ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-2.0/src/UseTheForce/doForces.F90 (file contents):
Revision 1930 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
Revision 2282 by chuckv, Tue Sep 6 17:32:42 2005 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.9 2005-01-12 22:40:37 gezelter Exp $, $Date: 2005-01-12 22:40:37 $, $Name: not supported by cvs2svn $, $Revision: 1.9 $
48 > !! @version $Id: doForces.F90,v 1.36 2005-09-06 17:32:42 chuckv Exp $, $Date: 2005-09-06 17:32:42 $, $Name: not supported by cvs2svn $, $Revision: 1.36 $
49  
50  
51   module doForces
# Line 57 | Line 57 | module doForces
57    use neighborLists  
58    use lj
59    use sticky
60 <  use dipole_dipole
61 <  use charge_charge
60 >  use electrostatic_module
61    use reaction_field
62    use gb_pair
63    use shapes
# Line 74 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
81  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
84  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >  logical, save :: haveRlist = .false.
89 >
90    logical, save :: FF_uses_DirectionalAtoms
91 <  logical, save :: FF_uses_LennardJones
89 <  logical, save :: FF_uses_Electrostatic
90 <  logical, save :: FF_uses_charges
91 <  logical, save :: FF_uses_dipoles
92 <  logical, save :: FF_uses_sticky
91 >  logical, save :: FF_uses_Dipoles
92    logical, save :: FF_uses_GayBerne
93    logical, save :: FF_uses_EAM
95  logical, save :: FF_uses_Shapes
96  logical, save :: FF_uses_FLARB
94    logical, save :: FF_uses_RF
95  
96    logical, save :: SIM_uses_DirectionalAtoms
100  logical, save :: SIM_uses_LennardJones
101  logical, save :: SIM_uses_Electrostatics
102  logical, save :: SIM_uses_Charges
103  logical, save :: SIM_uses_Dipoles
104  logical, save :: SIM_uses_Sticky
105  logical, save :: SIM_uses_GayBerne
97    logical, save :: SIM_uses_EAM
107  logical, save :: SIM_uses_Shapes
108  logical, save :: SIM_uses_FLARB
98    logical, save :: SIM_uses_RF
99    logical, save :: SIM_requires_postpair_calc
100    logical, save :: SIM_requires_prepair_calc
101    logical, save :: SIM_uses_PBC
113  logical, save :: SIM_uses_molecular_cutoffs
102  
103 <  real(kind=dp), save :: rlist, rlistsq
103 >  integer, save :: corrMethod
104  
105    public :: init_FF
106 +  public :: setDefaultCutoffs
107    public :: do_force_loop
108 <  public :: setRlistDF
108 >  public :: createInteractionHash
109 >  public :: createGtypeCutoffMap
110 >  public :: getStickyCut
111 >  public :: getStickyPowerCut
112 >  public :: getGayBerneCut
113 >  public :: getEAMCut
114 >  public :: getShapeCut
115  
116   #ifdef PROFILE
117    public :: getforcetime
# Line 124 | Line 119 | module doForces
119    real :: forceTimeInitial, forceTimeFinal
120    integer :: nLoops
121   #endif
122 +  
123 +  !! Variables for cutoff mapping and interaction mapping
124 +  ! Bit hash to determine pair-pair interactions.
125 +  integer, dimension(:,:), allocatable :: InteractionHash
126 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
127 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
128 +  integer, dimension(:), allocatable :: groupToGtype
129 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
130 +  type ::gtypeCutoffs
131 +     real(kind=dp) :: rcut
132 +     real(kind=dp) :: rcutsq
133 +     real(kind=dp) :: rlistsq
134 +  end type gtypeCutoffs
135 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
136  
137 <  type :: Properties
138 <     logical :: is_Directional   = .false.
139 <     logical :: is_LennardJones  = .false.
131 <     logical :: is_Electrostatic = .false.
132 <     logical :: is_Charge        = .false.
133 <     logical :: is_Dipole        = .false.
134 <     logical :: is_Sticky        = .false.
135 <     logical :: is_GayBerne      = .false.
136 <     logical :: is_EAM           = .false.
137 <     logical :: is_Shape         = .false.
138 <     logical :: is_FLARB         = .false.
139 <  end type Properties
140 <
141 <  type(Properties), dimension(:),allocatable :: PropertyMap
142 <
137 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
138 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
139 >  
140   contains
141  
142 <  subroutine setRlistDF( this_rlist )
146 <    
147 <    real(kind=dp) :: this_rlist
148 <
149 <    rlist = this_rlist
150 <    rlistsq = rlist * rlist
151 <    
152 <    haveRlist = .true.
153 <
154 <  end subroutine setRlistDF    
155 <
156 <  subroutine createPropertyMap(status)
142 >  subroutine createInteractionHash(status)
143      integer :: nAtypes
144 <    integer :: status
144 >    integer, intent(out) :: status
145      integer :: i
146 <    logical :: thisProperty
147 <    real (kind=DP) :: thisDPproperty
146 >    integer :: j
147 >    integer :: iHash
148 >    !! Test Types
149 >    logical :: i_is_LJ
150 >    logical :: i_is_Elect
151 >    logical :: i_is_Sticky
152 >    logical :: i_is_StickyP
153 >    logical :: i_is_GB
154 >    logical :: i_is_EAM
155 >    logical :: i_is_Shape
156 >    logical :: j_is_LJ
157 >    logical :: j_is_Elect
158 >    logical :: j_is_Sticky
159 >    logical :: j_is_StickyP
160 >    logical :: j_is_GB
161 >    logical :: j_is_EAM
162 >    logical :: j_is_Shape
163 >    real(kind=dp) :: myRcut
164  
165 <    status = 0
165 >    status = 0  
166  
167 +    if (.not. associated(atypes)) then
168 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
169 +       status = -1
170 +       return
171 +    endif
172 +    
173      nAtypes = getSize(atypes)
174 <
174 >    
175      if (nAtypes == 0) then
176         status = -1
177         return
178      end if
179 <        
180 <    if (.not. allocated(PropertyMap)) then
181 <       allocate(PropertyMap(nAtypes))
179 >
180 >    if (.not. allocated(InteractionHash)) then
181 >       allocate(InteractionHash(nAtypes,nAtypes))
182      endif
183  
184 +    if (.not. allocated(atypeMaxCutoff)) then
185 +       allocate(atypeMaxCutoff(nAtypes))
186 +    endif
187 +        
188      do i = 1, nAtypes
189 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
190 <       PropertyMap(i)%is_Directional = thisProperty
189 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
190 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
191 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
192 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
193 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
194 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
195 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
196  
197 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
181 <       PropertyMap(i)%is_LennardJones = thisProperty
182 <      
183 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
184 <       PropertyMap(i)%is_Electrostatic = thisProperty
197 >       do j = i, nAtypes
198  
199 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
200 <       PropertyMap(i)%is_Charge = thisProperty
188 <      
189 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
190 <       PropertyMap(i)%is_Dipole = thisProperty
199 >          iHash = 0
200 >          myRcut = 0.0_dp
201  
202 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
203 <       PropertyMap(i)%is_Sticky = thisProperty
202 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
203 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
204 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
205 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
206 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
207 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
208 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
209  
210 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
211 <       PropertyMap(i)%is_GayBerne = thisProperty
210 >          if (i_is_LJ .and. j_is_LJ) then
211 >             iHash = ior(iHash, LJ_PAIR)            
212 >          endif
213 >          
214 >          if (i_is_Elect .and. j_is_Elect) then
215 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
216 >          endif
217 >          
218 >          if (i_is_Sticky .and. j_is_Sticky) then
219 >             iHash = ior(iHash, STICKY_PAIR)
220 >          endif
221  
222 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
223 <       PropertyMap(i)%is_EAM = thisProperty
222 >          if (i_is_StickyP .and. j_is_StickyP) then
223 >             iHash = ior(iHash, STICKYPOWER_PAIR)
224 >          endif
225  
226 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
227 <       PropertyMap(i)%is_Shape = thisProperty
226 >          if (i_is_EAM .and. j_is_EAM) then
227 >             iHash = ior(iHash, EAM_PAIR)
228 >          endif
229  
230 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
231 <       PropertyMap(i)%is_FLARB = thisProperty
230 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
231 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
232 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
233 >
234 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
235 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
236 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
237 >
238 >
239 >          InteractionHash(i,j) = iHash
240 >          InteractionHash(j,i) = iHash
241 >
242 >       end do
243 >
244      end do
245  
246 <    havePropertyMap = .true.
246 >    haveInteractionHash = .true.
247 >  end subroutine createInteractionHash
248  
249 <  end subroutine createPropertyMap
249 >  subroutine createGtypeCutoffMap(stat)
250  
251 +    integer, intent(out), optional :: stat
252 +    logical :: i_is_LJ
253 +    logical :: i_is_Elect
254 +    logical :: i_is_Sticky
255 +    logical :: i_is_StickyP
256 +    logical :: i_is_GB
257 +    logical :: i_is_EAM
258 +    logical :: i_is_Shape
259 +
260 +    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
261 +    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
262 +    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
263 +    real(kind=dp) :: biggestAtypeCutoff
264 +
265 +    stat = 0
266 +    if (.not. haveInteractionHash) then
267 +       call createInteractionHash(myStatus)      
268 +       if (myStatus .ne. 0) then
269 +          write(default_error, *) 'createInteractionHash failed in doForces!'
270 +          stat = -1
271 +          return
272 +       endif
273 +    endif
274 +
275 +    nAtypes = getSize(atypes)
276 +    
277 +    do i = 1, nAtypes
278 +       if (SimHasAtype(i)) then    
279 +          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
280 +          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
281 +          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
282 +          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
283 +          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
284 +          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
285 +          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
286 +          
287 +          atypeMaxCutoff(i) = 0.0_dp
288 +          if (i_is_LJ) then
289 +             thisRcut = getSigma(i) * 2.5_dp
290 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
291 +          endif
292 +          if (i_is_Elect) then
293 +             thisRcut = defaultRcut
294 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
295 +          endif
296 +          if (i_is_Sticky) then
297 +             thisRcut = getStickyCut(i)
298 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
299 +          endif
300 +          if (i_is_StickyP) then
301 +             thisRcut = getStickyPowerCut(i)
302 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
303 +          endif
304 +          if (i_is_GB) then
305 +             thisRcut = getGayBerneCut(i)
306 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
307 +          endif
308 +          if (i_is_EAM) then
309 +             thisRcut = getEAMCut(i)
310 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
311 +          endif
312 +          if (i_is_Shape) then
313 +             thisRcut = getShapeCut(i)
314 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
315 +          endif
316 +          
317 +          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
318 +             biggestAtypeCutoff = atypeMaxCutoff(i)
319 +          endif
320 +       endif
321 +    enddo
322 +  
323 +    nGroupTypes = 0
324 +    
325 +    istart = 1
326 + #ifdef IS_MPI
327 +    iend = nGroupsInRow
328 + #else
329 +    iend = nGroups
330 + #endif
331 +    
332 +    !! allocate the groupToGtype and gtypeMaxCutoff here.
333 +    if(.not.allocated(groupToGtype)) then
334 +       allocate(groupToGtype(iend))
335 +       allocate(groupMaxCutoff(iend))
336 +       allocate(gtypeMaxCutoff(iend))
337 +    endif
338 +    !! first we do a single loop over the cutoff groups to find the
339 +    !! largest cutoff for any atypes present in this group.  We also
340 +    !! create gtypes at this point.
341 +    
342 +    tol = 1.0d-6
343 +    
344 +    do i = istart, iend      
345 +       n_in_i = groupStartRow(i+1) - groupStartRow(i)
346 +       groupMaxCutoff(i) = 0.0_dp
347 +       do ia = groupStartRow(i), groupStartRow(i+1)-1
348 +          atom1 = groupListRow(ia)
349 + #ifdef IS_MPI
350 +          me_i = atid_row(atom1)
351 + #else
352 +          me_i = atid(atom1)
353 + #endif          
354 +          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
355 +             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
356 +          endif
357 +       enddo
358 +       if (nGroupTypes.eq.0) then
359 +          nGroupTypes = nGroupTypes + 1
360 +          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
361 +          groupToGtype(i) = nGroupTypes
362 +       else
363 +          do g = 1, nGroupTypes
364 +             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).gt.tol) then
365 +                nGroupTypes = nGroupTypes + 1
366 +                gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
367 +                groupToGtype(i) = nGroupTypes
368 +             else
369 +                groupToGtype(i) = g
370 +             endif
371 +          enddo
372 +       endif
373 +    enddo
374 +    
375 +    !! allocate the gtypeCutoffMap here.
376 +    allocate(gtypeCutoffMap(nGroupTypes,nGroupTypes))
377 +    !! then we do a double loop over all the group TYPES to find the cutoff
378 +    !! map between groups of two types
379 +    
380 +    do i = 1, nGroupTypes
381 +       do j = 1, nGroupTypes
382 +      
383 +          select case(cutoffPolicy)
384 +          case(TRADITIONAL_CUTOFF_POLICY)
385 +             thisRcut = maxval(gtypeMaxCutoff)
386 +          case(MIX_CUTOFF_POLICY)
387 +             thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
388 +          case(MAX_CUTOFF_POLICY)
389 +             thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
390 +          case default
391 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
392 +             return
393 +          end select
394 +          gtypeCutoffMap(i,j)%rcut = thisRcut
395 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
396 +          skin = defaultRlist - defaultRcut
397 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
398 +       enddo
399 +    enddo
400 +    
401 +    haveGtypeCutoffMap = .true.
402 +    
403 +  end subroutine createGtypeCutoffMap
404 +  
405 +  subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
406 +    real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
407 +    integer, intent(in) :: cutPolicy
408 +    
409 +    defaultRcut = defRcut
410 +    defaultRsw = defRsw
411 +    defaultRlist = defRlist
412 +    cutoffPolicy = cutPolicy
413 +  end subroutine setDefaultCutoffs
414 +  
415 +  subroutine setCutoffPolicy(cutPolicy)
416 +
417 +     integer, intent(in) :: cutPolicy
418 +     cutoffPolicy = cutPolicy
419 +     call createGtypeCutoffMap()
420 +
421 +   end subroutine setCutoffPolicy
422 +    
423 +    
424    subroutine setSimVariables()
425      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
214    SIM_uses_LennardJones = SimUsesLennardJones()
215    SIM_uses_Electrostatics = SimUsesElectrostatics()
216    SIM_uses_Charges = SimUsesCharges()
217    SIM_uses_Dipoles = SimUsesDipoles()
218    SIM_uses_Sticky = SimUsesSticky()
219    SIM_uses_GayBerne = SimUsesGayBerne()
426      SIM_uses_EAM = SimUsesEAM()
221    SIM_uses_Shapes = SimUsesShapes()
222    SIM_uses_FLARB = SimUsesFLARB()
427      SIM_uses_RF = SimUsesRF()
428      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
429      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
# Line 236 | Line 440 | contains
440      integer :: myStatus
441  
442      error = 0
239    
240    if (.not. havePropertyMap) then
443  
444 <       myStatus = 0
444 >    if (.not. haveInteractionHash) then      
445 >       myStatus = 0      
446 >       call createInteractionHash(myStatus)      
447 >       if (myStatus .ne. 0) then
448 >          write(default_error, *) 'createInteractionHash failed in doForces!'
449 >          error = -1
450 >          return
451 >       endif
452 >    endif
453  
454 <       call createPropertyMap(myStatus)
455 <
454 >    if (.not. haveGtypeCutoffMap) then        
455 >       myStatus = 0      
456 >       call createGtypeCutoffMap(myStatus)      
457         if (myStatus .ne. 0) then
458 <          write(default_error, *) 'createPropertyMap failed in doForces!'
458 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
459            error = -1
460            return
461         endif
# Line 254 | Line 465 | contains
465         call setSimVariables()
466      endif
467  
468 <    if (.not. haveRlist) then
469 <       write(default_error, *) 'rList has not been set in doForces!'
470 <       error = -1
471 <       return
472 <    endif
468 >  !  if (.not. haveRlist) then
469 >  !     write(default_error, *) 'rList has not been set in doForces!'
470 >  !     error = -1
471 >  !     return
472 >  !  endif
473  
474      if (.not. haveNeighborList) then
475         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 281 | Line 492 | contains
492   #endif
493      return
494    end subroutine doReadyCheck
284    
495  
286  subroutine init_FF(use_RF_c, thisStat)
496  
497 <    logical, intent(in) :: use_RF_c
497 >  subroutine init_FF(use_RF, use_UW, use_DW, thisStat)
498  
499 +    logical, intent(in) :: use_RF
500 +    logical, intent(in) :: use_UW
501 +    logical, intent(in) :: use_DW
502      integer, intent(out) :: thisStat  
503      integer :: my_status, nMatches
504 +    integer :: corrMethod
505      integer, pointer :: MatchList(:) => null()
506      real(kind=dp) :: rcut, rrf, rt, dielect
507  
# Line 296 | Line 509 | contains
509      thisStat = 0
510  
511      !! Fortran's version of a cast:
512 <    FF_uses_RF = use_RF_c
512 >    FF_uses_RF = use_RF
513 >
514 >    !! set the electrostatic correction method
515 >    if (use_UW) then
516 >       corrMethod = 1
517 >    elseif (use_DW) then
518 >       corrMethod = 2
519 >    else
520 >       corrMethod = 0
521 >    endif
522      
523      !! init_FF is called *after* all of the atom types have been
524      !! defined in atype_module using the new_atype subroutine.
525      !!
526      !! this will scan through the known atypes and figure out what
527      !! interactions are used by the force field.    
528 <  
528 >
529      FF_uses_DirectionalAtoms = .false.
308    FF_uses_LennardJones = .false.
309    FF_uses_Electrostatic = .false.
310    FF_uses_Charges = .false.    
530      FF_uses_Dipoles = .false.
312    FF_uses_Sticky = .false.
531      FF_uses_GayBerne = .false.
532      FF_uses_EAM = .false.
533 <    FF_uses_Shapes = .false.
316 <    FF_uses_FLARB = .false.
317 <    
533 >
534      call getMatchingElementList(atypes, "is_Directional", .true., &
535           nMatches, MatchList)
536      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
537  
322    call getMatchingElementList(atypes, "is_LennardJones", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
325    
326    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
327         nMatches, MatchList)
328    if (nMatches .gt. 0) then
329       FF_uses_Electrostatic = .true.
330    endif
331
332    call getMatchingElementList(atypes, "is_Charge", .true., &
333         nMatches, MatchList)
334    if (nMatches .gt. 0) then
335       FF_uses_charges = .true.  
336       FF_uses_electrostatic = .true.
337    endif
338    
538      call getMatchingElementList(atypes, "is_Dipole", .true., &
539           nMatches, MatchList)
540 <    if (nMatches .gt. 0) then
342 <       FF_uses_dipoles = .true.
343 <       FF_uses_electrostatic = .true.
344 <       FF_uses_DirectionalAtoms = .true.
345 <    endif
540 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
541      
347    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
348         MatchList)
349    if (nMatches .gt. 0) then
350       FF_uses_Sticky = .true.
351       FF_uses_DirectionalAtoms = .true.
352    endif
353    
542      call getMatchingElementList(atypes, "is_GayBerne", .true., &
543           nMatches, MatchList)
544 <    if (nMatches .gt. 0) then
545 <       FF_uses_GayBerne = .true.
358 <       FF_uses_DirectionalAtoms = .true.
359 <    endif
360 <    
544 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
545 >
546      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
547      if (nMatches .gt. 0) FF_uses_EAM = .true.
363    
364    call getMatchingElementList(atypes, "is_Shape", .true., &
365         nMatches, MatchList)
366    if (nMatches .gt. 0) then
367       FF_uses_Shapes = .true.
368       FF_uses_DirectionalAtoms = .true.
369    endif
548  
371    call getMatchingElementList(atypes, "is_FLARB", .true., &
372         nMatches, MatchList)
373    if (nMatches .gt. 0) FF_uses_FLARB = .true.
549  
375    !! Assume sanity (for the sake of argument)
550      haveSaneForceField = .true.
551 <    
551 >
552      !! check to make sure the FF_uses_RF setting makes sense
553 <    
554 <    if (FF_uses_dipoles) then
553 >
554 >    if (FF_uses_Dipoles) then
555         if (FF_uses_RF) then
556            dielect = getDielect()
557            call initialize_rf(dielect)
# Line 389 | Line 563 | contains
563            haveSaneForceField = .false.
564            return
565         endif
566 <    endif
566 >    endif
567  
394    !sticky module does not contain check_sticky_FF anymore
395    !if (FF_uses_sticky) then
396    !   call check_sticky_FF(my_status)
397    !   if (my_status /= 0) then
398    !      thisStat = -1
399    !      haveSaneForceField = .false.
400    !      return
401    !   end if
402    !endif
403
568      if (FF_uses_EAM) then
569 <         call init_EAM_FF(my_status)
569 >       call init_EAM_FF(my_status)
570         if (my_status /= 0) then
571            write(default_error, *) "init_EAM_FF returned a bad status"
572            thisStat = -1
# Line 420 | Line 584 | contains
584         endif
585      endif
586  
423    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
424    endif
425    
587      if (.not. haveNeighborList) then
588         !! Create neighbor lists
589         call expandNeighborList(nLocal, my_status)
# Line 432 | Line 593 | contains
593            return
594         endif
595         haveNeighborList = .true.
596 <    endif    
597 <    
596 >    endif
597 >
598    end subroutine init_FF
438  
599  
600 +
601    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
602    !------------------------------------------------------------->
603    subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
# Line 486 | Line 647 | contains
647      integer :: localError
648      integer :: propPack_i, propPack_j
649      integer :: loopStart, loopEnd, loop
650 <
650 >    integer :: iHash
651      real(kind=dp) :: listSkin = 1.0  
652 <    
652 >
653      !! initialize local variables  
654 <    
654 >
655   #ifdef IS_MPI
656      pot_local = 0.0_dp
657      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 500 | Line 661 | contains
661   #else
662      natoms = nlocal
663   #endif
664 <    
664 >
665      call doReadyCheck(localError)
666      if ( localError .ne. 0 ) then
667         call handleError("do_force_loop", "Not Initialized")
# Line 508 | Line 669 | contains
669         return
670      end if
671      call zero_work_arrays()
672 <        
672 >
673      do_pot = do_pot_c
674      do_stress = do_stress_c
675 <    
675 >
676      ! Gather all information needed by all force loops:
677 <    
677 >
678   #ifdef IS_MPI    
679 <    
679 >
680      call gather(q, q_Row, plan_atom_row_3d)
681      call gather(q, q_Col, plan_atom_col_3d)
682  
683      call gather(q_group, q_group_Row, plan_group_row_3d)
684      call gather(q_group, q_group_Col, plan_group_col_3d)
685 <        
685 >
686      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
687         call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
688         call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
689 <      
689 >
690         call gather(A, A_Row, plan_atom_row_rotation)
691         call gather(A, A_Col, plan_atom_col_rotation)
692      endif
693 <    
693 >
694   #endif
695 <    
695 >
696      !! Begin force loop timing:
697   #ifdef PROFILE
698      call cpu_time(forceTimeInitial)
699      nloops = nloops + 1
700   #endif
701 <    
701 >
702      loopEnd = PAIR_LOOP
703      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
704         loopStart = PREPAIR_LOOP
# Line 552 | Line 713 | contains
713         if (loop .eq. loopStart) then
714   #ifdef IS_MPI
715            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
716 <             update_nlist)
716 >               update_nlist)
717   #else
718            call checkNeighborList(nGroups, q_group, listSkin, &
719 <             update_nlist)
719 >               update_nlist)
720   #endif
721         endif
722 <      
722 >
723         if (update_nlist) then
724            !! save current configuration and construct neighbor list
725   #ifdef IS_MPI
# Line 569 | Line 730 | contains
730            neighborListSize = size(list)
731            nlist = 0
732         endif
733 <      
733 >
734         istart = 1
735   #ifdef IS_MPI
736         iend = nGroupsInRow
# Line 579 | Line 740 | contains
740         outer: do i = istart, iend
741  
742            if (update_nlist) point(i) = nlist + 1
743 <          
743 >
744            n_in_i = groupStartRow(i+1) - groupStartRow(i)
745 <          
745 >
746            if (update_nlist) then
747   #ifdef IS_MPI
748               jstart = 1
# Line 596 | Line 757 | contains
757               ! make sure group i has neighbors
758               if (jstart .gt. jend) cycle outer
759            endif
760 <          
760 >
761            do jnab = jstart, jend
762               if (update_nlist) then
763                  j = jnab
# Line 605 | Line 766 | contains
766               endif
767  
768   #ifdef IS_MPI
769 +             me_j = atid_col(j)
770               call get_interatomic_vector(q_group_Row(:,i), &
771                    q_group_Col(:,j), d_grp, rgrpsq)
772   #else
773 +             me_j = atid(j)
774               call get_interatomic_vector(q_group(:,i), &
775                    q_group(:,j), d_grp, rgrpsq)
776   #endif
777  
778 <             if (rgrpsq < rlistsq) then
778 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
779                  if (update_nlist) then
780                     nlist = nlist + 1
781 <                  
781 >
782                     if (nlist > neighborListSize) then
783   #ifdef IS_MPI                
784                        call expandNeighborList(nGroupsInRow, listerror)
# Line 629 | Line 792 | contains
792                        end if
793                        neighborListSize = size(list)
794                     endif
795 <                  
795 >
796                     list(nlist) = j
797                  endif
798 <                
798 >
799                  if (loop .eq. PAIR_LOOP) then
800                     vij = 0.0d0
801                     fij(1:3) = 0.0d0
802                  endif
803 <                
803 >
804                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
805                       in_switching_region)
806 <                
806 >
807                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
808 <                
808 >
809                  do ia = groupStartRow(i), groupStartRow(i+1)-1
810 <                  
810 >
811                     atom1 = groupListRow(ia)
812 <                  
812 >
813                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
814 <                      
814 >
815                        atom2 = groupListCol(jb)
816 <                      
816 >
817                        if (skipThisPair(atom1, atom2)) cycle inner
818  
819                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 692 | Line 855 | contains
855                        endif
856                     enddo inner
857                  enddo
858 <                
858 >
859                  if (loop .eq. PAIR_LOOP) then
860                     if (in_switching_region) then
861                        swderiv = vij*dswdr/rgrp
862                        fij(1) = fij(1) + swderiv*d_grp(1)
863                        fij(2) = fij(2) + swderiv*d_grp(2)
864                        fij(3) = fij(3) + swderiv*d_grp(3)
865 <                      
865 >
866                        do ia=groupStartRow(i), groupStartRow(i+1)-1
867                           atom1=groupListRow(ia)
868                           mf = mfactRow(atom1)
# Line 713 | Line 876 | contains
876                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
877   #endif
878                        enddo
879 <                      
879 >
880                        do jb=groupStartCol(j), groupStartCol(j+1)-1
881                           atom2=groupListCol(jb)
882                           mf = mfactCol(atom2)
# Line 728 | Line 891 | contains
891   #endif
892                        enddo
893                     endif
894 <                  
894 >
895                     if (do_stress) call add_stress_tensor(d_grp, fij)
896                  endif
897               end if
898            enddo
899         enddo outer
900 <      
900 >
901         if (update_nlist) then
902   #ifdef IS_MPI
903            point(nGroupsInRow + 1) = nlist + 1
# Line 748 | Line 911 | contains
911               update_nlist = .false.                              
912            endif
913         endif
914 <            
914 >
915         if (loop .eq. PREPAIR_LOOP) then
916            call do_preforce(nlocal, pot)
917         endif
918 <      
918 >
919      enddo
920 <    
920 >
921      !! Do timing
922   #ifdef PROFILE
923      call cpu_time(forceTimeFinal)
924      forceTime = forceTime + forceTimeFinal - forceTimeInitial
925   #endif    
926 <    
926 >
927   #ifdef IS_MPI
928      !!distribute forces
929 <    
929 >
930      f_temp = 0.0_dp
931      call scatter(f_Row,f_temp,plan_atom_row_3d)
932      do i = 1,nlocal
933         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
934      end do
935 <    
935 >
936      f_temp = 0.0_dp
937      call scatter(f_Col,f_temp,plan_atom_col_3d)
938      do i = 1,nlocal
939         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
940      end do
941 <    
941 >
942      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
943         t_temp = 0.0_dp
944         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 784 | Line 947 | contains
947         end do
948         t_temp = 0.0_dp
949         call scatter(t_Col,t_temp,plan_atom_col_3d)
950 <      
950 >
951         do i = 1,nlocal
952            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
953         end do
954      endif
955 <    
955 >
956      if (do_pot) then
957         ! scatter/gather pot_row into the members of my column
958         call scatter(pot_Row, pot_Temp, plan_atom_row)
959 <      
959 >
960         ! scatter/gather pot_local into all other procs
961         ! add resultant to get total pot
962         do i = 1, nlocal
963            pot_local = pot_local + pot_Temp(i)
964         enddo
965 <      
965 >
966         pot_Temp = 0.0_DP
967 <      
967 >
968         call scatter(pot_Col, pot_Temp, plan_atom_col)
969         do i = 1, nlocal
970            pot_local = pot_local + pot_Temp(i)
971         enddo
972 <      
972 >
973      endif
974   #endif
975 <    
975 >
976      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
977 <      
977 >
978         if (FF_uses_RF .and. SIM_uses_RF) then
979 <          
979 >
980   #ifdef IS_MPI
981            call scatter(rf_Row,rf,plan_atom_row_3d)
982            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 821 | Line 984 | contains
984               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
985            end do
986   #endif
987 <          
987 >
988            do i = 1, nLocal
989 <            
989 >
990               rfpot = 0.0_DP
991   #ifdef IS_MPI
992               me_i = atid_row(i)
993   #else
994               me_i = atid(i)
995   #endif
996 +             iHash = InteractionHash(me_i,me_j)
997              
998 <             if (PropertyMap(me_i)%is_Dipole) then
999 <                
998 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
999 >
1000                  mu_i = getDipoleMoment(me_i)
1001 <                
1001 >
1002                  !! The reaction field needs to include a self contribution
1003                  !! to the field:
1004                  call accumulate_self_rf(i, mu_i, eFrame)
# Line 845 | Line 1009 | contains
1009                  pot_local = pot_local + rfpot
1010   #else
1011                  pot = pot + rfpot
1012 <      
1012 >
1013   #endif
1014 <             endif            
1014 >             endif
1015            enddo
1016         endif
1017      endif
1018 <    
1019 <    
1018 >
1019 >
1020   #ifdef IS_MPI
1021 <    
1021 >
1022      if (do_pot) then
1023         pot = pot + pot_local
1024         !! we assume the c code will do the allreduce to get the total potential
1025         !! we could do it right here if we needed to...
1026      endif
1027 <    
1027 >
1028      if (do_stress) then
1029         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1030              mpi_comm_world,mpi_err)
1031         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1032              mpi_comm_world,mpi_err)
1033      endif
1034 <    
1034 >
1035   #else
1036 <    
1036 >
1037      if (do_stress) then
1038         tau = tau_Temp
1039         virial = virial_Temp
1040      endif
1041 <    
1041 >
1042   #endif
1043 <      
1043 >
1044    end subroutine do_force_loop
1045 <  
1045 >
1046    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1047         eFrame, A, f, t, pot, vpair, fpair)
1048  
# Line 895 | Line 1059 | contains
1059      real ( kind = dp ), intent(inout) :: rijsq
1060      real ( kind = dp )                :: r
1061      real ( kind = dp ), intent(inout) :: d(3)
1062 +    real ( kind = dp ) :: ebalance
1063      integer :: me_i, me_j
1064  
1065 +    integer :: iHash
1066 +
1067      r = sqrt(rijsq)
1068      vpair = 0.0d0
1069      fpair(1:3) = 0.0d0
# Line 909 | Line 1076 | contains
1076      me_j = atid(j)
1077   #endif
1078  
1079 < !    write(*,*) i, j, me_i, me_j
1080 <    
1081 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1082 <      
916 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
917 <            PropertyMap(me_j)%is_LennardJones ) then
918 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
919 <       endif
920 <      
1079 >    iHash = InteractionHash(me_i, me_j)
1080 >
1081 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1082 >       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1083      endif
1084 <    
1085 <    if (FF_uses_charges .and. SIM_uses_charges) then
1086 <      
1087 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
1088 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1089 <               pot, f, do_pot)
1084 >
1085 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1086 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1087 >            pot, eFrame, f, t, do_pot, corrMethod)
1088 >
1089 >       if (FF_uses_RF .and. SIM_uses_RF) then
1090 >
1091 >          ! CHECK ME (RF needs to know about all electrostatic types)
1092 >          call accumulate_rf(i, j, r, eFrame, sw)
1093 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1094         endif
1095 <      
1095 >
1096      endif
931    
932    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
933      
934       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
935          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
936               pot, eFrame, f, t, do_pot)
937          if (FF_uses_RF .and. SIM_uses_RF) then
938             call accumulate_rf(i, j, r, eFrame, sw)
939             call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
940          endif
941       endif
1097  
1098 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1099 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1100 +            pot, A, f, t, do_pot)
1101      endif
1102  
1103 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1104 <
1105 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
948 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
949 <               pot, A, f, t, do_pot)
950 <       endif
951 <      
1103 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1104 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1105 >            pot, A, f, t, do_pot)
1106      endif
1107  
1108 <
1109 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1110 <      
957 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
958 <            PropertyMap(me_j)%is_GayBerne) then
959 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
960 <               pot, A, f, t, do_pot)
961 <       endif
962 <      
1108 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1109 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1110 >            pot, A, f, t, do_pot)
1111      endif
1112      
1113 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1114 <      
1115 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
968 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
969 <               do_pot)
970 <       endif
971 <      
1113 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1114 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1115 > !           pot, A, f, t, do_pot)
1116      endif
1117  
1118 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1119 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1120 +            do_pot)
1121 +    endif
1122  
1123 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1123 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1124 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1125 >            pot, A, f, t, do_pot)
1126 >    endif
1127  
1128 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1129 <       if ( PropertyMap(me_i)%is_Shape .and. &
1130 <            PropertyMap(me_j)%is_Shape ) then
980 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
981 <               pot, A, f, t, do_pot)
982 <       endif
983 <      
1128 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1129 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1130 >            pot, A, f, t, do_pot)
1131      endif
1132      
1133    end subroutine do_pair
# Line 988 | Line 1135 | contains
1135    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1136         do_pot, do_stress, eFrame, A, f, t, pot)
1137  
1138 <   real( kind = dp ) :: pot, sw
1139 <   real( kind = dp ), dimension(9,nLocal) :: eFrame
1140 <   real (kind=dp), dimension(9,nLocal) :: A
1141 <   real (kind=dp), dimension(3,nLocal) :: f
1142 <   real (kind=dp), dimension(3,nLocal) :: t
996 <  
997 <   logical, intent(inout) :: do_pot, do_stress
998 <   integer, intent(in) :: i, j
999 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1000 <   real ( kind = dp )                :: r, rc
1001 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
1002 <  
1003 <   logical :: is_EAM_i, is_EAM_j
1004 <  
1005 <   integer :: me_i, me_j
1006 <  
1138 >    real( kind = dp ) :: pot, sw
1139 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1140 >    real (kind=dp), dimension(9,nLocal) :: A
1141 >    real (kind=dp), dimension(3,nLocal) :: f
1142 >    real (kind=dp), dimension(3,nLocal) :: t
1143  
1144 <    r = sqrt(rijsq)
1145 <    if (SIM_uses_molecular_cutoffs) then
1146 <       rc = sqrt(rcijsq)
1147 <    else
1148 <       rc = r
1013 <    endif
1014 <  
1144 >    logical, intent(inout) :: do_pot, do_stress
1145 >    integer, intent(in) :: i, j
1146 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1147 >    real ( kind = dp )                :: r, rc
1148 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1149  
1150 +    integer :: me_i, me_j, iHash
1151 +
1152   #ifdef IS_MPI  
1153 <   me_i = atid_row(i)
1154 <   me_j = atid_col(j)  
1153 >    me_i = atid_row(i)
1154 >    me_j = atid_col(j)  
1155   #else  
1156 <   me_i = atid(i)
1157 <   me_j = atid(j)  
1156 >    me_i = atid(i)
1157 >    me_j = atid(j)  
1158   #endif
1159 <  
1160 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1161 <      
1162 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1163 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1164 <      
1165 <   endif
1166 <  
1167 < end subroutine do_prepair
1168 <
1169 <
1170 < subroutine do_preforce(nlocal,pot)
1171 <   integer :: nlocal
1172 <   real( kind = dp ) :: pot
1173 <  
1174 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1175 <      call calc_EAM_preforce_Frho(nlocal,pot)
1176 <   endif
1177 <  
1178 <  
1179 < end subroutine do_preforce
1180 <
1181 <
1182 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1183 <  
1184 <   real (kind = dp), dimension(3) :: q_i
1185 <   real (kind = dp), dimension(3) :: q_j
1186 <   real ( kind = dp ), intent(out) :: r_sq
1187 <   real( kind = dp ) :: d(3), scaled(3)
1188 <   integer i
1189 <  
1190 <   d(1:3) = q_j(1:3) - q_i(1:3)
1191 <  
1192 <   ! Wrap back into periodic box if necessary
1193 <   if ( SIM_uses_PBC ) then
1194 <      
1195 <      if( .not.boxIsOrthorhombic ) then
1196 <         ! calc the scaled coordinates.
1197 <        
1198 <         scaled = matmul(HmatInv, d)
1199 <        
1200 <         ! wrap the scaled coordinates
1201 <        
1202 <         scaled = scaled  - anint(scaled)
1203 <        
1204 <        
1205 <         ! calc the wrapped real coordinates from the wrapped scaled
1206 <         ! coordinates
1207 <        
1208 <         d = matmul(Hmat,scaled)
1209 <        
1210 <      else
1211 <         ! calc the scaled coordinates.
1212 <        
1213 <         do i = 1, 3
1214 <            scaled(i) = d(i) * HmatInv(i,i)
1215 <            
1216 <            ! wrap the scaled coordinates
1217 <            
1218 <            scaled(i) = scaled(i) - anint(scaled(i))
1219 <            
1220 <            ! calc the wrapped real coordinates from the wrapped scaled
1221 <            ! coordinates
1222 <            
1223 <            d(i) = scaled(i)*Hmat(i,i)
1224 <         enddo
1225 <      endif
1226 <      
1227 <   endif
1228 <  
1229 <   r_sq = dot_product(d,d)
1230 <  
1231 < end subroutine get_interatomic_vector
1232 <
1233 < subroutine zero_work_arrays()
1098 <  
1159 >
1160 >    iHash = InteractionHash(me_i, me_j)
1161 >
1162 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1163 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1164 >    endif
1165 >    
1166 >  end subroutine do_prepair
1167 >
1168 >
1169 >  subroutine do_preforce(nlocal,pot)
1170 >    integer :: nlocal
1171 >    real( kind = dp ) :: pot
1172 >
1173 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1174 >       call calc_EAM_preforce_Frho(nlocal,pot)
1175 >    endif
1176 >
1177 >
1178 >  end subroutine do_preforce
1179 >
1180 >
1181 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1182 >
1183 >    real (kind = dp), dimension(3) :: q_i
1184 >    real (kind = dp), dimension(3) :: q_j
1185 >    real ( kind = dp ), intent(out) :: r_sq
1186 >    real( kind = dp ) :: d(3), scaled(3)
1187 >    integer i
1188 >
1189 >    d(1:3) = q_j(1:3) - q_i(1:3)
1190 >
1191 >    ! Wrap back into periodic box if necessary
1192 >    if ( SIM_uses_PBC ) then
1193 >
1194 >       if( .not.boxIsOrthorhombic ) then
1195 >          ! calc the scaled coordinates.
1196 >
1197 >          scaled = matmul(HmatInv, d)
1198 >
1199 >          ! wrap the scaled coordinates
1200 >
1201 >          scaled = scaled  - anint(scaled)
1202 >
1203 >
1204 >          ! calc the wrapped real coordinates from the wrapped scaled
1205 >          ! coordinates
1206 >
1207 >          d = matmul(Hmat,scaled)
1208 >
1209 >       else
1210 >          ! calc the scaled coordinates.
1211 >
1212 >          do i = 1, 3
1213 >             scaled(i) = d(i) * HmatInv(i,i)
1214 >
1215 >             ! wrap the scaled coordinates
1216 >
1217 >             scaled(i) = scaled(i) - anint(scaled(i))
1218 >
1219 >             ! calc the wrapped real coordinates from the wrapped scaled
1220 >             ! coordinates
1221 >
1222 >             d(i) = scaled(i)*Hmat(i,i)
1223 >          enddo
1224 >       endif
1225 >
1226 >    endif
1227 >
1228 >    r_sq = dot_product(d,d)
1229 >
1230 >  end subroutine get_interatomic_vector
1231 >
1232 >  subroutine zero_work_arrays()
1233 >
1234   #ifdef IS_MPI
1100  
1101   q_Row = 0.0_dp
1102   q_Col = 0.0_dp
1235  
1236 <   q_group_Row = 0.0_dp
1237 <   q_group_Col = 0.0_dp  
1238 <  
1239 <   eFrame_Row = 0.0_dp
1240 <   eFrame_Col = 0.0_dp
1241 <  
1242 <   A_Row = 0.0_dp
1243 <   A_Col = 0.0_dp
1244 <  
1245 <   f_Row = 0.0_dp
1246 <   f_Col = 0.0_dp
1247 <   f_Temp = 0.0_dp
1248 <  
1249 <   t_Row = 0.0_dp
1250 <   t_Col = 0.0_dp
1251 <   t_Temp = 0.0_dp
1252 <  
1253 <   pot_Row = 0.0_dp
1254 <   pot_Col = 0.0_dp
1255 <   pot_Temp = 0.0_dp
1256 <  
1257 <   rf_Row = 0.0_dp
1258 <   rf_Col = 0.0_dp
1259 <   rf_Temp = 0.0_dp
1260 <  
1236 >    q_Row = 0.0_dp
1237 >    q_Col = 0.0_dp
1238 >
1239 >    q_group_Row = 0.0_dp
1240 >    q_group_Col = 0.0_dp  
1241 >
1242 >    eFrame_Row = 0.0_dp
1243 >    eFrame_Col = 0.0_dp
1244 >
1245 >    A_Row = 0.0_dp
1246 >    A_Col = 0.0_dp
1247 >
1248 >    f_Row = 0.0_dp
1249 >    f_Col = 0.0_dp
1250 >    f_Temp = 0.0_dp
1251 >
1252 >    t_Row = 0.0_dp
1253 >    t_Col = 0.0_dp
1254 >    t_Temp = 0.0_dp
1255 >
1256 >    pot_Row = 0.0_dp
1257 >    pot_Col = 0.0_dp
1258 >    pot_Temp = 0.0_dp
1259 >
1260 >    rf_Row = 0.0_dp
1261 >    rf_Col = 0.0_dp
1262 >    rf_Temp = 0.0_dp
1263 >
1264   #endif
1265 <
1266 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1267 <      call clean_EAM()
1268 <   endif
1269 <  
1270 <   rf = 0.0_dp
1271 <   tau_Temp = 0.0_dp
1272 <   virial_Temp = 0.0_dp
1273 < end subroutine zero_work_arrays
1274 <
1275 < function skipThisPair(atom1, atom2) result(skip_it)
1276 <   integer, intent(in) :: atom1
1277 <   integer, intent(in), optional :: atom2
1278 <   logical :: skip_it
1279 <   integer :: unique_id_1, unique_id_2
1280 <   integer :: me_i,me_j
1281 <   integer :: i
1282 <  
1283 <   skip_it = .false.
1284 <  
1285 <   !! there are a number of reasons to skip a pair or a particle
1286 <   !! mostly we do this to exclude atoms who are involved in short
1287 <   !! range interactions (bonds, bends, torsions), but we also need
1288 <   !! to exclude some overcounted interactions that result from
1289 <   !! the parallel decomposition
1290 <  
1265 >
1266 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1267 >       call clean_EAM()
1268 >    endif
1269 >
1270 >    rf = 0.0_dp
1271 >    tau_Temp = 0.0_dp
1272 >    virial_Temp = 0.0_dp
1273 >  end subroutine zero_work_arrays
1274 >
1275 >  function skipThisPair(atom1, atom2) result(skip_it)
1276 >    integer, intent(in) :: atom1
1277 >    integer, intent(in), optional :: atom2
1278 >    logical :: skip_it
1279 >    integer :: unique_id_1, unique_id_2
1280 >    integer :: me_i,me_j
1281 >    integer :: i
1282 >
1283 >    skip_it = .false.
1284 >
1285 >    !! there are a number of reasons to skip a pair or a particle
1286 >    !! mostly we do this to exclude atoms who are involved in short
1287 >    !! range interactions (bonds, bends, torsions), but we also need
1288 >    !! to exclude some overcounted interactions that result from
1289 >    !! the parallel decomposition
1290 >
1291   #ifdef IS_MPI
1292 <   !! in MPI, we have to look up the unique IDs for each atom
1293 <   unique_id_1 = AtomRowToGlobal(atom1)
1292 >    !! in MPI, we have to look up the unique IDs for each atom
1293 >    unique_id_1 = AtomRowToGlobal(atom1)
1294   #else
1295 <   !! in the normal loop, the atom numbers are unique
1296 <   unique_id_1 = atom1
1295 >    !! in the normal loop, the atom numbers are unique
1296 >    unique_id_1 = atom1
1297   #endif
1298 <  
1299 <   !! We were called with only one atom, so just check the global exclude
1300 <   !! list for this atom
1301 <   if (.not. present(atom2)) then
1302 <      do i = 1, nExcludes_global
1303 <         if (excludesGlobal(i) == unique_id_1) then
1304 <            skip_it = .true.
1305 <            return
1306 <         end if
1307 <      end do
1308 <      return
1309 <   end if
1310 <  
1298 >
1299 >    !! We were called with only one atom, so just check the global exclude
1300 >    !! list for this atom
1301 >    if (.not. present(atom2)) then
1302 >       do i = 1, nExcludes_global
1303 >          if (excludesGlobal(i) == unique_id_1) then
1304 >             skip_it = .true.
1305 >             return
1306 >          end if
1307 >       end do
1308 >       return
1309 >    end if
1310 >
1311   #ifdef IS_MPI
1312 <   unique_id_2 = AtomColToGlobal(atom2)
1312 >    unique_id_2 = AtomColToGlobal(atom2)
1313   #else
1314 <   unique_id_2 = atom2
1314 >    unique_id_2 = atom2
1315   #endif
1316 <  
1316 >
1317   #ifdef IS_MPI
1318 <   !! this situation should only arise in MPI simulations
1319 <   if (unique_id_1 == unique_id_2) then
1320 <      skip_it = .true.
1321 <      return
1322 <   end if
1323 <  
1324 <   !! this prevents us from doing the pair on multiple processors
1325 <   if (unique_id_1 < unique_id_2) then
1326 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1327 <         skip_it = .true.
1328 <         return
1329 <      endif
1330 <   else                
1331 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1332 <         skip_it = .true.
1333 <         return
1334 <      endif
1335 <   endif
1318 >    !! this situation should only arise in MPI simulations
1319 >    if (unique_id_1 == unique_id_2) then
1320 >       skip_it = .true.
1321 >       return
1322 >    end if
1323 >
1324 >    !! this prevents us from doing the pair on multiple processors
1325 >    if (unique_id_1 < unique_id_2) then
1326 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1327 >          skip_it = .true.
1328 >          return
1329 >       endif
1330 >    else                
1331 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1332 >          skip_it = .true.
1333 >          return
1334 >       endif
1335 >    endif
1336   #endif
1337 <  
1338 <   !! the rest of these situations can happen in all simulations:
1339 <   do i = 1, nExcludes_global      
1340 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1341 <           (excludesGlobal(i) == unique_id_2)) then
1342 <         skip_it = .true.
1343 <         return
1344 <      endif
1345 <   enddo
1346 <  
1347 <   do i = 1, nSkipsForAtom(atom1)
1348 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1349 <         skip_it = .true.
1350 <         return
1351 <      endif
1352 <   end do
1353 <  
1354 <   return
1355 < end function skipThisPair
1356 <
1357 < function FF_UsesDirectionalAtoms() result(doesit)
1358 <   logical :: doesit
1359 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1360 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1361 < end function FF_UsesDirectionalAtoms
1362 <
1363 < function FF_RequiresPrepairCalc() result(doesit)
1364 <   logical :: doesit
1365 <   doesit = FF_uses_EAM
1366 < end function FF_RequiresPrepairCalc
1367 <
1368 < function FF_RequiresPostpairCalc() result(doesit)
1369 <   logical :: doesit
1370 <   doesit = FF_uses_RF
1371 < end function FF_RequiresPostpairCalc
1237 <
1337 >
1338 >    !! the rest of these situations can happen in all simulations:
1339 >    do i = 1, nExcludes_global      
1340 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1341 >            (excludesGlobal(i) == unique_id_2)) then
1342 >          skip_it = .true.
1343 >          return
1344 >       endif
1345 >    enddo
1346 >
1347 >    do i = 1, nSkipsForAtom(atom1)
1348 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1349 >          skip_it = .true.
1350 >          return
1351 >       endif
1352 >    end do
1353 >
1354 >    return
1355 >  end function skipThisPair
1356 >
1357 >  function FF_UsesDirectionalAtoms() result(doesit)
1358 >    logical :: doesit
1359 >    doesit = FF_uses_DirectionalAtoms
1360 >  end function FF_UsesDirectionalAtoms
1361 >
1362 >  function FF_RequiresPrepairCalc() result(doesit)
1363 >    logical :: doesit
1364 >    doesit = FF_uses_EAM
1365 >  end function FF_RequiresPrepairCalc
1366 >
1367 >  function FF_RequiresPostpairCalc() result(doesit)
1368 >    logical :: doesit
1369 >    doesit = FF_uses_RF
1370 >  end function FF_RequiresPostpairCalc
1371 >
1372   #ifdef PROFILE
1373 < function getforcetime() result(totalforcetime)
1374 <   real(kind=dp) :: totalforcetime
1375 <   totalforcetime = forcetime
1376 < end function getforcetime
1373 >  function getforcetime() result(totalforcetime)
1374 >    real(kind=dp) :: totalforcetime
1375 >    totalforcetime = forcetime
1376 >  end function getforcetime
1377   #endif
1244
1245 !! This cleans componets of force arrays belonging only to fortran
1378  
1379 < subroutine add_stress_tensor(dpair, fpair)
1248 <  
1249 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1250 <  
1251 <   ! because the d vector is the rj - ri vector, and
1252 <   ! because fx, fy, fz are the force on atom i, we need a
1253 <   ! negative sign here:  
1254 <  
1255 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1256 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1257 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1258 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1259 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1260 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1261 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1262 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1263 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1264 <  
1265 <   virial_Temp = virial_Temp + &
1266 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1267 <  
1268 < end subroutine add_stress_tensor
1269 <
1270 < end module doForces
1379 >  !! This cleans componets of force arrays belonging only to fortran
1380  
1381 < !! Interfaces for C programs to module....
1381 >  subroutine add_stress_tensor(dpair, fpair)
1382  
1383 < subroutine initFortranFF(use_RF_c, thisStat)
1275 <    use doForces, ONLY: init_FF
1276 <    logical, intent(in) :: use_RF_c
1383 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1384  
1385 <    integer, intent(out) :: thisStat  
1386 <    call init_FF(use_RF_c, thisStat)
1385 >    ! because the d vector is the rj - ri vector, and
1386 >    ! because fx, fy, fz are the force on atom i, we need a
1387 >    ! negative sign here:  
1388  
1389 < end subroutine initFortranFF
1389 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1390 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1391 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1392 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1393 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1394 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1395 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1396 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1397 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1398  
1399 <  subroutine doForceloop(q, q_group, A, eFrame, f, t, tau, pot, &
1400 <       do_pot_c, do_stress_c, error)
1285 <      
1286 <       use definitions, ONLY: dp
1287 <       use simulation
1288 <       use doForces, ONLY: do_force_loop
1289 <    !! Position array provided by C, dimensioned by getNlocal
1290 <    real ( kind = dp ), dimension(3, nLocal) :: q
1291 <    !! molecular center-of-mass position array
1292 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1293 <    !! Rotation Matrix for each long range particle in simulation.
1294 <    real( kind = dp), dimension(9, nLocal) :: A    
1295 <    !! Unit vectors for dipoles (lab frame)
1296 <    real( kind = dp ), dimension(9,nLocal) :: eFrame
1297 <    !! Force array provided by C, dimensioned by getNlocal
1298 <    real ( kind = dp ), dimension(3,nLocal) :: f
1299 <    !! Torsion array provided by C, dimensioned by getNlocal
1300 <    real( kind = dp ), dimension(3,nLocal) :: t    
1399 >    virial_Temp = virial_Temp + &
1400 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1401  
1402 <    !! Stress Tensor
1403 <    real( kind = dp), dimension(9) :: tau  
1404 <    real ( kind = dp ) :: pot
1305 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1306 <    integer :: error
1307 <    
1308 <    call do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
1309 <       do_pot_c, do_stress_c, error)
1310 <      
1311 < end subroutine doForceloop
1402 >  end subroutine add_stress_tensor
1403 >
1404 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines