ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2082
Committed: Mon Mar 7 22:39:33 2005 UTC (19 years, 4 months ago) by tim
File size: 28679 byte(s)
Log Message:
Fixing a bug in BitSet.cpp

File Contents

# User Rev Content
1 gezelter 1930 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 gezelter 1490
52 tim 1492 #include "brains/SimInfo.hpp"
53 gezelter 1930 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55     #include "UseTheForce/doForces_interface.h"
56     #include "UseTheForce/notifyCutoffs_interface.h"
57     #include "utils/MemoryUtils.hpp"
58 tim 1492 #include "utils/simError.h"
59 tim 2000 #include "selection/SelectionManager.hpp"
60 gezelter 1490
61 gezelter 1930 #ifdef IS_MPI
62     #include "UseTheForce/mpiComponentPlan.h"
63     #include "UseTheForce/DarkSide/simParallel_interface.h"
64     #endif
65 gezelter 1490
66 gezelter 1930 namespace oopse {
67 gezelter 1490
68 gezelter 1930 SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69     ForceField* ff, Globals* simParams) :
70     forceField_(ff), simParams_(simParams),
71     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76 tim 1976 sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
77 gezelter 1490
78 gezelter 1930
79     std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80     MoleculeStamp* molStamp;
81     int nMolWithSameStamp;
82     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83     int nGroups = 0; //total cutoff groups defined in meta-data file
84     CutoffGroupStamp* cgStamp;
85     RigidBodyStamp* rbStamp;
86     int nRigidAtoms = 0;
87    
88     for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89     molStamp = i->first;
90     nMolWithSameStamp = i->second;
91    
92     addMoleculeStamp(molStamp, nMolWithSameStamp);
93 gezelter 1490
94 gezelter 1930 //calculate atoms in molecules
95     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96 gezelter 1490
97    
98 gezelter 1930 //calculate atoms in cutoff groups
99     int nAtomsInGroups = 0;
100     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101    
102     for (int j=0; j < nCutoffGroupsInStamp; j++) {
103     cgStamp = molStamp->getCutoffGroup(j);
104     nAtomsInGroups += cgStamp->getNMembers();
105     }
106 gezelter 1490
107 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108     nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109 gezelter 1490
110 gezelter 1930 //calculate atoms in rigid bodies
111     int nAtomsInRigidBodies = 0;
112 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113 gezelter 1930
114     for (int j=0; j < nRigidBodiesInStamp; j++) {
115     rbStamp = molStamp->getRigidBody(j);
116     nAtomsInRigidBodies += rbStamp->getNMembers();
117     }
118 gezelter 1490
119 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121    
122     }
123 chrisfen 1636
124 gezelter 1930 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125     //therefore the total number of cutoff groups in the system is equal to
126     //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127     //file plus the number of cutoff groups defined in meta-data file
128     nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129 gezelter 1490
130 gezelter 1930 //every free atom (atom does not belong to rigid bodies) is an integrable object
131     //therefore the total number of integrable objects in the system is equal to
132     //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133     //file plus the number of rigid bodies defined in meta-data file
134     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135 gezelter 1490
136 gezelter 1930 nGlobalMols_ = molStampIds_.size();
137 gezelter 1490
138 gezelter 1930 #ifdef IS_MPI
139     molToProcMap_.resize(nGlobalMols_);
140     #endif
141 tim 1976
142 tim 2000 selectMan_ = new SelectionManager(this);
143 tim 1976 selectMan_->selectAll();
144 gezelter 1930 }
145 gezelter 1490
146 gezelter 1930 SimInfo::~SimInfo() {
147 tim 2082 std::map<int, Molecule*>::iterator i;
148     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
149     delete i->second;
150     }
151     molecules_.clear();
152 gezelter 1930
153 tim 2082 MemoryUtils::deletePointers(moleculeStamps_);
154    
155 gezelter 1930 delete sman_;
156     delete simParams_;
157     delete forceField_;
158 tim 1976 delete selectMan_;
159 gezelter 1490 }
160    
161 gezelter 1930 int SimInfo::getNGlobalConstraints() {
162     int nGlobalConstraints;
163     #ifdef IS_MPI
164     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
165     MPI_COMM_WORLD);
166     #else
167     nGlobalConstraints = nConstraints_;
168     #endif
169     return nGlobalConstraints;
170     }
171 gezelter 1490
172 gezelter 1930 bool SimInfo::addMolecule(Molecule* mol) {
173     MoleculeIterator i;
174 gezelter 1490
175 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
176     if (i == molecules_.end() ) {
177 gezelter 1490
178 gezelter 1930 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
179    
180     nAtoms_ += mol->getNAtoms();
181     nBonds_ += mol->getNBonds();
182     nBends_ += mol->getNBends();
183     nTorsions_ += mol->getNTorsions();
184     nRigidBodies_ += mol->getNRigidBodies();
185     nIntegrableObjects_ += mol->getNIntegrableObjects();
186     nCutoffGroups_ += mol->getNCutoffGroups();
187     nConstraints_ += mol->getNConstraintPairs();
188 gezelter 1490
189 gezelter 1930 addExcludePairs(mol);
190    
191     return true;
192     } else {
193     return false;
194     }
195 gezelter 1490 }
196    
197 gezelter 1930 bool SimInfo::removeMolecule(Molecule* mol) {
198     MoleculeIterator i;
199     i = molecules_.find(mol->getGlobalIndex());
200 gezelter 1490
201 gezelter 1930 if (i != molecules_.end() ) {
202 gezelter 1490
203 gezelter 1930 assert(mol == i->second);
204    
205     nAtoms_ -= mol->getNAtoms();
206     nBonds_ -= mol->getNBonds();
207     nBends_ -= mol->getNBends();
208     nTorsions_ -= mol->getNTorsions();
209     nRigidBodies_ -= mol->getNRigidBodies();
210     nIntegrableObjects_ -= mol->getNIntegrableObjects();
211     nCutoffGroups_ -= mol->getNCutoffGroups();
212     nConstraints_ -= mol->getNConstraintPairs();
213 gezelter 1490
214 gezelter 1930 removeExcludePairs(mol);
215     molecules_.erase(mol->getGlobalIndex());
216 gezelter 1490
217 gezelter 1930 delete mol;
218    
219     return true;
220     } else {
221     return false;
222     }
223    
224    
225     }
226    
227    
228     Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
229     i = molecules_.begin();
230     return i == molecules_.end() ? NULL : i->second;
231     }
232    
233     Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
234     ++i;
235     return i == molecules_.end() ? NULL : i->second;
236 gezelter 1490 }
237    
238    
239 gezelter 1930 void SimInfo::calcNdf() {
240     int ndf_local;
241     MoleculeIterator i;
242     std::vector<StuntDouble*>::iterator j;
243     Molecule* mol;
244     StuntDouble* integrableObject;
245 gezelter 1490
246 gezelter 1930 ndf_local = 0;
247    
248     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
249     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
250     integrableObject = mol->nextIntegrableObject(j)) {
251 gezelter 1490
252 gezelter 1930 ndf_local += 3;
253 gezelter 1490
254 gezelter 1930 if (integrableObject->isDirectional()) {
255     if (integrableObject->isLinear()) {
256     ndf_local += 2;
257     } else {
258     ndf_local += 3;
259     }
260     }
261    
262     }//end for (integrableObject)
263     }// end for (mol)
264    
265     // n_constraints is local, so subtract them on each processor
266     ndf_local -= nConstraints_;
267    
268     #ifdef IS_MPI
269     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
270     #else
271     ndf_ = ndf_local;
272     #endif
273    
274     // nZconstraints_ is global, as are the 3 COM translations for the
275     // entire system:
276     ndf_ = ndf_ - 3 - nZconstraint_;
277    
278 gezelter 1490 }
279    
280 gezelter 1930 void SimInfo::calcNdfRaw() {
281     int ndfRaw_local;
282 gezelter 1490
283 gezelter 1930 MoleculeIterator i;
284     std::vector<StuntDouble*>::iterator j;
285     Molecule* mol;
286     StuntDouble* integrableObject;
287    
288     // Raw degrees of freedom that we have to set
289     ndfRaw_local = 0;
290    
291     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
292     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
293     integrableObject = mol->nextIntegrableObject(j)) {
294    
295     ndfRaw_local += 3;
296    
297     if (integrableObject->isDirectional()) {
298     if (integrableObject->isLinear()) {
299     ndfRaw_local += 2;
300     } else {
301     ndfRaw_local += 3;
302     }
303     }
304    
305     }
306     }
307    
308     #ifdef IS_MPI
309     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
310     #else
311     ndfRaw_ = ndfRaw_local;
312     #endif
313 gezelter 1490 }
314    
315 gezelter 1930 void SimInfo::calcNdfTrans() {
316     int ndfTrans_local;
317 gezelter 1490
318 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
319 gezelter 1490
320    
321 gezelter 1930 #ifdef IS_MPI
322     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
323     #else
324     ndfTrans_ = ndfTrans_local;
325     #endif
326 gezelter 1490
327 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
328    
329 gezelter 1490 }
330    
331 gezelter 1930 void SimInfo::addExcludePairs(Molecule* mol) {
332     std::vector<Bond*>::iterator bondIter;
333     std::vector<Bend*>::iterator bendIter;
334     std::vector<Torsion*>::iterator torsionIter;
335     Bond* bond;
336     Bend* bend;
337     Torsion* torsion;
338     int a;
339     int b;
340     int c;
341     int d;
342    
343     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
344     a = bond->getAtomA()->getGlobalIndex();
345     b = bond->getAtomB()->getGlobalIndex();
346     exclude_.addPair(a, b);
347     }
348 gezelter 1490
349 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
350     a = bend->getAtomA()->getGlobalIndex();
351     b = bend->getAtomB()->getGlobalIndex();
352     c = bend->getAtomC()->getGlobalIndex();
353 gezelter 1490
354 gezelter 1930 exclude_.addPair(a, b);
355     exclude_.addPair(a, c);
356     exclude_.addPair(b, c);
357     }
358 gezelter 1490
359 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
360     a = torsion->getAtomA()->getGlobalIndex();
361     b = torsion->getAtomB()->getGlobalIndex();
362     c = torsion->getAtomC()->getGlobalIndex();
363     d = torsion->getAtomD()->getGlobalIndex();
364 gezelter 1490
365 gezelter 1930 exclude_.addPair(a, b);
366     exclude_.addPair(a, c);
367     exclude_.addPair(a, d);
368     exclude_.addPair(b, c);
369     exclude_.addPair(b, d);
370     exclude_.addPair(c, d);
371 gezelter 1490 }
372    
373    
374 gezelter 1930 }
375    
376     void SimInfo::removeExcludePairs(Molecule* mol) {
377     std::vector<Bond*>::iterator bondIter;
378     std::vector<Bend*>::iterator bendIter;
379     std::vector<Torsion*>::iterator torsionIter;
380     Bond* bond;
381     Bend* bend;
382     Torsion* torsion;
383     int a;
384     int b;
385     int c;
386     int d;
387    
388     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
389     a = bond->getAtomA()->getGlobalIndex();
390     b = bond->getAtomB()->getGlobalIndex();
391     exclude_.removePair(a, b);
392 gezelter 1490 }
393 gezelter 1930
394     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
395     a = bend->getAtomA()->getGlobalIndex();
396     b = bend->getAtomB()->getGlobalIndex();
397     c = bend->getAtomC()->getGlobalIndex();
398    
399     exclude_.removePair(a, b);
400     exclude_.removePair(a, c);
401     exclude_.removePair(b, c);
402 gezelter 1490 }
403 gezelter 1930
404     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
405     a = torsion->getAtomA()->getGlobalIndex();
406     b = torsion->getAtomB()->getGlobalIndex();
407     c = torsion->getAtomC()->getGlobalIndex();
408     d = torsion->getAtomD()->getGlobalIndex();
409    
410     exclude_.removePair(a, b);
411     exclude_.removePair(a, c);
412     exclude_.removePair(a, d);
413     exclude_.removePair(b, c);
414     exclude_.removePair(b, d);
415     exclude_.removePair(c, d);
416     }
417    
418 gezelter 1490 }
419    
420    
421 gezelter 1930 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
422     int curStampId;
423 gezelter 1490
424 gezelter 1930 //index from 0
425     curStampId = moleculeStamps_.size();
426 gezelter 1490
427 gezelter 1930 moleculeStamps_.push_back(molStamp);
428     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
429     }
430 gezelter 1490
431 gezelter 1930 void SimInfo::update() {
432 gezelter 1490
433 gezelter 1930 setupSimType();
434 gezelter 1490
435 gezelter 1930 #ifdef IS_MPI
436     setupFortranParallel();
437     #endif
438 gezelter 1490
439 gezelter 1930 setupFortranSim();
440 gezelter 1490
441 gezelter 1930 //setup fortran force field
442     /** @deprecate */
443     int isError = 0;
444     initFortranFF( &fInfo_.SIM_uses_RF , &isError );
445     if(isError){
446     sprintf( painCave.errMsg,
447     "ForceField error: There was an error initializing the forceField in fortran.\n" );
448     painCave.isFatal = 1;
449     simError();
450     }
451 gezelter 1490
452 gezelter 1930
453     setupCutoff();
454 gezelter 1490
455 gezelter 1930 calcNdf();
456     calcNdfRaw();
457     calcNdfTrans();
458    
459     fortranInitialized_ = true;
460 gezelter 1490 }
461    
462 gezelter 1930 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
463     SimInfo::MoleculeIterator mi;
464     Molecule* mol;
465     Molecule::AtomIterator ai;
466     Atom* atom;
467     std::set<AtomType*> atomTypes;
468 gezelter 1490
469 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
470 gezelter 1490
471 gezelter 1930 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
472     atomTypes.insert(atom->getAtomType());
473     }
474    
475     }
476 gezelter 1490
477 gezelter 1930 return atomTypes;
478     }
479 gezelter 1490
480 gezelter 1930 void SimInfo::setupSimType() {
481     std::set<AtomType*>::iterator i;
482     std::set<AtomType*> atomTypes;
483     atomTypes = getUniqueAtomTypes();
484 gezelter 1490
485 gezelter 1930 int useLennardJones = 0;
486     int useElectrostatic = 0;
487     int useEAM = 0;
488     int useCharge = 0;
489     int useDirectional = 0;
490     int useDipole = 0;
491     int useGayBerne = 0;
492     int useSticky = 0;
493     int useShape = 0;
494     int useFLARB = 0; //it is not in AtomType yet
495     int useDirectionalAtom = 0;
496     int useElectrostatics = 0;
497     //usePBC and useRF are from simParams
498     int usePBC = simParams_->getPBC();
499     int useRF = simParams_->getUseRF();
500 gezelter 1490
501 gezelter 1930 //loop over all of the atom types
502     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
503     useLennardJones |= (*i)->isLennardJones();
504     useElectrostatic |= (*i)->isElectrostatic();
505     useEAM |= (*i)->isEAM();
506     useCharge |= (*i)->isCharge();
507     useDirectional |= (*i)->isDirectional();
508     useDipole |= (*i)->isDipole();
509     useGayBerne |= (*i)->isGayBerne();
510     useSticky |= (*i)->isSticky();
511     useShape |= (*i)->isShape();
512     }
513 gezelter 1490
514 gezelter 1930 if (useSticky || useDipole || useGayBerne || useShape) {
515     useDirectionalAtom = 1;
516     }
517 gezelter 1490
518 gezelter 1930 if (useCharge || useDipole) {
519     useElectrostatics = 1;
520     }
521 gezelter 1490
522 gezelter 1930 #ifdef IS_MPI
523     int temp;
524 gezelter 1490
525 gezelter 1930 temp = usePBC;
526     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
527 gezelter 1490
528 gezelter 1930 temp = useDirectionalAtom;
529     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
530 gezelter 1490
531 gezelter 1930 temp = useLennardJones;
532     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
533 gezelter 1490
534 gezelter 1930 temp = useElectrostatics;
535     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
536 gezelter 1490
537 gezelter 1930 temp = useCharge;
538     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
539 gezelter 1490
540 gezelter 1930 temp = useDipole;
541     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
542 gezelter 1490
543 gezelter 1930 temp = useSticky;
544     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
545 gezelter 1490
546 gezelter 1930 temp = useGayBerne;
547     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
548 gezelter 1490
549 gezelter 1930 temp = useEAM;
550     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
551 gezelter 1490
552 gezelter 1930 temp = useShape;
553     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
554    
555     temp = useFLARB;
556     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
557    
558     temp = useRF;
559     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
560    
561 gezelter 1490 #endif
562    
563 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
564     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
565     fInfo_.SIM_uses_LennardJones = useLennardJones;
566     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
567     fInfo_.SIM_uses_Charges = useCharge;
568     fInfo_.SIM_uses_Dipoles = useDipole;
569     fInfo_.SIM_uses_Sticky = useSticky;
570     fInfo_.SIM_uses_GayBerne = useGayBerne;
571     fInfo_.SIM_uses_EAM = useEAM;
572     fInfo_.SIM_uses_Shapes = useShape;
573     fInfo_.SIM_uses_FLARB = useFLARB;
574     fInfo_.SIM_uses_RF = useRF;
575 gezelter 1490
576 gezelter 1930 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
577 gezelter 1490
578 gezelter 1930 if (simParams_->haveDielectric()) {
579     fInfo_.dielect = simParams_->getDielectric();
580     } else {
581     sprintf(painCave.errMsg,
582     "SimSetup Error: No Dielectric constant was set.\n"
583     "\tYou are trying to use Reaction Field without"
584     "\tsetting a dielectric constant!\n");
585     painCave.isFatal = 1;
586     simError();
587     }
588    
589     } else {
590     fInfo_.dielect = 0.0;
591     }
592    
593 gezelter 1490 }
594    
595 gezelter 1930 void SimInfo::setupFortranSim() {
596     int isError;
597     int nExclude;
598     std::vector<int> fortranGlobalGroupMembership;
599    
600     nExclude = exclude_.getSize();
601     isError = 0;
602 gezelter 1490
603 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
604     for (int i = 0; i < nGlobalAtoms_; i++) {
605     fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
606     }
607 gezelter 1490
608 gezelter 1930 //calculate mass ratio of cutoff group
609     std::vector<double> mfact;
610     SimInfo::MoleculeIterator mi;
611     Molecule* mol;
612     Molecule::CutoffGroupIterator ci;
613     CutoffGroup* cg;
614     Molecule::AtomIterator ai;
615     Atom* atom;
616     double totalMass;
617    
618     //to avoid memory reallocation, reserve enough space for mfact
619     mfact.reserve(getNCutoffGroups());
620 gezelter 1490
621 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
622     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
623 gezelter 1490
624 gezelter 1930 totalMass = cg->getMass();
625     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
626     mfact.push_back(atom->getMass()/totalMass);
627     }
628 gezelter 1490
629 gezelter 1930 }
630     }
631 gezelter 1490
632 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
633     std::vector<int> identArray;
634 gezelter 1490
635 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
636     identArray.reserve(getNAtoms());
637    
638     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
639     for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
640     identArray.push_back(atom->getIdent());
641     }
642     }
643 gezelter 1490
644 gezelter 1930 //fill molMembershipArray
645     //molMembershipArray is filled by SimCreator
646     std::vector<int> molMembershipArray(nGlobalAtoms_);
647     for (int i = 0; i < nGlobalAtoms_; i++) {
648     molMembershipArray[i] = globalMolMembership_[i] + 1;
649     }
650    
651     //setup fortran simulation
652     //gloalExcludes and molMembershipArray should go away (They are never used)
653     //why the hell fortran need to know molecule?
654     //OOPSE = Object-Obfuscated Parallel Simulation Engine
655     int nGlobalExcludes = 0;
656     int* globalExcludes = NULL;
657     int* excludeList = exclude_.getExcludeList();
658     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
659     &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
660     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
661 gezelter 1490
662 gezelter 1930 if( isError ){
663 gezelter 1490
664 gezelter 1930 sprintf( painCave.errMsg,
665     "There was an error setting the simulation information in fortran.\n" );
666     painCave.isFatal = 1;
667     painCave.severity = OOPSE_ERROR;
668     simError();
669     }
670    
671     #ifdef IS_MPI
672     sprintf( checkPointMsg,
673     "succesfully sent the simulation information to fortran.\n");
674     MPIcheckPoint();
675     #endif // is_mpi
676 gezelter 1490 }
677    
678    
679 gezelter 1930 #ifdef IS_MPI
680     void SimInfo::setupFortranParallel() {
681    
682     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
683     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
684     std::vector<int> localToGlobalCutoffGroupIndex;
685     SimInfo::MoleculeIterator mi;
686     Molecule::AtomIterator ai;
687     Molecule::CutoffGroupIterator ci;
688     Molecule* mol;
689     Atom* atom;
690     CutoffGroup* cg;
691     mpiSimData parallelData;
692     int isError;
693 gezelter 1490
694 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
695 gezelter 1490
696 gezelter 1930 //local index(index in DataStorge) of atom is important
697     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
698     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
699     }
700 gezelter 1490
701 gezelter 1930 //local index of cutoff group is trivial, it only depends on the order of travesing
702     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
703     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
704     }
705    
706     }
707 gezelter 1490
708 gezelter 1930 //fill up mpiSimData struct
709     parallelData.nMolGlobal = getNGlobalMolecules();
710     parallelData.nMolLocal = getNMolecules();
711     parallelData.nAtomsGlobal = getNGlobalAtoms();
712     parallelData.nAtomsLocal = getNAtoms();
713     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
714     parallelData.nGroupsLocal = getNCutoffGroups();
715     parallelData.myNode = worldRank;
716     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
717 gezelter 1490
718 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
719     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
720     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
721     &localToGlobalCutoffGroupIndex[0], &isError);
722 gezelter 1490
723 gezelter 1930 if (isError) {
724     sprintf(painCave.errMsg,
725     "mpiRefresh errror: fortran didn't like something we gave it.\n");
726     painCave.isFatal = 1;
727     simError();
728     }
729 gezelter 1490
730 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
731     MPIcheckPoint();
732 gezelter 1490
733    
734 gezelter 1930 }
735 chrisfen 1636
736 gezelter 1930 #endif
737 chrisfen 1636
738 gezelter 1930 double SimInfo::calcMaxCutoffRadius() {
739 chrisfen 1636
740    
741 gezelter 1930 std::set<AtomType*> atomTypes;
742     std::set<AtomType*>::iterator i;
743     std::vector<double> cutoffRadius;
744 gezelter 1490
745 gezelter 1930 //get the unique atom types
746     atomTypes = getUniqueAtomTypes();
747    
748     //query the max cutoff radius among these atom types
749     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
750     cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
751     }
752    
753     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
754 gezelter 1490 #ifdef IS_MPI
755 gezelter 1930 //pick the max cutoff radius among the processors
756 gezelter 1490 #endif
757    
758 gezelter 1930 return maxCutoffRadius;
759     }
760    
761 tim 2010 void SimInfo::getCutoff(double& rcut, double& rsw) {
762 gezelter 1490
763 gezelter 1930 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
764    
765     if (!simParams_->haveRcut()){
766     sprintf(painCave.errMsg,
767     "SimCreator Warning: No value was set for the cutoffRadius.\n"
768     "\tOOPSE will use a default value of 15.0 angstroms"
769     "\tfor the cutoffRadius.\n");
770     painCave.isFatal = 0;
771     simError();
772 tim 2012 rcut = 15.0;
773 gezelter 1930 } else{
774 tim 2012 rcut = simParams_->getRcut();
775 gezelter 1930 }
776    
777     if (!simParams_->haveRsw()){
778     sprintf(painCave.errMsg,
779     "SimCreator Warning: No value was set for switchingRadius.\n"
780     "\tOOPSE will use a default value of\n"
781     "\t0.95 * cutoffRadius for the switchingRadius\n");
782     painCave.isFatal = 0;
783     simError();
784 tim 2012 rsw = 0.95 * rcut;
785 gezelter 1930 } else{
786 tim 2012 rsw = simParams_->getRsw();
787 gezelter 1930 }
788    
789     } else {
790     // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
791     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
792    
793     if (simParams_->haveRcut()) {
794 tim 2012 rcut = simParams_->getRcut();
795 gezelter 1930 } else {
796     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
797 tim 2012 rcut = calcMaxCutoffRadius();
798 gezelter 1930 }
799    
800     if (simParams_->haveRsw()) {
801 tim 2012 rsw = simParams_->getRsw();
802 gezelter 1930 } else {
803 tim 2012 rsw = rcut;
804 gezelter 1930 }
805    
806     }
807 tim 2010 }
808    
809     void SimInfo::setupCutoff() {
810     getCutoff(rcut_, rsw_);
811 gezelter 1930 double rnblist = rcut_ + 1; // skin of neighbor list
812    
813     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
814     notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
815 gezelter 1490 }
816    
817 gezelter 1930 void SimInfo::addProperty(GenericData* genData) {
818     properties_.addProperty(genData);
819 gezelter 1490 }
820    
821 gezelter 1930 void SimInfo::removeProperty(const std::string& propName) {
822     properties_.removeProperty(propName);
823     }
824 gezelter 1490
825 gezelter 1930 void SimInfo::clearProperties() {
826     properties_.clearProperties();
827 gezelter 1490 }
828    
829 gezelter 1930 std::vector<std::string> SimInfo::getPropertyNames() {
830     return properties_.getPropertyNames();
831     }
832    
833     std::vector<GenericData*> SimInfo::getProperties() {
834     return properties_.getProperties();
835     }
836 gezelter 1490
837 gezelter 1930 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
838     return properties_.getPropertyByName(propName);
839 gezelter 1490 }
840    
841 gezelter 1930 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
842 tim 2018 //if (sman_ == sman_) {
843     // return;
844     //}
845 tim 2015
846 tim 2018 //delete sman_;
847 gezelter 1930 sman_ = sman;
848 gezelter 1490
849 gezelter 1930 Molecule* mol;
850     RigidBody* rb;
851     Atom* atom;
852     SimInfo::MoleculeIterator mi;
853     Molecule::RigidBodyIterator rbIter;
854     Molecule::AtomIterator atomIter;;
855    
856     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
857    
858     for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
859     atom->setSnapshotManager(sman_);
860     }
861    
862     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
863     rb->setSnapshotManager(sman_);
864     }
865     }
866 gezelter 1490
867 gezelter 1930 }
868 gezelter 1490
869 gezelter 1930 Vector3d SimInfo::getComVel(){
870     SimInfo::MoleculeIterator i;
871     Molecule* mol;
872 gezelter 1490
873 gezelter 1930 Vector3d comVel(0.0);
874     double totalMass = 0.0;
875 gezelter 1490
876 gezelter 1930
877     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
878     double mass = mol->getMass();
879     totalMass += mass;
880     comVel += mass * mol->getComVel();
881     }
882 gezelter 1490
883 gezelter 1930 #ifdef IS_MPI
884     double tmpMass = totalMass;
885     Vector3d tmpComVel(comVel);
886     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
887     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
888     #endif
889    
890     comVel /= totalMass;
891    
892     return comVel;
893 gezelter 1490 }
894    
895 gezelter 1930 Vector3d SimInfo::getCom(){
896     SimInfo::MoleculeIterator i;
897     Molecule* mol;
898 gezelter 1490
899 gezelter 1930 Vector3d com(0.0);
900     double totalMass = 0.0;
901    
902     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
903     double mass = mol->getMass();
904     totalMass += mass;
905     com += mass * mol->getCom();
906     }
907 gezelter 1490
908     #ifdef IS_MPI
909 gezelter 1930 double tmpMass = totalMass;
910     Vector3d tmpCom(com);
911     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
912     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
913 gezelter 1490 #endif
914    
915 gezelter 1930 com /= totalMass;
916 gezelter 1490
917 gezelter 1930 return com;
918 gezelter 1490
919 gezelter 1930 }
920    
921     std::ostream& operator <<(std::ostream& o, SimInfo& info) {
922    
923     return o;
924 gezelter 1490 }
925 gezelter 1930
926     }//end namespace oopse
927