ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-2.0/src/UseTheForce/doForces.F90 (file contents):
Revision 1729 by chrisfen, Thu Nov 11 21:46:29 2004 UTC vs.
Revision 2273 by gezelter, Thu Aug 11 21:04:03 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.8 2004-11-11 21:46:29 chrisfen Exp $, $Date: 2004-11-11 21:46:29 $, $Name: not supported by cvs2svn $, $Revision: 1.8 $
48 > !! @version $Id: doForces.F90,v 1.29 2005-08-11 21:04:03 gezelter Exp $, $Date: 2005-08-11 21:04:03 $, $Name: not supported by cvs2svn $, $Revision: 1.29 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
19 <  use charge_charge
59 >  use sticky
60 >  use electrostatic_module
61    use reaction_field
62    use gb_pair
63    use shapes
# Line 32 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
39  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >
89    logical, save :: FF_uses_DirectionalAtoms
90 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
90 >  logical, save :: FF_uses_Dipoles
91    logical, save :: FF_uses_GayBerne
92    logical, save :: FF_uses_EAM
53  logical, save :: FF_uses_Shapes
54  logical, save :: FF_uses_FLARB
93    logical, save :: FF_uses_RF
94  
95    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
96    logical, save :: SIM_uses_EAM
65  logical, save :: SIM_uses_Shapes
66  logical, save :: SIM_uses_FLARB
97    logical, save :: SIM_uses_RF
98    logical, save :: SIM_requires_postpair_calc
99    logical, save :: SIM_requires_prepair_calc
100    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
101  
73  real(kind=dp), save :: rlist, rlistsq
74
102    public :: init_FF
103 +  public :: setDefaultCutoffs
104    public :: do_force_loop
105 <  public :: setRlistDF
105 >  public :: createInteractionHash
106 >  public :: createGtypeCutoffMap
107  
108   #ifdef PROFILE
109    public :: getforcetime
# Line 82 | Line 111 | module doForces
111    real :: forceTimeInitial, forceTimeFinal
112    integer :: nLoops
113   #endif
114 +  
115 +  !! Variables for cutoff mapping and interaction mapping
116 +  ! Bit hash to determine pair-pair interactions.
117 +  integer, dimension(:,:), allocatable :: InteractionHash
118 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
119 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
120 +  integer, dimension(:), allocatable :: groupToGtype
121 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
122 +  type ::gtypeCutoffs
123 +     real(kind=dp) :: rcut
124 +     real(kind=dp) :: rcutsq
125 +     real(kind=dp) :: rlistsq
126 +  end type gtypeCutoffs
127 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
128  
129 <  type :: Properties
130 <     logical :: is_Directional   = .false.
131 <     logical :: is_LennardJones  = .false.
89 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
98 <
99 <  type(Properties), dimension(:),allocatable :: PropertyMap
100 <
129 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
130 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
131 >  
132   contains
133  
134 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
134 >  subroutine createInteractionHash(status)
135      integer :: nAtypes
136 <    integer :: status
136 >    integer, intent(out) :: status
137      integer :: i
138 <    logical :: thisProperty
139 <    real (kind=DP) :: thisDPproperty
138 >    integer :: j
139 >    integer :: iHash
140 >    !! Test Types
141 >    logical :: i_is_LJ
142 >    logical :: i_is_Elect
143 >    logical :: i_is_Sticky
144 >    logical :: i_is_StickyP
145 >    logical :: i_is_GB
146 >    logical :: i_is_EAM
147 >    logical :: i_is_Shape
148 >    logical :: j_is_LJ
149 >    logical :: j_is_Elect
150 >    logical :: j_is_Sticky
151 >    logical :: j_is_StickyP
152 >    logical :: j_is_GB
153 >    logical :: j_is_EAM
154 >    logical :: j_is_Shape
155 >    
156 >    status = 0  
157  
158 <    status = 0
159 <
158 >    if (.not. associated(atypes)) then
159 >       call handleError("atype", "atypes was not present before call of createInteractionHash!")
160 >       status = -1
161 >       return
162 >    endif
163 >    
164      nAtypes = getSize(atypes)
165 <
165 >    
166      if (nAtypes == 0) then
167         status = -1
168         return
169      end if
170 <        
171 <    if (.not. allocated(PropertyMap)) then
172 <       allocate(PropertyMap(nAtypes))
170 >
171 >    if (.not. allocated(InteractionHash)) then
172 >       allocate(InteractionHash(nAtypes,nAtypes))
173      endif
174  
175 +    if (.not. allocated(atypeMaxCutoff)) then
176 +       allocate(atypeMaxCutoff(nAtypes))
177 +    endif
178 +        
179      do i = 1, nAtypes
180 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
181 <       PropertyMap(i)%is_Directional = thisProperty
180 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
181 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
182 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
183 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
184 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
185 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
186 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
187  
188 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
188 >       do j = i, nAtypes
189  
190 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
191 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
190 >          iHash = 0
191 >          myRcut = 0.0_dp
192  
193 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
194 <       PropertyMap(i)%is_Sticky = thisProperty
193 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
194 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
195 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
196 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
197 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
198 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
199 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
200  
201 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
202 <       PropertyMap(i)%is_GayBerne = thisProperty
201 >          if (i_is_LJ .and. j_is_LJ) then
202 >             iHash = ior(iHash, LJ_PAIR)            
203 >          endif
204 >          
205 >          if (i_is_Elect .and. j_is_Elect) then
206 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
207 >          endif
208 >          
209 >          if (i_is_Sticky .and. j_is_Sticky) then
210 >             iHash = ior(iHash, STICKY_PAIR)
211 >          endif
212  
213 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
214 <       PropertyMap(i)%is_EAM = thisProperty
213 >          if (i_is_StickyP .and. j_is_StickyP) then
214 >             iHash = ior(iHash, STICKYPOWER_PAIR)
215 >          endif
216  
217 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
218 <       PropertyMap(i)%is_Shape = thisProperty
217 >          if (i_is_EAM .and. j_is_EAM) then
218 >             iHash = ior(iHash, EAM_PAIR)
219 >          endif
220  
221 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
222 <       PropertyMap(i)%is_FLARB = thisProperty
221 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
222 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
223 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
224 >
225 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
226 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
227 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
228 >
229 >
230 >          InteractionHash(i,j) = iHash
231 >          InteractionHash(j,i) = iHash
232 >
233 >       end do
234 >
235      end do
236  
237 <    havePropertyMap = .true.
237 >    haveInteractionHash = .true.
238 >  end subroutine createInteractionHash
239  
240 <  end subroutine createPropertyMap
240 >  subroutine createGtypeCutoffMap()
241  
242 +    logical :: i_is_LJ
243 +    logical :: i_is_Elect
244 +    logical :: i_is_Sticky
245 +    logical :: i_is_StickyP
246 +    logical :: i_is_GB
247 +    logical :: i_is_EAM
248 +    logical :: i_is_Shape
249 +
250 +    integer :: myStatus, nAtypes
251 +
252 +    stat = 0
253 +    if (.not. haveInteractionHash) then
254 +       call createInteractionHash(myStatus)      
255 +       if (myStatus .ne. 0) then
256 +          write(default_error, *) 'createInteractionHash failed in doForces!'
257 +          stat = -1
258 +          return
259 +       endif
260 +    endif
261 +
262 +    nAtypes = getSize(atypes)
263 +
264 +    do i = 1, nAtypes
265 +       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
266 +       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
267 +       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
268 +       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
269 +       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
270 +       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
271 +       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
272 +      
273 +       if (i_is_LJ) then
274 +          thisCut = getSigma(i) * DEFAULT_SIGMA_MULTIPLIER
275 +          if (thisCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisCut
276 +       endif
277 +       if (i_is_Elect) then
278 +          thisCut =
279 +    
280 +
281 +
282 +
283 +     haveGtypeCutoffMap = .true.
284 +   end subroutine createGtypeCutoffMap
285 +
286 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
287 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
288 +     integer, intent(in) :: cutPolicy
289 +
290 +     defaultRcut = defRcut
291 +     defaultRsw = defRsw
292 +     defaultRlist = defRlist
293 +     cutoffPolicy = cutPolicy
294 +   end subroutine setDefaultCutoffs
295 +
296 +   subroutine setCutoffPolicy(cutPolicy)
297 +
298 +     integer, intent(in) :: cutPolicy
299 +     cutoffPolicy = cutPolicy
300 +     call createGtypeCutoffMap()
301 +
302 +   end subroutine setDefaultCutoffs
303 +    
304 +    
305    subroutine setSimVariables()
306      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
172    SIM_uses_LennardJones = SimUsesLennardJones()
173    SIM_uses_Electrostatics = SimUsesElectrostatics()
174    SIM_uses_Charges = SimUsesCharges()
175    SIM_uses_Dipoles = SimUsesDipoles()
176    SIM_uses_Sticky = SimUsesSticky()
177    SIM_uses_GayBerne = SimUsesGayBerne()
307      SIM_uses_EAM = SimUsesEAM()
179    SIM_uses_Shapes = SimUsesShapes()
180    SIM_uses_FLARB = SimUsesFLARB()
308      SIM_uses_RF = SimUsesRF()
309      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
310      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
# Line 194 | Line 321 | contains
321      integer :: myStatus
322  
323      error = 0
197    
198    if (.not. havePropertyMap) then
324  
325 <       myStatus = 0
325 >    if (.not. haveInteractionHash) then      
326 >       myStatus = 0      
327 >       call createInteractionHash(myStatus)      
328 >       if (myStatus .ne. 0) then
329 >          write(default_error, *) 'createInteractionHash failed in doForces!'
330 >          error = -1
331 >          return
332 >       endif
333 >    endif
334  
335 <       call createPropertyMap(myStatus)
336 <
335 >    if (.not. haveGtypeCutoffMap) then        
336 >       myStatus = 0      
337 >       call createGtypeCutoffMap(myStatus)      
338         if (myStatus .ne. 0) then
339 <          write(default_error, *) 'createPropertyMap failed in doForces!'
339 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
340            error = -1
341            return
342         endif
# Line 239 | Line 373 | contains
373   #endif
374      return
375    end subroutine doReadyCheck
242    
376  
377 +
378    subroutine init_FF(use_RF_c, thisStat)
379  
380      logical, intent(in) :: use_RF_c
# Line 255 | Line 389 | contains
389  
390      !! Fortran's version of a cast:
391      FF_uses_RF = use_RF_c
392 <    
392 >
393      !! init_FF is called *after* all of the atom types have been
394      !! defined in atype_module using the new_atype subroutine.
395      !!
396      !! this will scan through the known atypes and figure out what
397      !! interactions are used by the force field.    
398 <  
398 >
399      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
400      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
401      FF_uses_GayBerne = .false.
402      FF_uses_EAM = .false.
403 <    FF_uses_Shapes = .false.
274 <    FF_uses_FLARB = .false.
275 <    
403 >
404      call getMatchingElementList(atypes, "is_Directional", .true., &
405           nMatches, MatchList)
406      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
407  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
408      call getMatchingElementList(atypes, "is_Dipole", .true., &
409           nMatches, MatchList)
410 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
410 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
411      
305    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306         MatchList)
307    if (nMatches .gt. 0) then
308       FF_uses_Sticky = .true.
309       FF_uses_DirectionalAtoms = .true.
310    endif
311    
412      call getMatchingElementList(atypes, "is_GayBerne", .true., &
413           nMatches, MatchList)
414 <    if (nMatches .gt. 0) then
415 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
414 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
415 >
416      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
417      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
418  
329    call getMatchingElementList(atypes, "is_FLARB", .true., &
330         nMatches, MatchList)
331    if (nMatches .gt. 0) FF_uses_FLARB = .true.
419  
333    !! Assume sanity (for the sake of argument)
420      haveSaneForceField = .true.
421 <    
421 >
422      !! check to make sure the FF_uses_RF setting makes sense
423 <    
424 <    if (FF_uses_dipoles) then
423 >
424 >    if (FF_uses_Dipoles) then
425         if (FF_uses_RF) then
426            dielect = getDielect()
427            call initialize_rf(dielect)
# Line 347 | Line 433 | contains
433            haveSaneForceField = .false.
434            return
435         endif
350    endif
351
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
436      endif
437  
438      if (FF_uses_EAM) then
439 <         call init_EAM_FF(my_status)
439 >       call init_EAM_FF(my_status)
440         if (my_status /= 0) then
441            write(default_error, *) "init_EAM_FF returned a bad status"
442            thisStat = -1
# Line 377 | Line 454 | contains
454         endif
455      endif
456  
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
457      if (.not. haveNeighborList) then
458         !! Create neighbor lists
459         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 463 | contains
463            return
464         endif
465         haveNeighborList = .true.
466 <    endif    
467 <    
466 >    endif
467 >
468    end subroutine init_FF
395  
469  
470 +
471    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
472    !------------------------------------------------------------->
473 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
473 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
474         do_pot_c, do_stress_c, error)
475      !! Position array provided by C, dimensioned by getNlocal
476      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 479 | contains
479      !! Rotation Matrix for each long range particle in simulation.
480      real( kind = dp), dimension(9, nLocal) :: A    
481      !! Unit vectors for dipoles (lab frame)
482 <    real( kind = dp ), dimension(3,nLocal) :: u_l
482 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
483      !! Force array provided by C, dimensioned by getNlocal
484      real ( kind = dp ), dimension(3,nLocal) :: f
485      !! Torsion array provided by C, dimensioned by getNlocal
# Line 443 | Line 517 | contains
517      integer :: localError
518      integer :: propPack_i, propPack_j
519      integer :: loopStart, loopEnd, loop
520 <
520 >    integer :: iHash
521      real(kind=dp) :: listSkin = 1.0  
522 <    
522 >
523      !! initialize local variables  
524 <    
524 >
525   #ifdef IS_MPI
526      pot_local = 0.0_dp
527      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 531 | contains
531   #else
532      natoms = nlocal
533   #endif
534 <    
534 >
535      call doReadyCheck(localError)
536      if ( localError .ne. 0 ) then
537         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 539 | contains
539         return
540      end if
541      call zero_work_arrays()
542 <        
542 >
543      do_pot = do_pot_c
544      do_stress = do_stress_c
545 <    
545 >
546      ! Gather all information needed by all force loops:
547 <    
547 >
548   #ifdef IS_MPI    
549 <    
549 >
550      call gather(q, q_Row, plan_atom_row_3d)
551      call gather(q, q_Col, plan_atom_col_3d)
552  
553      call gather(q_group, q_group_Row, plan_group_row_3d)
554      call gather(q_group, q_group_Col, plan_group_col_3d)
555 <        
555 >
556      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
557 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
558 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
559 <      
557 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
558 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
559 >
560         call gather(A, A_Row, plan_atom_row_rotation)
561         call gather(A, A_Col, plan_atom_col_rotation)
562      endif
563 <    
563 >
564   #endif
565 <    
565 >
566      !! Begin force loop timing:
567   #ifdef PROFILE
568      call cpu_time(forceTimeInitial)
569      nloops = nloops + 1
570   #endif
571 <    
571 >
572      loopEnd = PAIR_LOOP
573      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
574         loopStart = PREPAIR_LOOP
# Line 509 | Line 583 | contains
583         if (loop .eq. loopStart) then
584   #ifdef IS_MPI
585            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
586 <             update_nlist)
586 >               update_nlist)
587   #else
588            call checkNeighborList(nGroups, q_group, listSkin, &
589 <             update_nlist)
589 >               update_nlist)
590   #endif
591         endif
592 <      
592 >
593         if (update_nlist) then
594            !! save current configuration and construct neighbor list
595   #ifdef IS_MPI
# Line 526 | Line 600 | contains
600            neighborListSize = size(list)
601            nlist = 0
602         endif
603 <      
603 >
604         istart = 1
605   #ifdef IS_MPI
606         iend = nGroupsInRow
# Line 535 | Line 609 | contains
609   #endif
610         outer: do i = istart, iend
611  
612 + #ifdef IS_MPI
613 +             me_i = atid_row(i)
614 + #else
615 +             me_i = atid(i)
616 + #endif
617 +
618            if (update_nlist) point(i) = nlist + 1
619 <          
619 >
620            n_in_i = groupStartRow(i+1) - groupStartRow(i)
621 <          
621 >
622            if (update_nlist) then
623   #ifdef IS_MPI
624               jstart = 1
# Line 553 | Line 633 | contains
633               ! make sure group i has neighbors
634               if (jstart .gt. jend) cycle outer
635            endif
636 <          
636 >
637            do jnab = jstart, jend
638               if (update_nlist) then
639                  j = jnab
# Line 562 | Line 642 | contains
642               endif
643  
644   #ifdef IS_MPI
645 +             me_j = atid_col(j)
646               call get_interatomic_vector(q_group_Row(:,i), &
647                    q_group_Col(:,j), d_grp, rgrpsq)
648   #else
649 +             me_j = atid(j)
650               call get_interatomic_vector(q_group(:,i), &
651                    q_group(:,j), d_grp, rgrpsq)
652   #endif
653  
654 <             if (rgrpsq < rlistsq) then
654 >             if (rgrpsq < InteractionHash(me_i,me_j)%rListsq) then
655                  if (update_nlist) then
656                     nlist = nlist + 1
657 <                  
657 >
658                     if (nlist > neighborListSize) then
659   #ifdef IS_MPI                
660                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 668 | contains
668                        end if
669                        neighborListSize = size(list)
670                     endif
671 <                  
671 >
672                     list(nlist) = j
673                  endif
674 <                
674 >
675                  if (loop .eq. PAIR_LOOP) then
676                     vij = 0.0d0
677                     fij(1:3) = 0.0d0
678                  endif
679 <                
679 >
680                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
681                       in_switching_region)
682 <                
682 >
683                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
684 <                
684 >
685                  do ia = groupStartRow(i), groupStartRow(i+1)-1
686 <                  
686 >
687                     atom1 = groupListRow(ia)
688 <                  
688 >
689                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
690 <                      
690 >
691                        atom2 = groupListCol(jb)
692 <                      
692 >
693                        if (skipThisPair(atom1, atom2)) cycle inner
694  
695                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 627 | Line 709 | contains
709   #ifdef IS_MPI                      
710                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
711                                rgrpsq, d_grp, do_pot, do_stress, &
712 <                              u_l, A, f, t, pot_local)
712 >                              eFrame, A, f, t, pot_local)
713   #else
714                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
715                                rgrpsq, d_grp, do_pot, do_stress, &
716 <                              u_l, A, f, t, pot)
716 >                              eFrame, A, f, t, pot)
717   #endif                                              
718                        else
719   #ifdef IS_MPI                      
720                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
721                                do_pot, &
722 <                              u_l, A, f, t, pot_local, vpair, fpair)
722 >                              eFrame, A, f, t, pot_local, vpair, fpair)
723   #else
724                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
725                                do_pot,  &
726 <                              u_l, A, f, t, pot, vpair, fpair)
726 >                              eFrame, A, f, t, pot, vpair, fpair)
727   #endif
728  
729                           vij = vij + vpair
# Line 649 | Line 731 | contains
731                        endif
732                     enddo inner
733                  enddo
734 <                
734 >
735                  if (loop .eq. PAIR_LOOP) then
736                     if (in_switching_region) then
737                        swderiv = vij*dswdr/rgrp
738                        fij(1) = fij(1) + swderiv*d_grp(1)
739                        fij(2) = fij(2) + swderiv*d_grp(2)
740                        fij(3) = fij(3) + swderiv*d_grp(3)
741 <                      
741 >
742                        do ia=groupStartRow(i), groupStartRow(i+1)-1
743                           atom1=groupListRow(ia)
744                           mf = mfactRow(atom1)
# Line 670 | Line 752 | contains
752                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
753   #endif
754                        enddo
755 <                      
755 >
756                        do jb=groupStartCol(j), groupStartCol(j+1)-1
757                           atom2=groupListCol(jb)
758                           mf = mfactCol(atom2)
# Line 685 | Line 767 | contains
767   #endif
768                        enddo
769                     endif
770 <                  
770 >
771                     if (do_stress) call add_stress_tensor(d_grp, fij)
772                  endif
773               end if
774            enddo
775         enddo outer
776 <      
776 >
777         if (update_nlist) then
778   #ifdef IS_MPI
779            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 787 | contains
787               update_nlist = .false.                              
788            endif
789         endif
790 <            
790 >
791         if (loop .eq. PREPAIR_LOOP) then
792            call do_preforce(nlocal, pot)
793         endif
794 <      
794 >
795      enddo
796 <    
796 >
797      !! Do timing
798   #ifdef PROFILE
799      call cpu_time(forceTimeFinal)
800      forceTime = forceTime + forceTimeFinal - forceTimeInitial
801   #endif    
802 <    
802 >
803   #ifdef IS_MPI
804      !!distribute forces
805 <    
805 >
806      f_temp = 0.0_dp
807      call scatter(f_Row,f_temp,plan_atom_row_3d)
808      do i = 1,nlocal
809         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
810      end do
811 <    
811 >
812      f_temp = 0.0_dp
813      call scatter(f_Col,f_temp,plan_atom_col_3d)
814      do i = 1,nlocal
815         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
816      end do
817 <    
817 >
818      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
819         t_temp = 0.0_dp
820         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 823 | contains
823         end do
824         t_temp = 0.0_dp
825         call scatter(t_Col,t_temp,plan_atom_col_3d)
826 <      
826 >
827         do i = 1,nlocal
828            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
829         end do
830      endif
831 <    
831 >
832      if (do_pot) then
833         ! scatter/gather pot_row into the members of my column
834         call scatter(pot_Row, pot_Temp, plan_atom_row)
835 <      
835 >
836         ! scatter/gather pot_local into all other procs
837         ! add resultant to get total pot
838         do i = 1, nlocal
839            pot_local = pot_local + pot_Temp(i)
840         enddo
841 <      
841 >
842         pot_Temp = 0.0_DP
843 <      
843 >
844         call scatter(pot_Col, pot_Temp, plan_atom_col)
845         do i = 1, nlocal
846            pot_local = pot_local + pot_Temp(i)
847         enddo
848 <      
848 >
849      endif
850   #endif
851 <    
851 >
852      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
853 <      
853 >
854         if (FF_uses_RF .and. SIM_uses_RF) then
855 <          
855 >
856   #ifdef IS_MPI
857            call scatter(rf_Row,rf,plan_atom_row_3d)
858            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 778 | Line 860 | contains
860               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
861            end do
862   #endif
863 <          
863 >
864            do i = 1, nLocal
865 <            
865 >
866               rfpot = 0.0_DP
867   #ifdef IS_MPI
868               me_i = atid_row(i)
869   #else
870               me_i = atid(i)
871   #endif
872 +             iHash = InteractionHash(me_i,me_j)
873              
874 <             if (PropertyMap(me_i)%is_Dipole) then
875 <                
874 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
875 >
876                  mu_i = getDipoleMoment(me_i)
877 <                
877 >
878                  !! The reaction field needs to include a self contribution
879                  !! to the field:
880 <                call accumulate_self_rf(i, mu_i, u_l)
880 >                call accumulate_self_rf(i, mu_i, eFrame)
881                  !! Get the reaction field contribution to the
882                  !! potential and torques:
883 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
883 >                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
884   #ifdef IS_MPI
885                  pot_local = pot_local + rfpot
886   #else
887                  pot = pot + rfpot
888 <      
888 >
889   #endif
890 <             endif            
890 >             endif
891            enddo
892         endif
893      endif
894 <    
895 <    
894 >
895 >
896   #ifdef IS_MPI
897 <    
897 >
898      if (do_pot) then
899         pot = pot + pot_local
900         !! we assume the c code will do the allreduce to get the total potential
901         !! we could do it right here if we needed to...
902      endif
903 <    
903 >
904      if (do_stress) then
905         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
906              mpi_comm_world,mpi_err)
907         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
908              mpi_comm_world,mpi_err)
909      endif
910 <    
910 >
911   #else
912 <    
912 >
913      if (do_stress) then
914         tau = tau_Temp
915         virial = virial_Temp
916      endif
917 <    
917 >
918   #endif
919 <      
919 >
920    end subroutine do_force_loop
921 <  
921 >
922    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
923 <       u_l, A, f, t, pot, vpair, fpair)
923 >       eFrame, A, f, t, pot, vpair, fpair)
924  
925      real( kind = dp ) :: pot, vpair, sw
926      real( kind = dp ), dimension(3) :: fpair
927      real( kind = dp ), dimension(nLocal)   :: mfact
928 <    real( kind = dp ), dimension(3,nLocal) :: u_l
928 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
929      real( kind = dp ), dimension(9,nLocal) :: A
930      real( kind = dp ), dimension(3,nLocal) :: f
931      real( kind = dp ), dimension(3,nLocal) :: t
# Line 852 | Line 935 | contains
935      real ( kind = dp ), intent(inout) :: rijsq
936      real ( kind = dp )                :: r
937      real ( kind = dp ), intent(inout) :: d(3)
938 +    real ( kind = dp ) :: ebalance
939      integer :: me_i, me_j
940  
941 +    integer :: iHash
942 +
943      r = sqrt(rijsq)
944      vpair = 0.0d0
945      fpair(1:3) = 0.0d0
# Line 866 | Line 952 | contains
952      me_j = atid(j)
953   #endif
954  
955 < !    write(*,*) i, j, me_i, me_j
956 <    
957 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
958 <      
873 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
874 <            PropertyMap(me_j)%is_LennardJones ) then
875 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
876 <       endif
877 <      
955 >    iHash = InteractionHash(me_i, me_j)
956 >
957 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
958 >       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
959      endif
960 <    
961 <    if (FF_uses_charges .and. SIM_uses_charges) then
962 <      
963 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
964 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
965 <               pot, f, do_pot)
960 >
961 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
962 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
963 >            pot, eFrame, f, t, do_pot)
964 >
965 >       if (FF_uses_RF .and. SIM_uses_RF) then
966 >
967 >          ! CHECK ME (RF needs to know about all electrostatic types)
968 >          call accumulate_rf(i, j, r, eFrame, sw)
969 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
970         endif
971 <      
971 >
972      endif
888    
889    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
890      
891       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
892          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
893               pot, u_l, f, t, do_pot)
894          if (FF_uses_RF .and. SIM_uses_RF) then
895             call accumulate_rf(i, j, r, u_l, sw)
896             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
897          endif
898       endif
973  
974 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
975 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
976 +            pot, A, f, t, do_pot)
977      endif
978  
979 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
980 <
981 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
905 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
906 <               pot, A, f, t, do_pot)
907 <       endif
908 <      
979 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
980 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
981 >            pot, A, f, t, do_pot)
982      endif
983  
984 <
985 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
986 <      
914 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
915 <            PropertyMap(me_j)%is_GayBerne) then
916 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
917 <               pot, u_l, f, t, do_pot)
918 <       endif
919 <      
984 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
985 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
986 >            pot, A, f, t, do_pot)
987      endif
988      
989 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
990 <      
991 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
925 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
926 <               do_pot)
927 <       endif
928 <      
989 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
990 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
991 > !           pot, A, f, t, do_pot)
992      endif
993  
994 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
995 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
996 +            do_pot)
997 +    endif
998  
999 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
999 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1000 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1001 >            pot, A, f, t, do_pot)
1002 >    endif
1003  
1004 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1005 <       if ( PropertyMap(me_i)%is_Shape .and. &
1006 <            PropertyMap(me_j)%is_Shape ) then
937 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
938 <               pot, A, f, t, do_pot)
939 <       endif
940 <      
1004 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1005 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1006 >            pot, A, f, t, do_pot)
1007      endif
1008      
1009    end subroutine do_pair
1010  
1011    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1012 <       do_pot, do_stress, u_l, A, f, t, pot)
1012 >       do_pot, do_stress, eFrame, A, f, t, pot)
1013  
1014 <   real( kind = dp ) :: pot, sw
1015 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1016 <   real (kind=dp), dimension(9,nLocal) :: A
1017 <   real (kind=dp), dimension(3,nLocal) :: f
1018 <   real (kind=dp), dimension(3,nLocal) :: t
953 <  
954 <   logical, intent(inout) :: do_pot, do_stress
955 <   integer, intent(in) :: i, j
956 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
957 <   real ( kind = dp )                :: r, rc
958 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
959 <  
960 <   logical :: is_EAM_i, is_EAM_j
961 <  
962 <   integer :: me_i, me_j
963 <  
1014 >    real( kind = dp ) :: pot, sw
1015 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1016 >    real (kind=dp), dimension(9,nLocal) :: A
1017 >    real (kind=dp), dimension(3,nLocal) :: f
1018 >    real (kind=dp), dimension(3,nLocal) :: t
1019  
1020 <    r = sqrt(rijsq)
1021 <    if (SIM_uses_molecular_cutoffs) then
1022 <       rc = sqrt(rcijsq)
1023 <    else
1024 <       rc = r
970 <    endif
971 <  
1020 >    logical, intent(inout) :: do_pot, do_stress
1021 >    integer, intent(in) :: i, j
1022 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1023 >    real ( kind = dp )                :: r, rc
1024 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1025  
1026 +    integer :: me_i, me_j, iHash
1027 +
1028   #ifdef IS_MPI  
1029 <   me_i = atid_row(i)
1030 <   me_j = atid_col(j)  
1029 >    me_i = atid_row(i)
1030 >    me_j = atid_col(j)  
1031   #else  
1032 <   me_i = atid(i)
1033 <   me_j = atid(j)  
1032 >    me_i = atid(i)
1033 >    me_j = atid(j)  
1034   #endif
980  
981   if (FF_uses_EAM .and. SIM_uses_EAM) then
982      
983      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
984           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
985      
986   endif
987  
988 end subroutine do_prepair
989
990
991 subroutine do_preforce(nlocal,pot)
992   integer :: nlocal
993   real( kind = dp ) :: pot
994  
995   if (FF_uses_EAM .and. SIM_uses_EAM) then
996      call calc_EAM_preforce_Frho(nlocal,pot)
997   endif
998  
999  
1000 end subroutine do_preforce
1001
1002
1003 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1004  
1005   real (kind = dp), dimension(3) :: q_i
1006   real (kind = dp), dimension(3) :: q_j
1007   real ( kind = dp ), intent(out) :: r_sq
1008   real( kind = dp ) :: d(3), scaled(3)
1009   integer i
1010  
1011   d(1:3) = q_j(1:3) - q_i(1:3)
1012  
1013   ! Wrap back into periodic box if necessary
1014   if ( SIM_uses_PBC ) then
1015      
1016      if( .not.boxIsOrthorhombic ) then
1017         ! calc the scaled coordinates.
1018        
1019         scaled = matmul(HmatInv, d)
1020        
1021         ! wrap the scaled coordinates
1022        
1023         scaled = scaled  - anint(scaled)
1024        
1025        
1026         ! calc the wrapped real coordinates from the wrapped scaled
1027         ! coordinates
1028        
1029         d = matmul(Hmat,scaled)
1030        
1031      else
1032         ! calc the scaled coordinates.
1033        
1034         do i = 1, 3
1035            scaled(i) = d(i) * HmatInv(i,i)
1036            
1037            ! wrap the scaled coordinates
1038            
1039            scaled(i) = scaled(i) - anint(scaled(i))
1040            
1041            ! calc the wrapped real coordinates from the wrapped scaled
1042            ! coordinates
1043            
1044            d(i) = scaled(i)*Hmat(i,i)
1045         enddo
1046      endif
1047      
1048   endif
1049  
1050   r_sq = dot_product(d,d)
1051  
1052 end subroutine get_interatomic_vector
1053
1054 subroutine zero_work_arrays()
1055  
1056 #ifdef IS_MPI
1057  
1058   q_Row = 0.0_dp
1059   q_Col = 0.0_dp
1035  
1036 <   q_group_Row = 0.0_dp
1037 <   q_group_Col = 0.0_dp  
1038 <  
1039 <   u_l_Row = 0.0_dp
1040 <   u_l_Col = 0.0_dp
1041 <  
1042 <   A_Row = 0.0_dp
1043 <   A_Col = 0.0_dp
1044 <  
1045 <   f_Row = 0.0_dp
1046 <   f_Col = 0.0_dp
1047 <   f_Temp = 0.0_dp
1048 <  
1049 <   t_Row = 0.0_dp
1050 <   t_Col = 0.0_dp
1051 <   t_Temp = 0.0_dp
1052 <  
1053 <   pot_Row = 0.0_dp
1054 <   pot_Col = 0.0_dp
1055 <   pot_Temp = 0.0_dp
1056 <  
1057 <   rf_Row = 0.0_dp
1058 <   rf_Col = 0.0_dp
1059 <   rf_Temp = 0.0_dp
1060 <  
1061 < #endif
1062 <
1063 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1064 <      call clean_EAM()
1065 <   endif
1066 <  
1067 <   rf = 0.0_dp
1068 <   tau_Temp = 0.0_dp
1069 <   virial_Temp = 0.0_dp
1070 < end subroutine zero_work_arrays
1071 <
1072 < function skipThisPair(atom1, atom2) result(skip_it)
1073 <   integer, intent(in) :: atom1
1074 <   integer, intent(in), optional :: atom2
1075 <   logical :: skip_it
1076 <   integer :: unique_id_1, unique_id_2
1077 <   integer :: me_i,me_j
1078 <   integer :: i
1079 <  
1080 <   skip_it = .false.
1081 <  
1082 <   !! there are a number of reasons to skip a pair or a particle
1083 <   !! mostly we do this to exclude atoms who are involved in short
1084 <   !! range interactions (bonds, bends, torsions), but we also need
1085 <   !! to exclude some overcounted interactions that result from
1086 <   !! the parallel decomposition
1087 <  
1036 >    iHash = InteractionHash(me_i, me_j)
1037 >
1038 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1039 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1040 >    endif
1041 >    
1042 >  end subroutine do_prepair
1043 >
1044 >
1045 >  subroutine do_preforce(nlocal,pot)
1046 >    integer :: nlocal
1047 >    real( kind = dp ) :: pot
1048 >
1049 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1050 >       call calc_EAM_preforce_Frho(nlocal,pot)
1051 >    endif
1052 >
1053 >
1054 >  end subroutine do_preforce
1055 >
1056 >
1057 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1058 >
1059 >    real (kind = dp), dimension(3) :: q_i
1060 >    real (kind = dp), dimension(3) :: q_j
1061 >    real ( kind = dp ), intent(out) :: r_sq
1062 >    real( kind = dp ) :: d(3), scaled(3)
1063 >    integer i
1064 >
1065 >    d(1:3) = q_j(1:3) - q_i(1:3)
1066 >
1067 >    ! Wrap back into periodic box if necessary
1068 >    if ( SIM_uses_PBC ) then
1069 >
1070 >       if( .not.boxIsOrthorhombic ) then
1071 >          ! calc the scaled coordinates.
1072 >
1073 >          scaled = matmul(HmatInv, d)
1074 >
1075 >          ! wrap the scaled coordinates
1076 >
1077 >          scaled = scaled  - anint(scaled)
1078 >
1079 >
1080 >          ! calc the wrapped real coordinates from the wrapped scaled
1081 >          ! coordinates
1082 >
1083 >          d = matmul(Hmat,scaled)
1084 >
1085 >       else
1086 >          ! calc the scaled coordinates.
1087 >
1088 >          do i = 1, 3
1089 >             scaled(i) = d(i) * HmatInv(i,i)
1090 >
1091 >             ! wrap the scaled coordinates
1092 >
1093 >             scaled(i) = scaled(i) - anint(scaled(i))
1094 >
1095 >             ! calc the wrapped real coordinates from the wrapped scaled
1096 >             ! coordinates
1097 >
1098 >             d(i) = scaled(i)*Hmat(i,i)
1099 >          enddo
1100 >       endif
1101 >
1102 >    endif
1103 >
1104 >    r_sq = dot_product(d,d)
1105 >
1106 >  end subroutine get_interatomic_vector
1107 >
1108 >  subroutine zero_work_arrays()
1109 >
1110   #ifdef IS_MPI
1111 <   !! in MPI, we have to look up the unique IDs for each atom
1112 <   unique_id_1 = AtomRowToGlobal(atom1)
1113 < #else
1114 <   !! in the normal loop, the atom numbers are unique
1115 <   unique_id_1 = atom1
1111 >
1112 >    q_Row = 0.0_dp
1113 >    q_Col = 0.0_dp
1114 >
1115 >    q_group_Row = 0.0_dp
1116 >    q_group_Col = 0.0_dp  
1117 >
1118 >    eFrame_Row = 0.0_dp
1119 >    eFrame_Col = 0.0_dp
1120 >
1121 >    A_Row = 0.0_dp
1122 >    A_Col = 0.0_dp
1123 >
1124 >    f_Row = 0.0_dp
1125 >    f_Col = 0.0_dp
1126 >    f_Temp = 0.0_dp
1127 >
1128 >    t_Row = 0.0_dp
1129 >    t_Col = 0.0_dp
1130 >    t_Temp = 0.0_dp
1131 >
1132 >    pot_Row = 0.0_dp
1133 >    pot_Col = 0.0_dp
1134 >    pot_Temp = 0.0_dp
1135 >
1136 >    rf_Row = 0.0_dp
1137 >    rf_Col = 0.0_dp
1138 >    rf_Temp = 0.0_dp
1139 >
1140   #endif
1141 <  
1142 <   !! We were called with only one atom, so just check the global exclude
1143 <   !! list for this atom
1144 <   if (.not. present(atom2)) then
1145 <      do i = 1, nExcludes_global
1146 <         if (excludesGlobal(i) == unique_id_1) then
1147 <            skip_it = .true.
1148 <            return
1149 <         end if
1150 <      end do
1151 <      return
1152 <   end if
1153 <  
1141 >
1142 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1143 >       call clean_EAM()
1144 >    endif
1145 >
1146 >    rf = 0.0_dp
1147 >    tau_Temp = 0.0_dp
1148 >    virial_Temp = 0.0_dp
1149 >  end subroutine zero_work_arrays
1150 >
1151 >  function skipThisPair(atom1, atom2) result(skip_it)
1152 >    integer, intent(in) :: atom1
1153 >    integer, intent(in), optional :: atom2
1154 >    logical :: skip_it
1155 >    integer :: unique_id_1, unique_id_2
1156 >    integer :: me_i,me_j
1157 >    integer :: i
1158 >
1159 >    skip_it = .false.
1160 >
1161 >    !! there are a number of reasons to skip a pair or a particle
1162 >    !! mostly we do this to exclude atoms who are involved in short
1163 >    !! range interactions (bonds, bends, torsions), but we also need
1164 >    !! to exclude some overcounted interactions that result from
1165 >    !! the parallel decomposition
1166 >
1167   #ifdef IS_MPI
1168 <   unique_id_2 = AtomColToGlobal(atom2)
1168 >    !! in MPI, we have to look up the unique IDs for each atom
1169 >    unique_id_1 = AtomRowToGlobal(atom1)
1170   #else
1171 <   unique_id_2 = atom2
1171 >    !! in the normal loop, the atom numbers are unique
1172 >    unique_id_1 = atom1
1173   #endif
1174 <  
1174 >
1175 >    !! We were called with only one atom, so just check the global exclude
1176 >    !! list for this atom
1177 >    if (.not. present(atom2)) then
1178 >       do i = 1, nExcludes_global
1179 >          if (excludesGlobal(i) == unique_id_1) then
1180 >             skip_it = .true.
1181 >             return
1182 >          end if
1183 >       end do
1184 >       return
1185 >    end if
1186 >
1187   #ifdef IS_MPI
1188 <   !! this situation should only arise in MPI simulations
1189 <   if (unique_id_1 == unique_id_2) then
1190 <      skip_it = .true.
1143 <      return
1144 <   end if
1145 <  
1146 <   !! this prevents us from doing the pair on multiple processors
1147 <   if (unique_id_1 < unique_id_2) then
1148 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1149 <         skip_it = .true.
1150 <         return
1151 <      endif
1152 <   else                
1153 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1154 <         skip_it = .true.
1155 <         return
1156 <      endif
1157 <   endif
1188 >    unique_id_2 = AtomColToGlobal(atom2)
1189 > #else
1190 >    unique_id_2 = atom2
1191   #endif
1192 <  
1193 <   !! the rest of these situations can happen in all simulations:
1194 <   do i = 1, nExcludes_global      
1195 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1196 <           (excludesGlobal(i) == unique_id_2)) then
1197 <         skip_it = .true.
1198 <         return
1199 <      endif
1200 <   enddo
1201 <  
1202 <   do i = 1, nSkipsForAtom(atom1)
1203 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1204 <         skip_it = .true.
1205 <         return
1206 <      endif
1207 <   end do
1208 <  
1209 <   return
1210 < end function skipThisPair
1211 <
1212 < function FF_UsesDirectionalAtoms() result(doesit)
1213 <   logical :: doesit
1214 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1215 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1216 < end function FF_UsesDirectionalAtoms
1217 <
1218 < function FF_RequiresPrepairCalc() result(doesit)
1219 <   logical :: doesit
1220 <   doesit = FF_uses_EAM
1221 < end function FF_RequiresPrepairCalc
1222 <
1223 < function FF_RequiresPostpairCalc() result(doesit)
1224 <   logical :: doesit
1225 <   doesit = FF_uses_RF
1226 < end function FF_RequiresPostpairCalc
1227 <
1192 >
1193 > #ifdef IS_MPI
1194 >    !! this situation should only arise in MPI simulations
1195 >    if (unique_id_1 == unique_id_2) then
1196 >       skip_it = .true.
1197 >       return
1198 >    end if
1199 >
1200 >    !! this prevents us from doing the pair on multiple processors
1201 >    if (unique_id_1 < unique_id_2) then
1202 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1203 >          skip_it = .true.
1204 >          return
1205 >       endif
1206 >    else                
1207 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1208 >          skip_it = .true.
1209 >          return
1210 >       endif
1211 >    endif
1212 > #endif
1213 >
1214 >    !! the rest of these situations can happen in all simulations:
1215 >    do i = 1, nExcludes_global      
1216 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1217 >            (excludesGlobal(i) == unique_id_2)) then
1218 >          skip_it = .true.
1219 >          return
1220 >       endif
1221 >    enddo
1222 >
1223 >    do i = 1, nSkipsForAtom(atom1)
1224 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1225 >          skip_it = .true.
1226 >          return
1227 >       endif
1228 >    end do
1229 >
1230 >    return
1231 >  end function skipThisPair
1232 >
1233 >  function FF_UsesDirectionalAtoms() result(doesit)
1234 >    logical :: doesit
1235 >    doesit = FF_uses_DirectionalAtoms
1236 >  end function FF_UsesDirectionalAtoms
1237 >
1238 >  function FF_RequiresPrepairCalc() result(doesit)
1239 >    logical :: doesit
1240 >    doesit = FF_uses_EAM
1241 >  end function FF_RequiresPrepairCalc
1242 >
1243 >  function FF_RequiresPostpairCalc() result(doesit)
1244 >    logical :: doesit
1245 >    doesit = FF_uses_RF
1246 >  end function FF_RequiresPostpairCalc
1247 >
1248   #ifdef PROFILE
1249 < function getforcetime() result(totalforcetime)
1250 <   real(kind=dp) :: totalforcetime
1251 <   totalforcetime = forcetime
1252 < end function getforcetime
1249 >  function getforcetime() result(totalforcetime)
1250 >    real(kind=dp) :: totalforcetime
1251 >    totalforcetime = forcetime
1252 >  end function getforcetime
1253   #endif
1201
1202 !! This cleans componets of force arrays belonging only to fortran
1254  
1255 < subroutine add_stress_tensor(dpair, fpair)
1205 <  
1206 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1207 <  
1208 <   ! because the d vector is the rj - ri vector, and
1209 <   ! because fx, fy, fz are the force on atom i, we need a
1210 <   ! negative sign here:  
1211 <  
1212 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1213 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1214 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1215 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1216 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1217 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1218 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1219 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1220 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1221 <  
1222 <   virial_Temp = virial_Temp + &
1223 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1224 <  
1225 < end subroutine add_stress_tensor
1226 <
1227 < end module doForces
1255 >  !! This cleans componets of force arrays belonging only to fortran
1256  
1257 < !! Interfaces for C programs to module....
1257 >  subroutine add_stress_tensor(dpair, fpair)
1258  
1259 < subroutine initFortranFF(use_RF_c, thisStat)
1232 <    use doForces, ONLY: init_FF
1233 <    logical, intent(in) :: use_RF_c
1259 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1260  
1261 <    integer, intent(out) :: thisStat  
1262 <    call init_FF(use_RF_c, thisStat)
1261 >    ! because the d vector is the rj - ri vector, and
1262 >    ! because fx, fy, fz are the force on atom i, we need a
1263 >    ! negative sign here:  
1264  
1265 < end subroutine initFortranFF
1265 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1266 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1267 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1268 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1269 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1270 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1271 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1272 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1273 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1274  
1275 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1276 <       do_pot_c, do_stress_c, error)
1242 <      
1243 <       use definitions, ONLY: dp
1244 <       use simulation
1245 <       use doForces, ONLY: do_force_loop
1246 <    !! Position array provided by C, dimensioned by getNlocal
1247 <    real ( kind = dp ), dimension(3, nLocal) :: q
1248 <    !! molecular center-of-mass position array
1249 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1250 <    !! Rotation Matrix for each long range particle in simulation.
1251 <    real( kind = dp), dimension(9, nLocal) :: A    
1252 <    !! Unit vectors for dipoles (lab frame)
1253 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1254 <    !! Force array provided by C, dimensioned by getNlocal
1255 <    real ( kind = dp ), dimension(3,nLocal) :: f
1256 <    !! Torsion array provided by C, dimensioned by getNlocal
1257 <    real( kind = dp ), dimension(3,nLocal) :: t    
1275 >    virial_Temp = virial_Temp + &
1276 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1277  
1278 <    !! Stress Tensor
1279 <    real( kind = dp), dimension(9) :: tau  
1280 <    real ( kind = dp ) :: pot
1262 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1263 <    integer :: error
1264 <    
1265 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1266 <       do_pot_c, do_stress_c, error)
1267 <      
1268 < end subroutine doForceloop
1278 >  end subroutine add_stress_tensor
1279 >
1280 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines