ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/UseTheForce/doForces.F90
Revision: 2407
Committed: Wed Nov 2 20:35:34 2005 UTC (18 years, 8 months ago) by chrisfen
File size: 47488 byte(s)
Log Message:
debug stuff for rf removed

File Contents

# Content
1 !!
2 !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 !!
4 !! The University of Notre Dame grants you ("Licensee") a
5 !! non-exclusive, royalty free, license to use, modify and
6 !! redistribute this software in source and binary code form, provided
7 !! that the following conditions are met:
8 !!
9 !! 1. Acknowledgement of the program authors must be made in any
10 !! publication of scientific results based in part on use of the
11 !! program. An acceptable form of acknowledgement is citation of
12 !! the article in which the program was described (Matthew
13 !! A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 !! J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 !! Parallel Simulation Engine for Molecular Dynamics,"
16 !! J. Comput. Chem. 26, pp. 252-271 (2005))
17 !!
18 !! 2. Redistributions of source code must retain the above copyright
19 !! notice, this list of conditions and the following disclaimer.
20 !!
21 !! 3. Redistributions in binary form must reproduce the above copyright
22 !! notice, this list of conditions and the following disclaimer in the
23 !! documentation and/or other materials provided with the
24 !! distribution.
25 !!
26 !! This software is provided "AS IS," without a warranty of any
27 !! kind. All express or implied conditions, representations and
28 !! warranties, including any implied warranty of merchantability,
29 !! fitness for a particular purpose or non-infringement, are hereby
30 !! excluded. The University of Notre Dame and its licensors shall not
31 !! be liable for any damages suffered by licensee as a result of
32 !! using, modifying or distributing the software or its
33 !! derivatives. In no event will the University of Notre Dame or its
34 !! licensors be liable for any lost revenue, profit or data, or for
35 !! direct, indirect, special, consequential, incidental or punitive
36 !! damages, however caused and regardless of the theory of liability,
37 !! arising out of the use of or inability to use software, even if the
38 !! University of Notre Dame has been advised of the possibility of
39 !! such damages.
40 !!
41
42 !! doForces.F90
43 !! module doForces
44 !! Calculates Long Range forces.
45
46 !! @author Charles F. Vardeman II
47 !! @author Matthew Meineke
48 !! @version $Id: doForces.F90,v 1.66 2005-11-02 20:35:34 chrisfen Exp $, $Date: 2005-11-02 20:35:34 $, $Name: not supported by cvs2svn $, $Revision: 1.66 $
49
50
51 module doForces
52 use force_globals
53 use simulation
54 use definitions
55 use atype_module
56 use switcheroo
57 use neighborLists
58 use lj
59 use sticky
60 use electrostatic_module
61 use gayberne
62 use shapes
63 use vector_class
64 use eam
65 use status
66 #ifdef IS_MPI
67 use mpiSimulation
68 #endif
69
70 implicit none
71 PRIVATE
72
73 #define __FORTRAN90
74 #include "UseTheForce/fSwitchingFunction.h"
75 #include "UseTheForce/fCutoffPolicy.h"
76 #include "UseTheForce/DarkSide/fInteractionMap.h"
77 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
78
79
80 INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81 INTEGER, PARAMETER:: PAIR_LOOP = 2
82
83 logical, save :: haveNeighborList = .false.
84 logical, save :: haveSIMvariables = .false.
85 logical, save :: haveSaneForceField = .false.
86 logical, save :: haveInteractionHash = .false.
87 logical, save :: haveGtypeCutoffMap = .false.
88 logical, save :: haveDefaultCutoffs = .false.
89 logical, save :: haveRlist = .false.
90
91 logical, save :: FF_uses_DirectionalAtoms
92 logical, save :: FF_uses_Dipoles
93 logical, save :: FF_uses_GayBerne
94 logical, save :: FF_uses_EAM
95
96 logical, save :: SIM_uses_DirectionalAtoms
97 logical, save :: SIM_uses_EAM
98 logical, save :: SIM_requires_postpair_calc
99 logical, save :: SIM_requires_prepair_calc
100 logical, save :: SIM_uses_PBC
101
102 integer, save :: electrostaticSummationMethod
103
104 public :: init_FF
105 public :: setDefaultCutoffs
106 public :: do_force_loop
107 public :: createInteractionHash
108 public :: createGtypeCutoffMap
109 public :: getStickyCut
110 public :: getStickyPowerCut
111 public :: getGayBerneCut
112 public :: getEAMCut
113 public :: getShapeCut
114
115 #ifdef PROFILE
116 public :: getforcetime
117 real, save :: forceTime = 0
118 real :: forceTimeInitial, forceTimeFinal
119 integer :: nLoops
120 #endif
121
122 !! Variables for cutoff mapping and interaction mapping
123 ! Bit hash to determine pair-pair interactions.
124 integer, dimension(:,:), allocatable :: InteractionHash
125 real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
126 real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
127 real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
128
129 integer, dimension(:), allocatable, target :: groupToGtypeRow
130 integer, dimension(:), pointer :: groupToGtypeCol => null()
131
132 real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
133 real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
134 type ::gtypeCutoffs
135 real(kind=dp) :: rcut
136 real(kind=dp) :: rcutsq
137 real(kind=dp) :: rlistsq
138 end type gtypeCutoffs
139 type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
140
141 integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
142 real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
143 real(kind=dp),save :: listSkin
144
145 contains
146
147 subroutine createInteractionHash(status)
148 integer :: nAtypes
149 integer, intent(out) :: status
150 integer :: i
151 integer :: j
152 integer :: iHash
153 !! Test Types
154 logical :: i_is_LJ
155 logical :: i_is_Elect
156 logical :: i_is_Sticky
157 logical :: i_is_StickyP
158 logical :: i_is_GB
159 logical :: i_is_EAM
160 logical :: i_is_Shape
161 logical :: j_is_LJ
162 logical :: j_is_Elect
163 logical :: j_is_Sticky
164 logical :: j_is_StickyP
165 logical :: j_is_GB
166 logical :: j_is_EAM
167 logical :: j_is_Shape
168 real(kind=dp) :: myRcut
169
170 status = 0
171
172 if (.not. associated(atypes)) then
173 call handleError("atype", "atypes was not present before call of createInteractionHash!")
174 status = -1
175 return
176 endif
177
178 nAtypes = getSize(atypes)
179
180 if (nAtypes == 0) then
181 status = -1
182 return
183 end if
184
185 if (.not. allocated(InteractionHash)) then
186 allocate(InteractionHash(nAtypes,nAtypes))
187 else
188 deallocate(InteractionHash)
189 allocate(InteractionHash(nAtypes,nAtypes))
190 endif
191
192 if (.not. allocated(atypeMaxCutoff)) then
193 allocate(atypeMaxCutoff(nAtypes))
194 else
195 deallocate(atypeMaxCutoff)
196 allocate(atypeMaxCutoff(nAtypes))
197 endif
198
199 do i = 1, nAtypes
200 call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
201 call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
202 call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
203 call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
204 call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
205 call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
206 call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
207
208 do j = i, nAtypes
209
210 iHash = 0
211 myRcut = 0.0_dp
212
213 call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
214 call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
215 call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
216 call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
217 call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
218 call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
219 call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
220
221 if (i_is_LJ .and. j_is_LJ) then
222 iHash = ior(iHash, LJ_PAIR)
223 endif
224
225 if (i_is_Elect .and. j_is_Elect) then
226 iHash = ior(iHash, ELECTROSTATIC_PAIR)
227 endif
228
229 if (i_is_Sticky .and. j_is_Sticky) then
230 iHash = ior(iHash, STICKY_PAIR)
231 endif
232
233 if (i_is_StickyP .and. j_is_StickyP) then
234 iHash = ior(iHash, STICKYPOWER_PAIR)
235 endif
236
237 if (i_is_EAM .and. j_is_EAM) then
238 iHash = ior(iHash, EAM_PAIR)
239 endif
240
241 if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
242 if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
243 if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
244
245 if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
246 if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
247 if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
248
249
250 InteractionHash(i,j) = iHash
251 InteractionHash(j,i) = iHash
252
253 end do
254
255 end do
256
257 haveInteractionHash = .true.
258 end subroutine createInteractionHash
259
260 subroutine createGtypeCutoffMap(stat)
261
262 integer, intent(out), optional :: stat
263 logical :: i_is_LJ
264 logical :: i_is_Elect
265 logical :: i_is_Sticky
266 logical :: i_is_StickyP
267 logical :: i_is_GB
268 logical :: i_is_EAM
269 logical :: i_is_Shape
270 logical :: GtypeFound
271
272 integer :: myStatus, nAtypes, i, j, istart, iend, jstart, jend
273 integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
274 integer :: nGroupsInRow
275 integer :: nGroupsInCol
276 integer :: nGroupTypesRow,nGroupTypesCol
277 real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol, skin
278 real(kind=dp) :: biggestAtypeCutoff
279
280 stat = 0
281 if (.not. haveInteractionHash) then
282 call createInteractionHash(myStatus)
283 if (myStatus .ne. 0) then
284 write(default_error, *) 'createInteractionHash failed in doForces!'
285 stat = -1
286 return
287 endif
288 endif
289 #ifdef IS_MPI
290 nGroupsInRow = getNgroupsInRow(plan_group_row)
291 nGroupsInCol = getNgroupsInCol(plan_group_col)
292 #endif
293 nAtypes = getSize(atypes)
294 ! Set all of the initial cutoffs to zero.
295 atypeMaxCutoff = 0.0_dp
296 do i = 1, nAtypes
297 if (SimHasAtype(i)) then
298 call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
299 call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
300 call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
301 call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
302 call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
303 call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
304 call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
305
306
307 if (haveDefaultCutoffs) then
308 atypeMaxCutoff(i) = defaultRcut
309 else
310 if (i_is_LJ) then
311 thisRcut = getSigma(i) * 2.5_dp
312 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
313 endif
314 if (i_is_Elect) then
315 thisRcut = defaultRcut
316 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
317 endif
318 if (i_is_Sticky) then
319 thisRcut = getStickyCut(i)
320 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
321 endif
322 if (i_is_StickyP) then
323 thisRcut = getStickyPowerCut(i)
324 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
325 endif
326 if (i_is_GB) then
327 thisRcut = getGayBerneCut(i)
328 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329 endif
330 if (i_is_EAM) then
331 thisRcut = getEAMCut(i)
332 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333 endif
334 if (i_is_Shape) then
335 thisRcut = getShapeCut(i)
336 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337 endif
338 endif
339
340
341 if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
342 biggestAtypeCutoff = atypeMaxCutoff(i)
343 endif
344
345 endif
346 enddo
347
348
349
350 istart = 1
351 jstart = 1
352 #ifdef IS_MPI
353 iend = nGroupsInRow
354 jend = nGroupsInCol
355 #else
356 iend = nGroups
357 jend = nGroups
358 #endif
359
360 !! allocate the groupToGtype and gtypeMaxCutoff here.
361 if(.not.allocated(groupToGtypeRow)) then
362 ! allocate(groupToGtype(iend))
363 allocate(groupToGtypeRow(iend))
364 else
365 deallocate(groupToGtypeRow)
366 allocate(groupToGtypeRow(iend))
367 endif
368 if(.not.allocated(groupMaxCutoffRow)) then
369 allocate(groupMaxCutoffRow(iend))
370 else
371 deallocate(groupMaxCutoffRow)
372 allocate(groupMaxCutoffRow(iend))
373 end if
374
375 if(.not.allocated(gtypeMaxCutoffRow)) then
376 allocate(gtypeMaxCutoffRow(iend))
377 else
378 deallocate(gtypeMaxCutoffRow)
379 allocate(gtypeMaxCutoffRow(iend))
380 endif
381
382
383 #ifdef IS_MPI
384 ! We only allocate new storage if we are in MPI because Ncol /= Nrow
385 if(.not.associated(groupToGtypeCol)) then
386 allocate(groupToGtypeCol(jend))
387 else
388 deallocate(groupToGtypeCol)
389 allocate(groupToGtypeCol(jend))
390 end if
391
392 if(.not.associated(groupToGtypeCol)) then
393 allocate(groupToGtypeCol(jend))
394 else
395 deallocate(groupToGtypeCol)
396 allocate(groupToGtypeCol(jend))
397 end if
398 if(.not.associated(gtypeMaxCutoffCol)) then
399 allocate(gtypeMaxCutoffCol(jend))
400 else
401 deallocate(gtypeMaxCutoffCol)
402 allocate(gtypeMaxCutoffCol(jend))
403 end if
404
405 groupMaxCutoffCol = 0.0_dp
406 gtypeMaxCutoffCol = 0.0_dp
407
408 #endif
409 groupMaxCutoffRow = 0.0_dp
410 gtypeMaxCutoffRow = 0.0_dp
411
412
413 !! first we do a single loop over the cutoff groups to find the
414 !! largest cutoff for any atypes present in this group. We also
415 !! create gtypes at this point.
416
417 tol = 1.0d-6
418 nGroupTypesRow = 0
419
420 do i = istart, iend
421 n_in_i = groupStartRow(i+1) - groupStartRow(i)
422 groupMaxCutoffRow(i) = 0.0_dp
423 do ia = groupStartRow(i), groupStartRow(i+1)-1
424 atom1 = groupListRow(ia)
425 #ifdef IS_MPI
426 me_i = atid_row(atom1)
427 #else
428 me_i = atid(atom1)
429 #endif
430 if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
431 groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
432 endif
433 enddo
434
435 if (nGroupTypesRow.eq.0) then
436 nGroupTypesRow = nGroupTypesRow + 1
437 gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
438 groupToGtypeRow(i) = nGroupTypesRow
439 else
440 GtypeFound = .false.
441 do g = 1, nGroupTypesRow
442 if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
443 groupToGtypeRow(i) = g
444 GtypeFound = .true.
445 endif
446 enddo
447 if (.not.GtypeFound) then
448 nGroupTypesRow = nGroupTypesRow + 1
449 gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
450 groupToGtypeRow(i) = nGroupTypesRow
451 endif
452 endif
453 enddo
454
455 #ifdef IS_MPI
456 do j = jstart, jend
457 n_in_j = groupStartCol(j+1) - groupStartCol(j)
458 groupMaxCutoffCol(j) = 0.0_dp
459 do ja = groupStartCol(j), groupStartCol(j+1)-1
460 atom1 = groupListCol(ja)
461
462 me_j = atid_col(atom1)
463
464 if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
465 groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
466 endif
467 enddo
468
469 if (nGroupTypesCol.eq.0) then
470 nGroupTypesCol = nGroupTypesCol + 1
471 gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
472 groupToGtypeCol(j) = nGroupTypesCol
473 else
474 GtypeFound = .false.
475 do g = 1, nGroupTypesCol
476 if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
477 groupToGtypeCol(j) = g
478 GtypeFound = .true.
479 endif
480 enddo
481 if (.not.GtypeFound) then
482 nGroupTypesCol = nGroupTypesCol + 1
483 gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
484 groupToGtypeCol(j) = nGroupTypesCol
485 endif
486 endif
487 enddo
488
489 #else
490 ! Set pointers to information we just found
491 nGroupTypesCol = nGroupTypesRow
492 groupToGtypeCol => groupToGtypeRow
493 gtypeMaxCutoffCol => gtypeMaxCutoffRow
494 groupMaxCutoffCol => groupMaxCutoffRow
495 #endif
496
497
498
499
500
501 !! allocate the gtypeCutoffMap here.
502 allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
503 !! then we do a double loop over all the group TYPES to find the cutoff
504 !! map between groups of two types
505 tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
506
507 do i = 1, nGroupTypesRow
508 do j = 1, nGroupTypesCol
509
510 select case(cutoffPolicy)
511 case(TRADITIONAL_CUTOFF_POLICY)
512 thisRcut = tradRcut
513 case(MIX_CUTOFF_POLICY)
514 thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
515 case(MAX_CUTOFF_POLICY)
516 thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
517 case default
518 call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
519 return
520 end select
521 gtypeCutoffMap(i,j)%rcut = thisRcut
522 gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
523 skin = defaultRlist - defaultRcut
524 listSkin = skin ! set neighbor list skin thickness
525 gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
526
527 ! sanity check
528
529 if (haveDefaultCutoffs) then
530 if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
531 call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
532 endif
533 endif
534 enddo
535 enddo
536 if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
537 if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
538 if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
539 #ifdef IS_MPI
540 if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
541 if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
542 #endif
543 groupMaxCutoffCol => null()
544 gtypeMaxCutoffCol => null()
545
546 haveGtypeCutoffMap = .true.
547 end subroutine createGtypeCutoffMap
548
549 subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
550 real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
551 integer, intent(in) :: cutPolicy
552
553 defaultRcut = defRcut
554 defaultRsw = defRsw
555 defaultRlist = defRlist
556 cutoffPolicy = cutPolicy
557
558 haveDefaultCutoffs = .true.
559 end subroutine setDefaultCutoffs
560
561 subroutine setCutoffPolicy(cutPolicy)
562
563 integer, intent(in) :: cutPolicy
564 cutoffPolicy = cutPolicy
565 call createGtypeCutoffMap()
566 end subroutine setCutoffPolicy
567
568
569 subroutine setSimVariables()
570 SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
571 SIM_uses_EAM = SimUsesEAM()
572 SIM_requires_postpair_calc = SimRequiresPostpairCalc()
573 SIM_requires_prepair_calc = SimRequiresPrepairCalc()
574 SIM_uses_PBC = SimUsesPBC()
575
576 haveSIMvariables = .true.
577
578 return
579 end subroutine setSimVariables
580
581 subroutine doReadyCheck(error)
582 integer, intent(out) :: error
583
584 integer :: myStatus
585
586 error = 0
587
588 if (.not. haveInteractionHash) then
589 myStatus = 0
590 call createInteractionHash(myStatus)
591 if (myStatus .ne. 0) then
592 write(default_error, *) 'createInteractionHash failed in doForces!'
593 error = -1
594 return
595 endif
596 endif
597
598 if (.not. haveGtypeCutoffMap) then
599 myStatus = 0
600 call createGtypeCutoffMap(myStatus)
601 if (myStatus .ne. 0) then
602 write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
603 error = -1
604 return
605 endif
606 endif
607
608 if (.not. haveSIMvariables) then
609 call setSimVariables()
610 endif
611
612 ! if (.not. haveRlist) then
613 ! write(default_error, *) 'rList has not been set in doForces!'
614 ! error = -1
615 ! return
616 ! endif
617
618 if (.not. haveNeighborList) then
619 write(default_error, *) 'neighbor list has not been initialized in doForces!'
620 error = -1
621 return
622 end if
623
624 if (.not. haveSaneForceField) then
625 write(default_error, *) 'Force Field is not sane in doForces!'
626 error = -1
627 return
628 end if
629
630 #ifdef IS_MPI
631 if (.not. isMPISimSet()) then
632 write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
633 error = -1
634 return
635 endif
636 #endif
637 return
638 end subroutine doReadyCheck
639
640
641 subroutine init_FF(thisESM, thisStat)
642
643 integer, intent(in) :: thisESM
644 integer, intent(out) :: thisStat
645 integer :: my_status, nMatches
646 integer, pointer :: MatchList(:) => null()
647
648 !! assume things are copacetic, unless they aren't
649 thisStat = 0
650
651 electrostaticSummationMethod = thisESM
652
653 !! init_FF is called *after* all of the atom types have been
654 !! defined in atype_module using the new_atype subroutine.
655 !!
656 !! this will scan through the known atypes and figure out what
657 !! interactions are used by the force field.
658
659 FF_uses_DirectionalAtoms = .false.
660 FF_uses_Dipoles = .false.
661 FF_uses_GayBerne = .false.
662 FF_uses_EAM = .false.
663
664 call getMatchingElementList(atypes, "is_Directional", .true., &
665 nMatches, MatchList)
666 if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
667
668 call getMatchingElementList(atypes, "is_Dipole", .true., &
669 nMatches, MatchList)
670 if (nMatches .gt. 0) FF_uses_Dipoles = .true.
671
672 call getMatchingElementList(atypes, "is_GayBerne", .true., &
673 nMatches, MatchList)
674 if (nMatches .gt. 0) FF_uses_GayBerne = .true.
675
676 call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
677 if (nMatches .gt. 0) FF_uses_EAM = .true.
678
679
680 haveSaneForceField = .true.
681
682 if (FF_uses_EAM) then
683 call init_EAM_FF(my_status)
684 if (my_status /= 0) then
685 write(default_error, *) "init_EAM_FF returned a bad status"
686 thisStat = -1
687 haveSaneForceField = .false.
688 return
689 end if
690 endif
691
692 if (.not. haveNeighborList) then
693 !! Create neighbor lists
694 call expandNeighborList(nLocal, my_status)
695 if (my_Status /= 0) then
696 write(default_error,*) "SimSetup: ExpandNeighborList returned error."
697 thisStat = -1
698 return
699 endif
700 haveNeighborList = .true.
701 endif
702
703 end subroutine init_FF
704
705
706 !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
707 !------------------------------------------------------------->
708 subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
709 do_pot_c, do_stress_c, error)
710 !! Position array provided by C, dimensioned by getNlocal
711 real ( kind = dp ), dimension(3, nLocal) :: q
712 !! molecular center-of-mass position array
713 real ( kind = dp ), dimension(3, nGroups) :: q_group
714 !! Rotation Matrix for each long range particle in simulation.
715 real( kind = dp), dimension(9, nLocal) :: A
716 !! Unit vectors for dipoles (lab frame)
717 real( kind = dp ), dimension(9,nLocal) :: eFrame
718 !! Force array provided by C, dimensioned by getNlocal
719 real ( kind = dp ), dimension(3,nLocal) :: f
720 !! Torsion array provided by C, dimensioned by getNlocal
721 real( kind = dp ), dimension(3,nLocal) :: t
722
723 !! Stress Tensor
724 real( kind = dp), dimension(9) :: tau
725 real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
726 logical ( kind = 2) :: do_pot_c, do_stress_c
727 logical :: do_pot
728 logical :: do_stress
729 logical :: in_switching_region
730 #ifdef IS_MPI
731 real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
732 integer :: nAtomsInRow
733 integer :: nAtomsInCol
734 integer :: nprocs
735 integer :: nGroupsInRow
736 integer :: nGroupsInCol
737 #endif
738 integer :: natoms
739 logical :: update_nlist
740 integer :: i, j, jstart, jend, jnab
741 integer :: istart, iend
742 integer :: ia, jb, atom1, atom2
743 integer :: nlist
744 real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
745 real( kind = DP ) :: sw, dswdr, swderiv, mf
746 real( kind = DP ) :: rVal
747 real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
748 real(kind=dp), dimension(3) :: fstrs, f2strs
749 real(kind=dp) :: rfpot, mu_i, virial
750 integer :: me_i, me_j, n_in_i, n_in_j
751 logical :: is_dp_i
752 integer :: neighborListSize
753 integer :: listerror, error
754 integer :: localError
755 integer :: propPack_i, propPack_j
756 integer :: loopStart, loopEnd, loop
757 integer :: iHash
758 integer :: i1
759
760
761 !! initialize local variables
762
763 #ifdef IS_MPI
764 pot_local = 0.0_dp
765 nAtomsInRow = getNatomsInRow(plan_atom_row)
766 nAtomsInCol = getNatomsInCol(plan_atom_col)
767 nGroupsInRow = getNgroupsInRow(plan_group_row)
768 nGroupsInCol = getNgroupsInCol(plan_group_col)
769 #else
770 natoms = nlocal
771 #endif
772
773 call doReadyCheck(localError)
774 if ( localError .ne. 0 ) then
775 call handleError("do_force_loop", "Not Initialized")
776 error = -1
777 return
778 end if
779 call zero_work_arrays()
780
781 do_pot = do_pot_c
782 do_stress = do_stress_c
783
784 ! Gather all information needed by all force loops:
785
786 #ifdef IS_MPI
787
788 call gather(q, q_Row, plan_atom_row_3d)
789 call gather(q, q_Col, plan_atom_col_3d)
790
791 call gather(q_group, q_group_Row, plan_group_row_3d)
792 call gather(q_group, q_group_Col, plan_group_col_3d)
793
794 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
795 call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
796 call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
797
798 call gather(A, A_Row, plan_atom_row_rotation)
799 call gather(A, A_Col, plan_atom_col_rotation)
800 endif
801
802 #endif
803
804 !! Begin force loop timing:
805 #ifdef PROFILE
806 call cpu_time(forceTimeInitial)
807 nloops = nloops + 1
808 #endif
809
810 loopEnd = PAIR_LOOP
811 if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
812 loopStart = PREPAIR_LOOP
813 else
814 loopStart = PAIR_LOOP
815 endif
816
817 do loop = loopStart, loopEnd
818
819 ! See if we need to update neighbor lists
820 ! (but only on the first time through):
821 if (loop .eq. loopStart) then
822 #ifdef IS_MPI
823 call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
824 update_nlist)
825 #else
826 call checkNeighborList(nGroups, q_group, listSkin, &
827 update_nlist)
828 #endif
829 endif
830
831 if (update_nlist) then
832 !! save current configuration and construct neighbor list
833 #ifdef IS_MPI
834 call saveNeighborList(nGroupsInRow, q_group_row)
835 #else
836 call saveNeighborList(nGroups, q_group)
837 #endif
838 neighborListSize = size(list)
839 nlist = 0
840 endif
841
842 istart = 1
843 #ifdef IS_MPI
844 iend = nGroupsInRow
845 #else
846 iend = nGroups - 1
847 #endif
848 outer: do i = istart, iend
849
850 if (update_nlist) point(i) = nlist + 1
851
852 n_in_i = groupStartRow(i+1) - groupStartRow(i)
853
854 if (update_nlist) then
855 #ifdef IS_MPI
856 jstart = 1
857 jend = nGroupsInCol
858 #else
859 jstart = i+1
860 jend = nGroups
861 #endif
862 else
863 jstart = point(i)
864 jend = point(i+1) - 1
865 ! make sure group i has neighbors
866 if (jstart .gt. jend) cycle outer
867 endif
868
869 do jnab = jstart, jend
870 if (update_nlist) then
871 j = jnab
872 else
873 j = list(jnab)
874 endif
875
876 #ifdef IS_MPI
877 me_j = atid_col(j)
878 call get_interatomic_vector(q_group_Row(:,i), &
879 q_group_Col(:,j), d_grp, rgrpsq)
880 #else
881 me_j = atid(j)
882 call get_interatomic_vector(q_group(:,i), &
883 q_group(:,j), d_grp, rgrpsq)
884 #endif
885
886 if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
887 if (update_nlist) then
888 nlist = nlist + 1
889
890 if (nlist > neighborListSize) then
891 #ifdef IS_MPI
892 call expandNeighborList(nGroupsInRow, listerror)
893 #else
894 call expandNeighborList(nGroups, listerror)
895 #endif
896 if (listerror /= 0) then
897 error = -1
898 write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
899 return
900 end if
901 neighborListSize = size(list)
902 endif
903
904 list(nlist) = j
905 endif
906
907 if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
908
909 if (loop .eq. PAIR_LOOP) then
910 vij = 0.0d0
911 fij(1:3) = 0.0d0
912 endif
913
914 call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
915 in_switching_region)
916
917 n_in_j = groupStartCol(j+1) - groupStartCol(j)
918
919 do ia = groupStartRow(i), groupStartRow(i+1)-1
920
921 atom1 = groupListRow(ia)
922
923 inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
924
925 atom2 = groupListCol(jb)
926
927 if (skipThisPair(atom1, atom2)) cycle inner
928
929 if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
930 d_atm(1:3) = d_grp(1:3)
931 ratmsq = rgrpsq
932 else
933 #ifdef IS_MPI
934 call get_interatomic_vector(q_Row(:,atom1), &
935 q_Col(:,atom2), d_atm, ratmsq)
936 #else
937 call get_interatomic_vector(q(:,atom1), &
938 q(:,atom2), d_atm, ratmsq)
939 #endif
940 endif
941
942 if (loop .eq. PREPAIR_LOOP) then
943 #ifdef IS_MPI
944 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
945 rgrpsq, d_grp, do_pot, do_stress, &
946 eFrame, A, f, t, pot_local)
947 #else
948 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
949 rgrpsq, d_grp, do_pot, do_stress, &
950 eFrame, A, f, t, pot)
951 #endif
952 else
953 #ifdef IS_MPI
954 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
955 do_pot, eFrame, A, f, t, pot_local, vpair, &
956 fpair, d_grp, rgrp, fstrs)
957 #else
958 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
959 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
960 d_grp, rgrp, fstrs)
961 #endif
962 f2strs(1:3) = f2strs(1:3) + fstrs(1:3)
963 vij = vij + vpair
964 fij(1:3) = fij(1:3) + fpair(1:3)
965 endif
966 enddo inner
967 enddo
968
969 if (loop .eq. PAIR_LOOP) then
970 if (in_switching_region) then
971 swderiv = vij*dswdr/rgrp
972 fij(1) = fij(1) + swderiv*d_grp(1)
973 fij(2) = fij(2) + swderiv*d_grp(2)
974 fij(3) = fij(3) + swderiv*d_grp(3)
975
976 do ia=groupStartRow(i), groupStartRow(i+1)-1
977 atom1=groupListRow(ia)
978 mf = mfactRow(atom1)
979 #ifdef IS_MPI
980 f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
981 f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
982 f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
983 #else
984 f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
985 f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
986 f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
987 #endif
988 enddo
989
990 do jb=groupStartCol(j), groupStartCol(j+1)-1
991 atom2=groupListCol(jb)
992 mf = mfactCol(atom2)
993 #ifdef IS_MPI
994 f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
995 f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
996 f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
997 #else
998 f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
999 f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1000 f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1001 #endif
1002 enddo
1003 endif
1004
1005 if (do_stress) call add_stress_tensor(d_grp, fij)
1006 endif
1007 endif
1008 endif
1009 enddo
1010
1011 enddo outer
1012
1013 if (update_nlist) then
1014 #ifdef IS_MPI
1015 point(nGroupsInRow + 1) = nlist + 1
1016 #else
1017 point(nGroups) = nlist + 1
1018 #endif
1019 if (loop .eq. PREPAIR_LOOP) then
1020 ! we just did the neighbor list update on the first
1021 ! pass, so we don't need to do it
1022 ! again on the second pass
1023 update_nlist = .false.
1024 endif
1025 endif
1026
1027 if (loop .eq. PREPAIR_LOOP) then
1028 call do_preforce(nlocal, pot)
1029 endif
1030
1031 enddo
1032
1033 !! Do timing
1034 #ifdef PROFILE
1035 call cpu_time(forceTimeFinal)
1036 forceTime = forceTime + forceTimeFinal - forceTimeInitial
1037 #endif
1038
1039 #ifdef IS_MPI
1040 !!distribute forces
1041
1042 f_temp = 0.0_dp
1043 call scatter(f_Row,f_temp,plan_atom_row_3d)
1044 do i = 1,nlocal
1045 f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1046 end do
1047
1048 f_temp = 0.0_dp
1049 call scatter(f_Col,f_temp,plan_atom_col_3d)
1050 do i = 1,nlocal
1051 f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1052 end do
1053
1054 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1055 t_temp = 0.0_dp
1056 call scatter(t_Row,t_temp,plan_atom_row_3d)
1057 do i = 1,nlocal
1058 t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1059 end do
1060 t_temp = 0.0_dp
1061 call scatter(t_Col,t_temp,plan_atom_col_3d)
1062
1063 do i = 1,nlocal
1064 t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1065 end do
1066 endif
1067
1068 if (do_pot) then
1069 ! scatter/gather pot_row into the members of my column
1070 do i = 1,LR_POT_TYPES
1071 call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1072 end do
1073 ! scatter/gather pot_local into all other procs
1074 ! add resultant to get total pot
1075 do i = 1, nlocal
1076 pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1077 + pot_Temp(1:LR_POT_TYPES,i)
1078 enddo
1079
1080 pot_Temp = 0.0_DP
1081 do i = 1,LR_POT_TYPES
1082 call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1083 end do
1084 do i = 1, nlocal
1085 pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1086 + pot_Temp(1:LR_POT_TYPES,i)
1087 enddo
1088
1089 endif
1090 #endif
1091
1092 if (SIM_requires_postpair_calc) then
1093 do i = 1, nlocal
1094
1095 ! we loop only over the local atoms, so we don't need row and column
1096 ! lookups for the types
1097
1098 me_i = atid(i)
1099
1100 ! is the atom electrostatic? See if it would have an
1101 ! electrostatic interaction with itself
1102 iHash = InteractionHash(me_i,me_i)
1103
1104 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1105 #ifdef IS_MPI
1106 call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1107 t, do_pot)
1108 #else
1109 call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1110 t, do_pot)
1111 #endif
1112 endif
1113
1114
1115 if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1116
1117 ! loop over the excludes to accumulate RF stuff we've
1118 ! left out of the normal pair loop
1119
1120 do i1 = 1, nSkipsForAtom(i)
1121 j = skipsForAtom(i, i1)
1122
1123 ! prevent overcounting of the skips
1124 if (i.lt.j) then
1125 call get_interatomic_vector(q(:,i), &
1126 q(:,j), d_atm, ratmsq)
1127 rVal = dsqrt(ratmsq)
1128 call get_switch(ratmsq, sw, dswdr, rVal, group_switch, &
1129 in_switching_region)
1130 #ifdef IS_MPI
1131 call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1132 vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1133 #else
1134 call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1135 vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1136 #endif
1137 endif
1138 enddo
1139 endif
1140 enddo
1141 endif
1142
1143 #ifdef IS_MPI
1144
1145 if (do_pot) then
1146 call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1147 mpi_comm_world,mpi_err)
1148 endif
1149
1150 if (do_stress) then
1151 call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1152 mpi_comm_world,mpi_err)
1153 call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1154 mpi_comm_world,mpi_err)
1155 endif
1156
1157 #else
1158
1159 if (do_stress) then
1160 tau = tau_Temp
1161 virial = virial_Temp
1162 endif
1163
1164 #endif
1165
1166 end subroutine do_force_loop
1167
1168 !!$ subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1169 !!$ eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp)
1170 subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1171 eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, fstrs)
1172
1173 real( kind = dp ) :: vpair, sw
1174 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1175 real( kind = dp ), dimension(3) :: fpair
1176 real( kind = dp ), dimension(3) :: fstrs
1177 real( kind = dp ), dimension(nLocal) :: mfact
1178 real( kind = dp ), dimension(9,nLocal) :: eFrame
1179 real( kind = dp ), dimension(9,nLocal) :: A
1180 real( kind = dp ), dimension(3,nLocal) :: f
1181 real( kind = dp ), dimension(3,nLocal) :: t
1182
1183 logical, intent(inout) :: do_pot
1184 integer, intent(in) :: i, j
1185 real ( kind = dp ), intent(inout) :: rijsq
1186 real ( kind = dp ), intent(inout) :: r_grp
1187 real ( kind = dp ), intent(inout) :: d(3)
1188 real ( kind = dp ), intent(inout) :: d_grp(3)
1189 real ( kind = dp ) :: r
1190 integer :: me_i, me_j
1191
1192 integer :: iHash
1193
1194 r = sqrt(rijsq)
1195 vpair = 0.0d0
1196 fpair(1:3) = 0.0d0
1197
1198 #ifdef IS_MPI
1199 me_i = atid_row(i)
1200 me_j = atid_col(j)
1201 #else
1202 me_i = atid(i)
1203 me_j = atid(j)
1204 #endif
1205
1206 iHash = InteractionHash(me_i, me_j)
1207
1208 if ( iand(iHash, LJ_PAIR).ne.0 ) then
1209 call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1210 pot(VDW_POT), f, do_pot)
1211 endif
1212
1213 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1214 !!$ call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1215 !!$ pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1216 call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1217 pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot, fstrs)
1218 endif
1219
1220 if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1221 call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1222 pot(HB_POT), A, f, t, do_pot)
1223 endif
1224
1225 if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1226 call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1227 pot(HB_POT), A, f, t, do_pot)
1228 endif
1229
1230 if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1231 call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1232 pot(VDW_POT), A, f, t, do_pot)
1233 endif
1234
1235 if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1236 call do_gb_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1237 pot(VDW_POT), A, f, t, do_pot)
1238 endif
1239
1240 if ( iand(iHash, EAM_PAIR).ne.0 ) then
1241 call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1242 pot(METALLIC_POT), f, do_pot)
1243 endif
1244
1245 if ( iand(iHash, SHAPE_PAIR).ne.0 ) then
1246 call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1247 pot(VDW_POT), A, f, t, do_pot)
1248 endif
1249
1250 if ( iand(iHash, SHAPE_LJ).ne.0 ) then
1251 call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1252 pot(VDW_POT), A, f, t, do_pot)
1253 endif
1254
1255 end subroutine do_pair
1256
1257 subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1258 do_pot, do_stress, eFrame, A, f, t, pot)
1259
1260 real( kind = dp ) :: sw
1261 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1262 real( kind = dp ), dimension(9,nLocal) :: eFrame
1263 real (kind=dp), dimension(9,nLocal) :: A
1264 real (kind=dp), dimension(3,nLocal) :: f
1265 real (kind=dp), dimension(3,nLocal) :: t
1266
1267 logical, intent(inout) :: do_pot, do_stress
1268 integer, intent(in) :: i, j
1269 real ( kind = dp ), intent(inout) :: rijsq, rcijsq
1270 real ( kind = dp ) :: r, rc
1271 real ( kind = dp ), intent(inout) :: d(3), dc(3)
1272
1273 integer :: me_i, me_j, iHash
1274
1275 r = sqrt(rijsq)
1276
1277 #ifdef IS_MPI
1278 me_i = atid_row(i)
1279 me_j = atid_col(j)
1280 #else
1281 me_i = atid(i)
1282 me_j = atid(j)
1283 #endif
1284
1285 iHash = InteractionHash(me_i, me_j)
1286
1287 if ( iand(iHash, EAM_PAIR).ne.0 ) then
1288 call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1289 endif
1290
1291 end subroutine do_prepair
1292
1293
1294 subroutine do_preforce(nlocal,pot)
1295 integer :: nlocal
1296 real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1297
1298 if (FF_uses_EAM .and. SIM_uses_EAM) then
1299 call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1300 endif
1301
1302
1303 end subroutine do_preforce
1304
1305
1306 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1307
1308 real (kind = dp), dimension(3) :: q_i
1309 real (kind = dp), dimension(3) :: q_j
1310 real ( kind = dp ), intent(out) :: r_sq
1311 real( kind = dp ) :: d(3), scaled(3)
1312 integer i
1313
1314 d(1:3) = q_j(1:3) - q_i(1:3)
1315
1316 ! Wrap back into periodic box if necessary
1317 if ( SIM_uses_PBC ) then
1318
1319 if( .not.boxIsOrthorhombic ) then
1320 ! calc the scaled coordinates.
1321
1322 scaled = matmul(HmatInv, d)
1323
1324 ! wrap the scaled coordinates
1325
1326 scaled = scaled - anint(scaled)
1327
1328
1329 ! calc the wrapped real coordinates from the wrapped scaled
1330 ! coordinates
1331
1332 d = matmul(Hmat,scaled)
1333
1334 else
1335 ! calc the scaled coordinates.
1336
1337 do i = 1, 3
1338 scaled(i) = d(i) * HmatInv(i,i)
1339
1340 ! wrap the scaled coordinates
1341
1342 scaled(i) = scaled(i) - anint(scaled(i))
1343
1344 ! calc the wrapped real coordinates from the wrapped scaled
1345 ! coordinates
1346
1347 d(i) = scaled(i)*Hmat(i,i)
1348 enddo
1349 endif
1350
1351 endif
1352
1353 r_sq = dot_product(d,d)
1354
1355 end subroutine get_interatomic_vector
1356
1357 subroutine zero_work_arrays()
1358
1359 #ifdef IS_MPI
1360
1361 q_Row = 0.0_dp
1362 q_Col = 0.0_dp
1363
1364 q_group_Row = 0.0_dp
1365 q_group_Col = 0.0_dp
1366
1367 eFrame_Row = 0.0_dp
1368 eFrame_Col = 0.0_dp
1369
1370 A_Row = 0.0_dp
1371 A_Col = 0.0_dp
1372
1373 f_Row = 0.0_dp
1374 f_Col = 0.0_dp
1375 f_Temp = 0.0_dp
1376
1377 t_Row = 0.0_dp
1378 t_Col = 0.0_dp
1379 t_Temp = 0.0_dp
1380
1381 pot_Row = 0.0_dp
1382 pot_Col = 0.0_dp
1383 pot_Temp = 0.0_dp
1384
1385 #endif
1386
1387 if (FF_uses_EAM .and. SIM_uses_EAM) then
1388 call clean_EAM()
1389 endif
1390
1391 tau_Temp = 0.0_dp
1392 virial_Temp = 0.0_dp
1393 end subroutine zero_work_arrays
1394
1395 function skipThisPair(atom1, atom2) result(skip_it)
1396 integer, intent(in) :: atom1
1397 integer, intent(in), optional :: atom2
1398 logical :: skip_it
1399 integer :: unique_id_1, unique_id_2
1400 integer :: me_i,me_j
1401 integer :: i
1402
1403 skip_it = .false.
1404
1405 !! there are a number of reasons to skip a pair or a particle
1406 !! mostly we do this to exclude atoms who are involved in short
1407 !! range interactions (bonds, bends, torsions), but we also need
1408 !! to exclude some overcounted interactions that result from
1409 !! the parallel decomposition
1410
1411 #ifdef IS_MPI
1412 !! in MPI, we have to look up the unique IDs for each atom
1413 unique_id_1 = AtomRowToGlobal(atom1)
1414 #else
1415 !! in the normal loop, the atom numbers are unique
1416 unique_id_1 = atom1
1417 #endif
1418
1419 !! We were called with only one atom, so just check the global exclude
1420 !! list for this atom
1421 if (.not. present(atom2)) then
1422 do i = 1, nExcludes_global
1423 if (excludesGlobal(i) == unique_id_1) then
1424 skip_it = .true.
1425 return
1426 end if
1427 end do
1428 return
1429 end if
1430
1431 #ifdef IS_MPI
1432 unique_id_2 = AtomColToGlobal(atom2)
1433 #else
1434 unique_id_2 = atom2
1435 #endif
1436
1437 #ifdef IS_MPI
1438 !! this situation should only arise in MPI simulations
1439 if (unique_id_1 == unique_id_2) then
1440 skip_it = .true.
1441 return
1442 end if
1443
1444 !! this prevents us from doing the pair on multiple processors
1445 if (unique_id_1 < unique_id_2) then
1446 if (mod(unique_id_1 + unique_id_2,2) == 0) then
1447 skip_it = .true.
1448 return
1449 endif
1450 else
1451 if (mod(unique_id_1 + unique_id_2,2) == 1) then
1452 skip_it = .true.
1453 return
1454 endif
1455 endif
1456 #endif
1457
1458 !! the rest of these situations can happen in all simulations:
1459 do i = 1, nExcludes_global
1460 if ((excludesGlobal(i) == unique_id_1) .or. &
1461 (excludesGlobal(i) == unique_id_2)) then
1462 skip_it = .true.
1463 return
1464 endif
1465 enddo
1466
1467 do i = 1, nSkipsForAtom(atom1)
1468 if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1469 skip_it = .true.
1470 return
1471 endif
1472 end do
1473
1474 return
1475 end function skipThisPair
1476
1477 function FF_UsesDirectionalAtoms() result(doesit)
1478 logical :: doesit
1479 doesit = FF_uses_DirectionalAtoms
1480 end function FF_UsesDirectionalAtoms
1481
1482 function FF_RequiresPrepairCalc() result(doesit)
1483 logical :: doesit
1484 doesit = FF_uses_EAM
1485 end function FF_RequiresPrepairCalc
1486
1487 #ifdef PROFILE
1488 function getforcetime() result(totalforcetime)
1489 real(kind=dp) :: totalforcetime
1490 totalforcetime = forcetime
1491 end function getforcetime
1492 #endif
1493
1494 !! This cleans componets of force arrays belonging only to fortran
1495
1496 subroutine add_stress_tensor(dpair, fpair)
1497
1498 real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1499
1500 ! because the d vector is the rj - ri vector, and
1501 ! because fx, fy, fz are the force on atom i, we need a
1502 ! negative sign here:
1503
1504 tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1505 tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1506 tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1507 tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1508 tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1509 tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1510 tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1511 tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1512 tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1513
1514 virial_Temp = virial_Temp + &
1515 (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1516
1517 end subroutine add_stress_tensor
1518
1519 end module doForces