ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2097
Committed: Wed Mar 9 17:30:29 2005 UTC (19 years, 4 months ago) by tim
File size: 28564 byte(s)
Log Message:
adding IndexFinder which is used to select the molecules; Seperate ElectrostaticAtomTypesSectionParser into
ChargeAtomTypesSectionParser and MultipoleAtomTypesSectionParser;remove print dipole option from Dump2XYZ;

File Contents

# User Rev Content
1 gezelter 1930 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 gezelter 1490
52 tim 1492 #include "brains/SimInfo.hpp"
53 gezelter 1930 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55     #include "UseTheForce/doForces_interface.h"
56     #include "UseTheForce/notifyCutoffs_interface.h"
57     #include "utils/MemoryUtils.hpp"
58 tim 1492 #include "utils/simError.h"
59 tim 2000 #include "selection/SelectionManager.hpp"
60 gezelter 1490
61 gezelter 1930 #ifdef IS_MPI
62     #include "UseTheForce/mpiComponentPlan.h"
63     #include "UseTheForce/DarkSide/simParallel_interface.h"
64     #endif
65 gezelter 1490
66 gezelter 1930 namespace oopse {
67 gezelter 1490
68 gezelter 1930 SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69     ForceField* ff, Globals* simParams) :
70     forceField_(ff), simParams_(simParams),
71     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76 tim 2097 sman_(NULL), fortranInitialized_(false) {
77 gezelter 1490
78 gezelter 1930
79     std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80     MoleculeStamp* molStamp;
81     int nMolWithSameStamp;
82     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83     int nGroups = 0; //total cutoff groups defined in meta-data file
84     CutoffGroupStamp* cgStamp;
85     RigidBodyStamp* rbStamp;
86     int nRigidAtoms = 0;
87    
88     for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89     molStamp = i->first;
90     nMolWithSameStamp = i->second;
91    
92     addMoleculeStamp(molStamp, nMolWithSameStamp);
93 gezelter 1490
94 gezelter 1930 //calculate atoms in molecules
95     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96 gezelter 1490
97    
98 gezelter 1930 //calculate atoms in cutoff groups
99     int nAtomsInGroups = 0;
100     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101    
102     for (int j=0; j < nCutoffGroupsInStamp; j++) {
103     cgStamp = molStamp->getCutoffGroup(j);
104     nAtomsInGroups += cgStamp->getNMembers();
105     }
106 gezelter 1490
107 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108     nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109 gezelter 1490
110 gezelter 1930 //calculate atoms in rigid bodies
111     int nAtomsInRigidBodies = 0;
112 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113 gezelter 1930
114     for (int j=0; j < nRigidBodiesInStamp; j++) {
115     rbStamp = molStamp->getRigidBody(j);
116     nAtomsInRigidBodies += rbStamp->getNMembers();
117     }
118 gezelter 1490
119 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121    
122     }
123 chrisfen 1636
124 gezelter 1930 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125     //therefore the total number of cutoff groups in the system is equal to
126     //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127     //file plus the number of cutoff groups defined in meta-data file
128     nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129 gezelter 1490
130 gezelter 1930 //every free atom (atom does not belong to rigid bodies) is an integrable object
131     //therefore the total number of integrable objects in the system is equal to
132     //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133     //file plus the number of rigid bodies defined in meta-data file
134     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135 gezelter 1490
136 gezelter 1930 nGlobalMols_ = molStampIds_.size();
137 gezelter 1490
138 gezelter 1930 #ifdef IS_MPI
139     molToProcMap_.resize(nGlobalMols_);
140     #endif
141 tim 1976
142 gezelter 1930 }
143 gezelter 1490
144 gezelter 1930 SimInfo::~SimInfo() {
145 tim 2082 std::map<int, Molecule*>::iterator i;
146     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147     delete i->second;
148     }
149     molecules_.clear();
150 gezelter 1930
151 tim 2082 MemoryUtils::deletePointers(moleculeStamps_);
152    
153 gezelter 1930 delete sman_;
154     delete simParams_;
155     delete forceField_;
156 gezelter 1490 }
157    
158 gezelter 1930 int SimInfo::getNGlobalConstraints() {
159     int nGlobalConstraints;
160     #ifdef IS_MPI
161     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162     MPI_COMM_WORLD);
163     #else
164     nGlobalConstraints = nConstraints_;
165     #endif
166     return nGlobalConstraints;
167     }
168 gezelter 1490
169 gezelter 1930 bool SimInfo::addMolecule(Molecule* mol) {
170     MoleculeIterator i;
171 gezelter 1490
172 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
173     if (i == molecules_.end() ) {
174 gezelter 1490
175 gezelter 1930 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
176    
177     nAtoms_ += mol->getNAtoms();
178     nBonds_ += mol->getNBonds();
179     nBends_ += mol->getNBends();
180     nTorsions_ += mol->getNTorsions();
181     nRigidBodies_ += mol->getNRigidBodies();
182     nIntegrableObjects_ += mol->getNIntegrableObjects();
183     nCutoffGroups_ += mol->getNCutoffGroups();
184     nConstraints_ += mol->getNConstraintPairs();
185 gezelter 1490
186 gezelter 1930 addExcludePairs(mol);
187    
188     return true;
189     } else {
190     return false;
191     }
192 gezelter 1490 }
193    
194 gezelter 1930 bool SimInfo::removeMolecule(Molecule* mol) {
195     MoleculeIterator i;
196     i = molecules_.find(mol->getGlobalIndex());
197 gezelter 1490
198 gezelter 1930 if (i != molecules_.end() ) {
199 gezelter 1490
200 gezelter 1930 assert(mol == i->second);
201    
202     nAtoms_ -= mol->getNAtoms();
203     nBonds_ -= mol->getNBonds();
204     nBends_ -= mol->getNBends();
205     nTorsions_ -= mol->getNTorsions();
206     nRigidBodies_ -= mol->getNRigidBodies();
207     nIntegrableObjects_ -= mol->getNIntegrableObjects();
208     nCutoffGroups_ -= mol->getNCutoffGroups();
209     nConstraints_ -= mol->getNConstraintPairs();
210 gezelter 1490
211 gezelter 1930 removeExcludePairs(mol);
212     molecules_.erase(mol->getGlobalIndex());
213 gezelter 1490
214 gezelter 1930 delete mol;
215    
216     return true;
217     } else {
218     return false;
219     }
220    
221    
222     }
223    
224    
225     Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
226     i = molecules_.begin();
227     return i == molecules_.end() ? NULL : i->second;
228     }
229    
230     Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
231     ++i;
232     return i == molecules_.end() ? NULL : i->second;
233 gezelter 1490 }
234    
235    
236 gezelter 1930 void SimInfo::calcNdf() {
237     int ndf_local;
238     MoleculeIterator i;
239     std::vector<StuntDouble*>::iterator j;
240     Molecule* mol;
241     StuntDouble* integrableObject;
242 gezelter 1490
243 gezelter 1930 ndf_local = 0;
244    
245     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
246     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
247     integrableObject = mol->nextIntegrableObject(j)) {
248 gezelter 1490
249 gezelter 1930 ndf_local += 3;
250 gezelter 1490
251 gezelter 1930 if (integrableObject->isDirectional()) {
252     if (integrableObject->isLinear()) {
253     ndf_local += 2;
254     } else {
255     ndf_local += 3;
256     }
257     }
258    
259     }//end for (integrableObject)
260     }// end for (mol)
261    
262     // n_constraints is local, so subtract them on each processor
263     ndf_local -= nConstraints_;
264    
265     #ifdef IS_MPI
266     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267     #else
268     ndf_ = ndf_local;
269     #endif
270    
271     // nZconstraints_ is global, as are the 3 COM translations for the
272     // entire system:
273     ndf_ = ndf_ - 3 - nZconstraint_;
274    
275 gezelter 1490 }
276    
277 gezelter 1930 void SimInfo::calcNdfRaw() {
278     int ndfRaw_local;
279 gezelter 1490
280 gezelter 1930 MoleculeIterator i;
281     std::vector<StuntDouble*>::iterator j;
282     Molecule* mol;
283     StuntDouble* integrableObject;
284    
285     // Raw degrees of freedom that we have to set
286     ndfRaw_local = 0;
287    
288     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
289     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
290     integrableObject = mol->nextIntegrableObject(j)) {
291    
292     ndfRaw_local += 3;
293    
294     if (integrableObject->isDirectional()) {
295     if (integrableObject->isLinear()) {
296     ndfRaw_local += 2;
297     } else {
298     ndfRaw_local += 3;
299     }
300     }
301    
302     }
303     }
304    
305     #ifdef IS_MPI
306     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
307     #else
308     ndfRaw_ = ndfRaw_local;
309     #endif
310 gezelter 1490 }
311    
312 gezelter 1930 void SimInfo::calcNdfTrans() {
313     int ndfTrans_local;
314 gezelter 1490
315 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
316 gezelter 1490
317    
318 gezelter 1930 #ifdef IS_MPI
319     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
320     #else
321     ndfTrans_ = ndfTrans_local;
322     #endif
323 gezelter 1490
324 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
325    
326 gezelter 1490 }
327    
328 gezelter 1930 void SimInfo::addExcludePairs(Molecule* mol) {
329     std::vector<Bond*>::iterator bondIter;
330     std::vector<Bend*>::iterator bendIter;
331     std::vector<Torsion*>::iterator torsionIter;
332     Bond* bond;
333     Bend* bend;
334     Torsion* torsion;
335     int a;
336     int b;
337     int c;
338     int d;
339    
340     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
341     a = bond->getAtomA()->getGlobalIndex();
342     b = bond->getAtomB()->getGlobalIndex();
343     exclude_.addPair(a, b);
344     }
345 gezelter 1490
346 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
347     a = bend->getAtomA()->getGlobalIndex();
348     b = bend->getAtomB()->getGlobalIndex();
349     c = bend->getAtomC()->getGlobalIndex();
350 gezelter 1490
351 gezelter 1930 exclude_.addPair(a, b);
352     exclude_.addPair(a, c);
353     exclude_.addPair(b, c);
354     }
355 gezelter 1490
356 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
357     a = torsion->getAtomA()->getGlobalIndex();
358     b = torsion->getAtomB()->getGlobalIndex();
359     c = torsion->getAtomC()->getGlobalIndex();
360     d = torsion->getAtomD()->getGlobalIndex();
361 gezelter 1490
362 gezelter 1930 exclude_.addPair(a, b);
363     exclude_.addPair(a, c);
364     exclude_.addPair(a, d);
365     exclude_.addPair(b, c);
366     exclude_.addPair(b, d);
367     exclude_.addPair(c, d);
368 gezelter 1490 }
369    
370    
371 gezelter 1930 }
372    
373     void SimInfo::removeExcludePairs(Molecule* mol) {
374     std::vector<Bond*>::iterator bondIter;
375     std::vector<Bend*>::iterator bendIter;
376     std::vector<Torsion*>::iterator torsionIter;
377     Bond* bond;
378     Bend* bend;
379     Torsion* torsion;
380     int a;
381     int b;
382     int c;
383     int d;
384    
385     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
386     a = bond->getAtomA()->getGlobalIndex();
387     b = bond->getAtomB()->getGlobalIndex();
388     exclude_.removePair(a, b);
389 gezelter 1490 }
390 gezelter 1930
391     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
392     a = bend->getAtomA()->getGlobalIndex();
393     b = bend->getAtomB()->getGlobalIndex();
394     c = bend->getAtomC()->getGlobalIndex();
395    
396     exclude_.removePair(a, b);
397     exclude_.removePair(a, c);
398     exclude_.removePair(b, c);
399 gezelter 1490 }
400 gezelter 1930
401     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
402     a = torsion->getAtomA()->getGlobalIndex();
403     b = torsion->getAtomB()->getGlobalIndex();
404     c = torsion->getAtomC()->getGlobalIndex();
405     d = torsion->getAtomD()->getGlobalIndex();
406    
407     exclude_.removePair(a, b);
408     exclude_.removePair(a, c);
409     exclude_.removePair(a, d);
410     exclude_.removePair(b, c);
411     exclude_.removePair(b, d);
412     exclude_.removePair(c, d);
413     }
414    
415 gezelter 1490 }
416    
417    
418 gezelter 1930 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
419     int curStampId;
420 gezelter 1490
421 gezelter 1930 //index from 0
422     curStampId = moleculeStamps_.size();
423 gezelter 1490
424 gezelter 1930 moleculeStamps_.push_back(molStamp);
425     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
426     }
427 gezelter 1490
428 gezelter 1930 void SimInfo::update() {
429 gezelter 1490
430 gezelter 1930 setupSimType();
431 gezelter 1490
432 gezelter 1930 #ifdef IS_MPI
433     setupFortranParallel();
434     #endif
435 gezelter 1490
436 gezelter 1930 setupFortranSim();
437 gezelter 1490
438 gezelter 1930 //setup fortran force field
439     /** @deprecate */
440     int isError = 0;
441     initFortranFF( &fInfo_.SIM_uses_RF , &isError );
442     if(isError){
443     sprintf( painCave.errMsg,
444     "ForceField error: There was an error initializing the forceField in fortran.\n" );
445     painCave.isFatal = 1;
446     simError();
447     }
448 gezelter 1490
449 gezelter 1930
450     setupCutoff();
451 gezelter 1490
452 gezelter 1930 calcNdf();
453     calcNdfRaw();
454     calcNdfTrans();
455    
456     fortranInitialized_ = true;
457 gezelter 1490 }
458    
459 gezelter 1930 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
460     SimInfo::MoleculeIterator mi;
461     Molecule* mol;
462     Molecule::AtomIterator ai;
463     Atom* atom;
464     std::set<AtomType*> atomTypes;
465 gezelter 1490
466 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
467 gezelter 1490
468 gezelter 1930 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
469     atomTypes.insert(atom->getAtomType());
470     }
471    
472     }
473 gezelter 1490
474 gezelter 1930 return atomTypes;
475     }
476 gezelter 1490
477 gezelter 1930 void SimInfo::setupSimType() {
478     std::set<AtomType*>::iterator i;
479     std::set<AtomType*> atomTypes;
480     atomTypes = getUniqueAtomTypes();
481 gezelter 1490
482 gezelter 1930 int useLennardJones = 0;
483     int useElectrostatic = 0;
484     int useEAM = 0;
485     int useCharge = 0;
486     int useDirectional = 0;
487     int useDipole = 0;
488     int useGayBerne = 0;
489     int useSticky = 0;
490     int useShape = 0;
491     int useFLARB = 0; //it is not in AtomType yet
492     int useDirectionalAtom = 0;
493     int useElectrostatics = 0;
494     //usePBC and useRF are from simParams
495     int usePBC = simParams_->getPBC();
496     int useRF = simParams_->getUseRF();
497 gezelter 1490
498 gezelter 1930 //loop over all of the atom types
499     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
500     useLennardJones |= (*i)->isLennardJones();
501     useElectrostatic |= (*i)->isElectrostatic();
502     useEAM |= (*i)->isEAM();
503     useCharge |= (*i)->isCharge();
504     useDirectional |= (*i)->isDirectional();
505     useDipole |= (*i)->isDipole();
506     useGayBerne |= (*i)->isGayBerne();
507     useSticky |= (*i)->isSticky();
508     useShape |= (*i)->isShape();
509     }
510 gezelter 1490
511 gezelter 1930 if (useSticky || useDipole || useGayBerne || useShape) {
512     useDirectionalAtom = 1;
513     }
514 gezelter 1490
515 gezelter 1930 if (useCharge || useDipole) {
516     useElectrostatics = 1;
517     }
518 gezelter 1490
519 gezelter 1930 #ifdef IS_MPI
520     int temp;
521 gezelter 1490
522 gezelter 1930 temp = usePBC;
523     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
524 gezelter 1490
525 gezelter 1930 temp = useDirectionalAtom;
526     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
527 gezelter 1490
528 gezelter 1930 temp = useLennardJones;
529     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
530 gezelter 1490
531 gezelter 1930 temp = useElectrostatics;
532     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
533 gezelter 1490
534 gezelter 1930 temp = useCharge;
535     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
536 gezelter 1490
537 gezelter 1930 temp = useDipole;
538     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
539 gezelter 1490
540 gezelter 1930 temp = useSticky;
541     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
542 gezelter 1490
543 gezelter 1930 temp = useGayBerne;
544     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
545 gezelter 1490
546 gezelter 1930 temp = useEAM;
547     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
548 gezelter 1490
549 gezelter 1930 temp = useShape;
550     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
551    
552     temp = useFLARB;
553     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
554    
555     temp = useRF;
556     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
557    
558 gezelter 1490 #endif
559    
560 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
561     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
562     fInfo_.SIM_uses_LennardJones = useLennardJones;
563     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
564     fInfo_.SIM_uses_Charges = useCharge;
565     fInfo_.SIM_uses_Dipoles = useDipole;
566     fInfo_.SIM_uses_Sticky = useSticky;
567     fInfo_.SIM_uses_GayBerne = useGayBerne;
568     fInfo_.SIM_uses_EAM = useEAM;
569     fInfo_.SIM_uses_Shapes = useShape;
570     fInfo_.SIM_uses_FLARB = useFLARB;
571     fInfo_.SIM_uses_RF = useRF;
572 gezelter 1490
573 gezelter 1930 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
574 gezelter 1490
575 gezelter 1930 if (simParams_->haveDielectric()) {
576     fInfo_.dielect = simParams_->getDielectric();
577     } else {
578     sprintf(painCave.errMsg,
579     "SimSetup Error: No Dielectric constant was set.\n"
580     "\tYou are trying to use Reaction Field without"
581     "\tsetting a dielectric constant!\n");
582     painCave.isFatal = 1;
583     simError();
584     }
585    
586     } else {
587     fInfo_.dielect = 0.0;
588     }
589    
590 gezelter 1490 }
591    
592 gezelter 1930 void SimInfo::setupFortranSim() {
593     int isError;
594     int nExclude;
595     std::vector<int> fortranGlobalGroupMembership;
596    
597     nExclude = exclude_.getSize();
598     isError = 0;
599 gezelter 1490
600 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
601     for (int i = 0; i < nGlobalAtoms_; i++) {
602     fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
603     }
604 gezelter 1490
605 gezelter 1930 //calculate mass ratio of cutoff group
606     std::vector<double> mfact;
607     SimInfo::MoleculeIterator mi;
608     Molecule* mol;
609     Molecule::CutoffGroupIterator ci;
610     CutoffGroup* cg;
611     Molecule::AtomIterator ai;
612     Atom* atom;
613     double totalMass;
614    
615     //to avoid memory reallocation, reserve enough space for mfact
616     mfact.reserve(getNCutoffGroups());
617 gezelter 1490
618 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
619     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
620 gezelter 1490
621 gezelter 1930 totalMass = cg->getMass();
622     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
623     mfact.push_back(atom->getMass()/totalMass);
624     }
625 gezelter 1490
626 gezelter 1930 }
627     }
628 gezelter 1490
629 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
630     std::vector<int> identArray;
631 gezelter 1490
632 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
633     identArray.reserve(getNAtoms());
634    
635     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
636     for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
637     identArray.push_back(atom->getIdent());
638     }
639     }
640 gezelter 1490
641 gezelter 1930 //fill molMembershipArray
642     //molMembershipArray is filled by SimCreator
643     std::vector<int> molMembershipArray(nGlobalAtoms_);
644     for (int i = 0; i < nGlobalAtoms_; i++) {
645     molMembershipArray[i] = globalMolMembership_[i] + 1;
646     }
647    
648     //setup fortran simulation
649     //gloalExcludes and molMembershipArray should go away (They are never used)
650     //why the hell fortran need to know molecule?
651     //OOPSE = Object-Obfuscated Parallel Simulation Engine
652     int nGlobalExcludes = 0;
653     int* globalExcludes = NULL;
654     int* excludeList = exclude_.getExcludeList();
655     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
656     &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
657     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
658 gezelter 1490
659 gezelter 1930 if( isError ){
660 gezelter 1490
661 gezelter 1930 sprintf( painCave.errMsg,
662     "There was an error setting the simulation information in fortran.\n" );
663     painCave.isFatal = 1;
664     painCave.severity = OOPSE_ERROR;
665     simError();
666     }
667    
668     #ifdef IS_MPI
669     sprintf( checkPointMsg,
670     "succesfully sent the simulation information to fortran.\n");
671     MPIcheckPoint();
672     #endif // is_mpi
673 gezelter 1490 }
674    
675    
676 gezelter 1930 #ifdef IS_MPI
677     void SimInfo::setupFortranParallel() {
678    
679     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
680     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
681     std::vector<int> localToGlobalCutoffGroupIndex;
682     SimInfo::MoleculeIterator mi;
683     Molecule::AtomIterator ai;
684     Molecule::CutoffGroupIterator ci;
685     Molecule* mol;
686     Atom* atom;
687     CutoffGroup* cg;
688     mpiSimData parallelData;
689     int isError;
690 gezelter 1490
691 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
692 gezelter 1490
693 gezelter 1930 //local index(index in DataStorge) of atom is important
694     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
695     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
696     }
697 gezelter 1490
698 gezelter 1930 //local index of cutoff group is trivial, it only depends on the order of travesing
699     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
700     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
701     }
702    
703     }
704 gezelter 1490
705 gezelter 1930 //fill up mpiSimData struct
706     parallelData.nMolGlobal = getNGlobalMolecules();
707     parallelData.nMolLocal = getNMolecules();
708     parallelData.nAtomsGlobal = getNGlobalAtoms();
709     parallelData.nAtomsLocal = getNAtoms();
710     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
711     parallelData.nGroupsLocal = getNCutoffGroups();
712     parallelData.myNode = worldRank;
713     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
714 gezelter 1490
715 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
716     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
717     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
718     &localToGlobalCutoffGroupIndex[0], &isError);
719 gezelter 1490
720 gezelter 1930 if (isError) {
721     sprintf(painCave.errMsg,
722     "mpiRefresh errror: fortran didn't like something we gave it.\n");
723     painCave.isFatal = 1;
724     simError();
725     }
726 gezelter 1490
727 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
728     MPIcheckPoint();
729 gezelter 1490
730    
731 gezelter 1930 }
732 chrisfen 1636
733 gezelter 1930 #endif
734 chrisfen 1636
735 gezelter 1930 double SimInfo::calcMaxCutoffRadius() {
736 chrisfen 1636
737    
738 gezelter 1930 std::set<AtomType*> atomTypes;
739     std::set<AtomType*>::iterator i;
740     std::vector<double> cutoffRadius;
741 gezelter 1490
742 gezelter 1930 //get the unique atom types
743     atomTypes = getUniqueAtomTypes();
744    
745     //query the max cutoff radius among these atom types
746     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
747     cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
748     }
749    
750     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
751 gezelter 1490 #ifdef IS_MPI
752 gezelter 1930 //pick the max cutoff radius among the processors
753 gezelter 1490 #endif
754    
755 gezelter 1930 return maxCutoffRadius;
756     }
757    
758 tim 2010 void SimInfo::getCutoff(double& rcut, double& rsw) {
759 gezelter 1490
760 gezelter 1930 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
761    
762     if (!simParams_->haveRcut()){
763     sprintf(painCave.errMsg,
764     "SimCreator Warning: No value was set for the cutoffRadius.\n"
765     "\tOOPSE will use a default value of 15.0 angstroms"
766     "\tfor the cutoffRadius.\n");
767     painCave.isFatal = 0;
768     simError();
769 tim 2012 rcut = 15.0;
770 gezelter 1930 } else{
771 tim 2012 rcut = simParams_->getRcut();
772 gezelter 1930 }
773    
774     if (!simParams_->haveRsw()){
775     sprintf(painCave.errMsg,
776     "SimCreator Warning: No value was set for switchingRadius.\n"
777     "\tOOPSE will use a default value of\n"
778     "\t0.95 * cutoffRadius for the switchingRadius\n");
779     painCave.isFatal = 0;
780     simError();
781 tim 2012 rsw = 0.95 * rcut;
782 gezelter 1930 } else{
783 tim 2012 rsw = simParams_->getRsw();
784 gezelter 1930 }
785    
786     } else {
787     // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
788     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
789    
790     if (simParams_->haveRcut()) {
791 tim 2012 rcut = simParams_->getRcut();
792 gezelter 1930 } else {
793     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 tim 2012 rcut = calcMaxCutoffRadius();
795 gezelter 1930 }
796    
797     if (simParams_->haveRsw()) {
798 tim 2012 rsw = simParams_->getRsw();
799 gezelter 1930 } else {
800 tim 2012 rsw = rcut;
801 gezelter 1930 }
802    
803     }
804 tim 2010 }
805    
806     void SimInfo::setupCutoff() {
807     getCutoff(rcut_, rsw_);
808 gezelter 1930 double rnblist = rcut_ + 1; // skin of neighbor list
809    
810     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
811     notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
812 gezelter 1490 }
813    
814 gezelter 1930 void SimInfo::addProperty(GenericData* genData) {
815     properties_.addProperty(genData);
816 gezelter 1490 }
817    
818 gezelter 1930 void SimInfo::removeProperty(const std::string& propName) {
819     properties_.removeProperty(propName);
820     }
821 gezelter 1490
822 gezelter 1930 void SimInfo::clearProperties() {
823     properties_.clearProperties();
824 gezelter 1490 }
825    
826 gezelter 1930 std::vector<std::string> SimInfo::getPropertyNames() {
827     return properties_.getPropertyNames();
828     }
829    
830     std::vector<GenericData*> SimInfo::getProperties() {
831     return properties_.getProperties();
832     }
833 gezelter 1490
834 gezelter 1930 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
835     return properties_.getPropertyByName(propName);
836 gezelter 1490 }
837    
838 gezelter 1930 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
839 tim 2018 //if (sman_ == sman_) {
840     // return;
841     //}
842 tim 2015
843 tim 2018 //delete sman_;
844 gezelter 1930 sman_ = sman;
845 gezelter 1490
846 gezelter 1930 Molecule* mol;
847     RigidBody* rb;
848     Atom* atom;
849     SimInfo::MoleculeIterator mi;
850     Molecule::RigidBodyIterator rbIter;
851     Molecule::AtomIterator atomIter;;
852    
853     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
854    
855     for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
856     atom->setSnapshotManager(sman_);
857     }
858    
859     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
860     rb->setSnapshotManager(sman_);
861     }
862     }
863 gezelter 1490
864 gezelter 1930 }
865 gezelter 1490
866 gezelter 1930 Vector3d SimInfo::getComVel(){
867     SimInfo::MoleculeIterator i;
868     Molecule* mol;
869 gezelter 1490
870 gezelter 1930 Vector3d comVel(0.0);
871     double totalMass = 0.0;
872 gezelter 1490
873 gezelter 1930
874     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
875     double mass = mol->getMass();
876     totalMass += mass;
877     comVel += mass * mol->getComVel();
878     }
879 gezelter 1490
880 gezelter 1930 #ifdef IS_MPI
881     double tmpMass = totalMass;
882     Vector3d tmpComVel(comVel);
883     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
884     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
885     #endif
886    
887     comVel /= totalMass;
888    
889     return comVel;
890 gezelter 1490 }
891    
892 gezelter 1930 Vector3d SimInfo::getCom(){
893     SimInfo::MoleculeIterator i;
894     Molecule* mol;
895 gezelter 1490
896 gezelter 1930 Vector3d com(0.0);
897     double totalMass = 0.0;
898    
899     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
900     double mass = mol->getMass();
901     totalMass += mass;
902     com += mass * mol->getCom();
903     }
904 gezelter 1490
905     #ifdef IS_MPI
906 gezelter 1930 double tmpMass = totalMass;
907     Vector3d tmpCom(com);
908     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
909     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
910 gezelter 1490 #endif
911    
912 gezelter 1930 com /= totalMass;
913 gezelter 1490
914 gezelter 1930 return com;
915 gezelter 1490
916 gezelter 1930 }
917    
918     std::ostream& operator <<(std::ostream& o, SimInfo& info) {
919    
920     return o;
921 gezelter 1490 }
922 gezelter 1930
923     }//end namespace oopse
924