$ write(*,*) 'dvdu1 = ', dvduxi, dvduyi, dvduzi
1104 !!$ write(*,*) 'dvdu2 = ', dvduxj, dvduyj, dvduzj
1105 !!$
1106 txi = (dvduzi - dvduyi) * sw
1107 tyi = (dvduxi - dvduzi) * sw
1108 tzi = (dvduyi - dvduxi) * sw
1109
1110 txj = (dvduzj - dvduyj) * sw
1111 tyj = (dvduxj - dvduzj) * sw
1112 tzj = (dvduyj - dvduxj) * sw
1113
1114 !!$ txi = -dvduxi * sw
1115 !!$ tyi = -dvduyi * sw
1116 !!$ tzi = -dvduzi * sw
1117 !!$
1118 !!$ txj = dvduxj * sw
1119 !!$ tyj = dvduyj * sw
1120 !!$ tzj = dvduzj * sw
1121
1122 write(*,*) 't1 = ', txi, tyi, tzi
1123 write(*,*) 't2 = ', txj, tyj, tzj
1124
1125 ! go back to lab frame using transpose of rotation matrix:
1126
1127 #ifdef IS_MPI
1128 t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
1129 a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
1130 t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + &
1131 a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
1132 t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
1133 a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
1134
1135 t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
1136 a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
1137 t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
1138 a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
1139 t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
1140 a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
1141 #else
1142 t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
1143 t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
1144 t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
1145
1146 t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
1147 t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
1148 t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
1149 #endif
1150 ! Now, on to the forces:
1151
1152 ! first rotate the i terms back into the lab frame:
1153
1154 fxi = dvdxi * sw
1155 fyi = dvdyi * sw
1156 fzi = dvdzi * sw
1157
1158 fxj = dvdxj * sw
1159 fyj = dvdyj * sw
1160 fzj = dvdzj * sw
1161
1162 #ifdef IS_MPI
1163 fxii = a_Row(1,atom1)*fxi + a_Row(4,atom1)*fyi + a_Row(7,atom1)*fzi
1164 fyii = a_Row(2,atom1)*fxi + a_Row(5,atom1)*fyi + a_Row(8,atom1)*fzi
1165 fzii = a_Row(3,atom1)*fxi + a_Row(6,atom1)*fyi + a_Row(9,atom1)*fzi
1166
1167 fxjj = a_Col(1,atom2)*fxj + a_Col(4,atom2)*fyj + a_Col(7,atom2)*fzj
1168 fyjj = a_Col(2,atom2)*fxj + a_Col(5,atom2)*fyj + a_Col(8,atom2)*fzj
1169 fzjj = a_Col(3,atom2)*fxj + a_Col(6,atom2)*fyj + a_Col(9,atom2)*fzj
1170 #else
1171 fxii = a(1,atom1)*fxi + a(4,atom1)*fyi + a(7,atom1)*fzi
1172 fyii = a(2,atom1)*fxi + a(5,atom1)*fyi + a(8,atom1)*fzi
1173 fzii = a(3,atom1)*fxi + a(6,atom1)*fyi + a(9,atom1)*fzi
1174
1175 fxjj = a(1,atom2)*fxj + a(4,atom2)*fyj + a(7,atom2)*fzj
1176 fyjj = a(2,atom2)*fxj + a(5,atom2)*fyj + a(8,atom2)*fzj
1177 fzjj = a(3,atom2)*fxj + a(6,atom2)*fyj + a(9,atom2)*fzj
1178 #endif
1179
1180 fxij = -fxii
1181 fyij = -fyii
1182 fzij = -fzii
1183
1184 fxji = -fxjj
1185 fyji = -fyjj
1186 fzji = -fzjj
1187
1188 fxradial = 0.5_dp * (fxii + fxji)
1189 fyradial = 0.5_dp * (fyii + fyji)
1190 fzradial = 0.5_dp * (fzii + fzji)
1191
1192 #ifdef IS_MPI
1193 f_Row(1,atom1) = f_Row(1,atom1) + fxradial
1194 f_Row(2,atom1) = f_Row(2,atom1) + fyradial
1195 f_Row(3,atom1) = f_Row(3,atom1) + fzradial
1196
1197 f_Col(1,atom2) = f_Col(1,atom2) - fxradial
1198 f_Col(2,atom2) = f_Col(2,atom2) - fyradial
1199 f_Col(3,atom2) = f_Col(3,atom2) - fzradial
1200 #else
1201 f(1,atom1) = f(1,atom1) + fxradial
1202 f(2,atom1) = f(2,atom1) + fyradial
1203 f(3,atom1) = f(3,atom1) + fzradial
1204
1205 f(1,atom2) = f(1,atom2) - fxradial
1206 f(2,atom2) = f(2,atom2) - fyradial
1207 f(3,atom2) = f(3,atom2) - fzradial
1208 #endif
1209
1210 #ifdef IS_MPI
1211 id1 = AtomRowToGlobal(atom1)
1212 id2 = AtomColToGlobal(atom2)
1213 #else
1214 id1 = atom1
1215 id2 = atom2
1216 #endif
1217
1218 if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1219
1220 fpair(1) = fpair(1) + fxradial
1221 fpair(2) = fpair(2) + fyradial
1222 fpair(3) = fpair(3) + fzradial
1223
1224 endif
1225
1226 end subroutine do_shape_pair
1227
1228 SUBROUTINE Associated_Legendre(x, l, m, lmax, plm, dlm)
1229
1230 ! Purpose: Compute the associated Legendre functions
1231 ! Plm(x) and their derivatives Plm'(x)
1232 ! Input : x --- Argument of Plm(x)
1233 ! l --- Order of Plm(x), l = 0,1,2,...,n
1234 ! m --- Degree of Plm(x), m = 0,1,2,...,N
1235 ! lmax --- Physical dimension of PLM and DLM
1236 ! Output: PLM(l,m) --- Plm(x)
1237 ! DLM(l,m) --- Plm'(x)
1238 !
1239 ! adapted from the routines in
1240 ! COMPUTATION OF SPECIAL FUNCTIONS by Shanjie Zhang and Jianming Jin
1241 ! ISBN 0-471-11963-6
1242 !
1243 ! The original Fortran77 codes can be found here:
1244 ! http://iris-lee3.ece.uiuc.edu/~jjin/routines/routines.html
1245
1246 real (kind=dp), intent(in) :: x
1247 integer, intent(in) :: l, m, lmax
1248 real (kind=dp), dimension(0:lmax,0:m), intent(out) :: PLM, DLM
1249 integer :: i, j, ls
1250 real (kind=dp) :: xq, xs
1251
1252 ! zero out both arrays:
1253 DO I = 0, m
1254 DO J = 0, l
1255 PLM(J,I) = 0.0_dp
1256 DLM(J,I) = 0.0_dp
1257 end DO
1258 end DO
1259
1260 ! start with 0,0:
1261 PLM(0,0) = 1.0D0
1262
1263 ! x = +/- 1 functions are easy:
1264 IF (abs(X).EQ.1.0D0) THEN
1265 DO I = 1, m
1266 PLM(0, I) = X**I
1267 DLM(0, I) = 0.5D0*I*(I+1.0D0)*X**(I+1)
1268 end DO
1269 DO J = 1, m
1270 DO I = 1, l
1271 IF (I.EQ.1) THEN
1272 DLM(I, J) = 1.0D+300
1273 ELSE IF (I.EQ.2) THEN
1274 DLM(I, J) = -0.25D0*(J+2)*(J+1)*J*(J-1)*X**(J+1)
1275 ENDIF
1276 end DO
1277 end DO
1278 RETURN
1279 ENDIF
1280
1281 LS = 1
1282 IF (abs(X).GT.1.0D0) LS = -1
1283 XQ = sqrt(LS*(1.0D0-X*X))
1284 XS = LS*(1.0D0-X*X)
1285
1286 DO I = 1, l
1287 PLM(I, I) = -LS*(2.0D0*I-1.0D0)*XQ*PLM(I-1, I-1)
1288 enddo
1289
1290 DO I = 0, l
1291 PLM(I, I+1)=(2.0D0*I+1.0D0)*X*PLM(I, I)
1292 enddo
1293
1294 DO I = 0, l
1295 DO J = I+2, m
1296 PLM(I, J)=((2.0D0*J-1.0D0)*X*PLM(I,J-1) - &
1297 (I+J-1.0D0)*PLM(I,J-2))/(J-I)
1298 end DO
1299 end DO
1300
1301 DLM(0, 0)=0.0D0
1302 DO J = 1, m
1303 DLM(0, J)=LS*J*(PLM(0,J-1)-X*PLM(0,J))/XS
1304 end DO
1305
1306 DO I = 1, l
1307 DO J = I, m
1308 DLM(I,J) = LS*I*X*PLM(I, J)/XS + (J+I)*(J-I+1.0D0)/XQ*PLM(I-1, J)
1309 end DO
1310 end DO
1311
1312 RETURN
1313 END SUBROUTINE Associated_Legendre
1314
1315
1316 subroutine Orthogonal_Polynomial(x, m, mmax, function_type, pl, dpl)
1317
1318 ! Purpose: Compute orthogonal polynomials: Tn(x) or Un(x),
1319 ! or Ln(x) or Hn(x), and their derivatives
1320 ! Input : function_type --- Function code
1321 ! =1 for Chebyshev polynomial Tn(x)
1322 ! =2 for Chebyshev polynomial Un(x)
1323 ! =3 for Laguerre polynomial Ln(x)
1324 ! =4 for Hermite polynomial Hn(x)
1325 ! n --- Order of orthogonal polynomials
1326 ! x --- Argument of orthogonal polynomials
1327 ! Output: PL(n) --- Tn(x) or Un(x) or Ln(x) or Hn(x)
1328 ! DPL(n)--- Tn'(x) or Un'(x) or Ln'(x) or Hn'(x)
1329 !
1330 ! adapted from the routines in
1331 ! COMPUTATION OF SPECIAL FUNCTIONS by Shanjie Zhang and Jianming Jin
1332 ! ISBN 0-471-11963-6
1333 !
1334 ! The original Fortran77 codes can be found here:
1335 ! http://iris-lee3.ece.uiuc.edu/~jjin/routines/routines.html
1336
1337 real(kind=8), intent(in) :: x
1338 integer, intent(in):: m, mmax
1339 integer, intent(in):: function_type
1340 real(kind=8), dimension(0:mmax), intent(inout) :: pl, dpl
1341
1342 real(kind=8) :: a, b, c, y0, y1, dy0, dy1, yn, dyn
1343 integer :: k
1344
1345 A = 2.0D0
1346 B = 0.0D0
1347 C = 1.0D0
1348 Y0 = 1.0D0
1349 Y1 = 2.0D0*X
1350 DY0 = 0.0D0
1351 DY1 = 2.0D0
1352 PL(0) = 1.0D0
1353 PL(1) = 2.0D0*X
1354 DPL(0) = 0.0D0
1355 DPL(1) = 2.0D0
1356 IF (function_type.EQ.CHEBYSHEV_TN) THEN
1357 Y1 = X
1358 DY1 = 1.0D0
1359 PL(1) = X
1360 DPL(1) = 1.0D0
1361 ELSE IF (function_type.EQ.LAGUERRE) THEN
1362 Y1 = 1.0D0-X
1363 DY1 = -1.0D0
1364 PL(1) = 1.0D0-X
1365 DPL(1) = -1.0D0
1366 ENDIF
1367 DO K = 2, m
1368 IF (function_type.EQ.LAGUERRE) THEN
1369 A = -1.0D0/K
1370 B = 2.0D0+A
1371 C = 1.0D0+A
1372 ELSE IF (function_type.EQ.HERMITE) THEN
1373 C = 2.0D0*(K-1.0D0)
1374 ENDIF
1375 YN = (A*X+B)*Y1-C*Y0
1376 DYN = A*Y1+(A*X+B)*DY1-C*DY0
1377 PL(K) = YN
1378 DPL(K) = DYN
1379 Y0 = Y1
1380 Y1 = YN
1381 DY0 = DY1
1382 DY1 = DYN
1383 end DO
1384
1385
1386 RETURN
1387
1388 end subroutine Orthogonal_Polynomial
1389
1390 end module shapes
1391
1392 subroutine makeShape(nContactFuncs, ContactFuncLValue, &
1393 ContactFuncMValue, ContactFunctionType, ContactFuncCoefficient, &
1394 nRangeFuncs, RangeFuncLValue, RangeFuncMValue, RangeFunctionType, &
1395 RangeFuncCoefficient, nStrengthFuncs, StrengthFuncLValue, &
1396 StrengthFuncMValue, StrengthFunctionType, StrengthFuncCoefficient, &
1397 myATID, status)
1398
1399 use definitions
1400 use shapes, only: newShapeType
1401
1402 integer :: nContactFuncs
1403 integer :: nRangeFuncs
1404 integer :: nStrengthFuncs
1405 integer :: status
1406 integer :: myATID
1407
1408 integer, dimension(nContactFuncs) :: ContactFuncLValue
1409 integer, dimension(nContactFuncs) :: ContactFuncMValue
1410 integer, dimension(nContactFuncs) :: ContactFunctionType
1411 real(kind=dp), dimension(nContactFuncs) :: ContactFuncCoefficient
1412 integer, dimension(nRangeFuncs) :: RangeFuncLValue
1413 integer, dimension(nRangeFuncs) :: RangeFuncMValue
1414 integer, dimension(nRangeFuncs) :: RangeFunctionType
1415 real(kind=dp), dimension(nRangeFuncs) :: RangeFuncCoefficient
1416 integer, dimension(nStrengthFuncs) :: StrengthFuncLValue
1417 integer, dimension(nStrengthFuncs) :: StrengthFuncMValue
1418 integer, dimension(nStrengthFuncs) :: StrengthFunctionType
1419 real(kind=dp), dimension(nStrengthFuncs) :: StrengthFuncCoefficient
1420
1421 call newShapeType(nContactFuncs, ContactFuncLValue, &
1422 ContactFuncMValue, ContactFunctionType, ContactFuncCoefficient, &
1423 nRangeFuncs, RangeFuncLValue, RangeFuncMValue, RangeFunctionType, &
1424 RangeFuncCoefficient, nStrengthFuncs, StrengthFuncLValue, &
1425 StrengthFuncMValue, StrengthFunctionType, StrengthFuncCoefficient, &
1426 myATID, status)
1427
1428 return
1429 end subroutine makeShape
1430
1431 subroutine completeShapeFF(status)
1432
1433 use shapes, only: complete_Shape_FF
1434
1435 integer, intent(out) :: status
1436 integer :: myStatus
1437
1438 myStatus = 0
1439
1440 call complete_Shape_FF(myStatus)
1441
1442 status = myStatus
1443
1444 return
1445 end subroutine completeShapeFF
1446