ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2114
Committed: Thu Mar 10 23:56:42 2005 UTC (19 years, 4 months ago) by tim
File size: 30509 byte(s)
Log Message:
adding exclude pairs for rigidbody and cutoff group

File Contents

# User Rev Content
1 gezelter 1930 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 gezelter 1490
52 tim 1492 #include "brains/SimInfo.hpp"
53 gezelter 1930 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55     #include "UseTheForce/doForces_interface.h"
56     #include "UseTheForce/notifyCutoffs_interface.h"
57     #include "utils/MemoryUtils.hpp"
58 tim 1492 #include "utils/simError.h"
59 tim 2000 #include "selection/SelectionManager.hpp"
60 gezelter 1490
61 gezelter 1930 #ifdef IS_MPI
62     #include "UseTheForce/mpiComponentPlan.h"
63     #include "UseTheForce/DarkSide/simParallel_interface.h"
64     #endif
65 gezelter 1490
66 gezelter 1930 namespace oopse {
67 gezelter 1490
68 gezelter 1930 SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69     ForceField* ff, Globals* simParams) :
70     forceField_(ff), simParams_(simParams),
71     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76 tim 2097 sman_(NULL), fortranInitialized_(false) {
77 gezelter 1490
78 gezelter 1930
79     std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80     MoleculeStamp* molStamp;
81     int nMolWithSameStamp;
82     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83     int nGroups = 0; //total cutoff groups defined in meta-data file
84     CutoffGroupStamp* cgStamp;
85     RigidBodyStamp* rbStamp;
86     int nRigidAtoms = 0;
87    
88     for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89     molStamp = i->first;
90     nMolWithSameStamp = i->second;
91    
92     addMoleculeStamp(molStamp, nMolWithSameStamp);
93 gezelter 1490
94 gezelter 1930 //calculate atoms in molecules
95     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96 gezelter 1490
97    
98 gezelter 1930 //calculate atoms in cutoff groups
99     int nAtomsInGroups = 0;
100     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101    
102     for (int j=0; j < nCutoffGroupsInStamp; j++) {
103     cgStamp = molStamp->getCutoffGroup(j);
104     nAtomsInGroups += cgStamp->getNMembers();
105     }
106 gezelter 1490
107 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108     nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109 gezelter 1490
110 gezelter 1930 //calculate atoms in rigid bodies
111     int nAtomsInRigidBodies = 0;
112 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113 gezelter 1930
114     for (int j=0; j < nRigidBodiesInStamp; j++) {
115     rbStamp = molStamp->getRigidBody(j);
116     nAtomsInRigidBodies += rbStamp->getNMembers();
117     }
118 gezelter 1490
119 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121    
122     }
123 chrisfen 1636
124 gezelter 1930 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125     //therefore the total number of cutoff groups in the system is equal to
126     //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127     //file plus the number of cutoff groups defined in meta-data file
128     nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129 gezelter 1490
130 gezelter 1930 //every free atom (atom does not belong to rigid bodies) is an integrable object
131     //therefore the total number of integrable objects in the system is equal to
132     //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133     //file plus the number of rigid bodies defined in meta-data file
134     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135 gezelter 1490
136 gezelter 1930 nGlobalMols_ = molStampIds_.size();
137 gezelter 1490
138 gezelter 1930 #ifdef IS_MPI
139     molToProcMap_.resize(nGlobalMols_);
140     #endif
141 tim 1976
142 gezelter 1930 }
143 gezelter 1490
144 gezelter 1930 SimInfo::~SimInfo() {
145 tim 2082 std::map<int, Molecule*>::iterator i;
146     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147     delete i->second;
148     }
149     molecules_.clear();
150 gezelter 1930
151 tim 2082 MemoryUtils::deletePointers(moleculeStamps_);
152    
153 gezelter 1930 delete sman_;
154     delete simParams_;
155     delete forceField_;
156 gezelter 1490 }
157    
158 gezelter 1930 int SimInfo::getNGlobalConstraints() {
159     int nGlobalConstraints;
160     #ifdef IS_MPI
161     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162     MPI_COMM_WORLD);
163     #else
164     nGlobalConstraints = nConstraints_;
165     #endif
166     return nGlobalConstraints;
167     }
168 gezelter 1490
169 gezelter 1930 bool SimInfo::addMolecule(Molecule* mol) {
170     MoleculeIterator i;
171 gezelter 1490
172 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
173     if (i == molecules_.end() ) {
174 gezelter 1490
175 gezelter 1930 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
176    
177     nAtoms_ += mol->getNAtoms();
178     nBonds_ += mol->getNBonds();
179     nBends_ += mol->getNBends();
180     nTorsions_ += mol->getNTorsions();
181     nRigidBodies_ += mol->getNRigidBodies();
182     nIntegrableObjects_ += mol->getNIntegrableObjects();
183     nCutoffGroups_ += mol->getNCutoffGroups();
184     nConstraints_ += mol->getNConstraintPairs();
185 gezelter 1490
186 gezelter 1930 addExcludePairs(mol);
187    
188     return true;
189     } else {
190     return false;
191     }
192 gezelter 1490 }
193    
194 gezelter 1930 bool SimInfo::removeMolecule(Molecule* mol) {
195     MoleculeIterator i;
196     i = molecules_.find(mol->getGlobalIndex());
197 gezelter 1490
198 gezelter 1930 if (i != molecules_.end() ) {
199 gezelter 1490
200 gezelter 1930 assert(mol == i->second);
201    
202     nAtoms_ -= mol->getNAtoms();
203     nBonds_ -= mol->getNBonds();
204     nBends_ -= mol->getNBends();
205     nTorsions_ -= mol->getNTorsions();
206     nRigidBodies_ -= mol->getNRigidBodies();
207     nIntegrableObjects_ -= mol->getNIntegrableObjects();
208     nCutoffGroups_ -= mol->getNCutoffGroups();
209     nConstraints_ -= mol->getNConstraintPairs();
210 gezelter 1490
211 gezelter 1930 removeExcludePairs(mol);
212     molecules_.erase(mol->getGlobalIndex());
213 gezelter 1490
214 gezelter 1930 delete mol;
215    
216     return true;
217     } else {
218     return false;
219     }
220    
221    
222     }
223    
224    
225     Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
226     i = molecules_.begin();
227     return i == molecules_.end() ? NULL : i->second;
228     }
229    
230     Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
231     ++i;
232     return i == molecules_.end() ? NULL : i->second;
233 gezelter 1490 }
234    
235    
236 gezelter 1930 void SimInfo::calcNdf() {
237     int ndf_local;
238     MoleculeIterator i;
239     std::vector<StuntDouble*>::iterator j;
240     Molecule* mol;
241     StuntDouble* integrableObject;
242 gezelter 1490
243 gezelter 1930 ndf_local = 0;
244    
245     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
246     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
247     integrableObject = mol->nextIntegrableObject(j)) {
248 gezelter 1490
249 gezelter 1930 ndf_local += 3;
250 gezelter 1490
251 gezelter 1930 if (integrableObject->isDirectional()) {
252     if (integrableObject->isLinear()) {
253     ndf_local += 2;
254     } else {
255     ndf_local += 3;
256     }
257     }
258    
259     }//end for (integrableObject)
260     }// end for (mol)
261    
262     // n_constraints is local, so subtract them on each processor
263     ndf_local -= nConstraints_;
264    
265     #ifdef IS_MPI
266     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267     #else
268     ndf_ = ndf_local;
269     #endif
270    
271     // nZconstraints_ is global, as are the 3 COM translations for the
272     // entire system:
273     ndf_ = ndf_ - 3 - nZconstraint_;
274    
275 gezelter 1490 }
276    
277 gezelter 1930 void SimInfo::calcNdfRaw() {
278     int ndfRaw_local;
279 gezelter 1490
280 gezelter 1930 MoleculeIterator i;
281     std::vector<StuntDouble*>::iterator j;
282     Molecule* mol;
283     StuntDouble* integrableObject;
284    
285     // Raw degrees of freedom that we have to set
286     ndfRaw_local = 0;
287    
288     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
289     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
290     integrableObject = mol->nextIntegrableObject(j)) {
291    
292     ndfRaw_local += 3;
293    
294     if (integrableObject->isDirectional()) {
295     if (integrableObject->isLinear()) {
296     ndfRaw_local += 2;
297     } else {
298     ndfRaw_local += 3;
299     }
300     }
301    
302     }
303     }
304    
305     #ifdef IS_MPI
306     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
307     #else
308     ndfRaw_ = ndfRaw_local;
309     #endif
310 gezelter 1490 }
311    
312 gezelter 1930 void SimInfo::calcNdfTrans() {
313     int ndfTrans_local;
314 gezelter 1490
315 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
316 gezelter 1490
317    
318 gezelter 1930 #ifdef IS_MPI
319     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
320     #else
321     ndfTrans_ = ndfTrans_local;
322     #endif
323 gezelter 1490
324 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
325    
326 gezelter 1490 }
327    
328 gezelter 1930 void SimInfo::addExcludePairs(Molecule* mol) {
329     std::vector<Bond*>::iterator bondIter;
330     std::vector<Bend*>::iterator bendIter;
331     std::vector<Torsion*>::iterator torsionIter;
332     Bond* bond;
333     Bend* bend;
334     Torsion* torsion;
335     int a;
336     int b;
337     int c;
338     int d;
339    
340     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
341     a = bond->getAtomA()->getGlobalIndex();
342     b = bond->getAtomB()->getGlobalIndex();
343     exclude_.addPair(a, b);
344     }
345 gezelter 1490
346 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
347     a = bend->getAtomA()->getGlobalIndex();
348     b = bend->getAtomB()->getGlobalIndex();
349     c = bend->getAtomC()->getGlobalIndex();
350 gezelter 1490
351 gezelter 1930 exclude_.addPair(a, b);
352     exclude_.addPair(a, c);
353     exclude_.addPair(b, c);
354     }
355 gezelter 1490
356 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
357     a = torsion->getAtomA()->getGlobalIndex();
358     b = torsion->getAtomB()->getGlobalIndex();
359     c = torsion->getAtomC()->getGlobalIndex();
360     d = torsion->getAtomD()->getGlobalIndex();
361 gezelter 1490
362 gezelter 1930 exclude_.addPair(a, b);
363     exclude_.addPair(a, c);
364     exclude_.addPair(a, d);
365     exclude_.addPair(b, c);
366     exclude_.addPair(b, d);
367     exclude_.addPair(c, d);
368 gezelter 1490 }
369    
370 tim 2114 Molecule::RigidBodyIterator rbIter;
371     RigidBody* rb;
372     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
373     std::vector<Atom*> atoms = rb->getAtoms();
374     for (int i = 0; i < atoms.size() -1 ; ++i) {
375     for (int j = i + 1; j < atoms.size(); ++j) {
376     a = atoms[i]->getGlobalIndex();
377     b = atoms[j]->getGlobalIndex();
378     exclude_.addPair(a, b);
379     }
380     }
381     }
382    
383     Molecule::CutoffGroupIterator cgIter;
384     CutoffGroup* cg;
385     for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
386     std::vector<Atom*> atoms = cg->getAtoms();
387     for (int i = 0; i < atoms.size() -1 ; ++i) {
388     for (int j = i + 1; j < atoms.size(); ++j) {
389     a = atoms[i]->getGlobalIndex();
390     b = atoms[j]->getGlobalIndex();
391     exclude_.addPair(a, b);
392     }
393     }
394     }
395    
396 gezelter 1930 }
397    
398     void SimInfo::removeExcludePairs(Molecule* mol) {
399     std::vector<Bond*>::iterator bondIter;
400     std::vector<Bend*>::iterator bendIter;
401     std::vector<Torsion*>::iterator torsionIter;
402     Bond* bond;
403     Bend* bend;
404     Torsion* torsion;
405     int a;
406     int b;
407     int c;
408     int d;
409    
410     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
411     a = bond->getAtomA()->getGlobalIndex();
412     b = bond->getAtomB()->getGlobalIndex();
413     exclude_.removePair(a, b);
414 gezelter 1490 }
415 gezelter 1930
416     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
417     a = bend->getAtomA()->getGlobalIndex();
418     b = bend->getAtomB()->getGlobalIndex();
419     c = bend->getAtomC()->getGlobalIndex();
420    
421     exclude_.removePair(a, b);
422     exclude_.removePair(a, c);
423     exclude_.removePair(b, c);
424 gezelter 1490 }
425 gezelter 1930
426     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
427     a = torsion->getAtomA()->getGlobalIndex();
428     b = torsion->getAtomB()->getGlobalIndex();
429     c = torsion->getAtomC()->getGlobalIndex();
430     d = torsion->getAtomD()->getGlobalIndex();
431    
432     exclude_.removePair(a, b);
433     exclude_.removePair(a, c);
434     exclude_.removePair(a, d);
435     exclude_.removePair(b, c);
436     exclude_.removePair(b, d);
437     exclude_.removePair(c, d);
438     }
439    
440 tim 2114 Molecule::RigidBodyIterator rbIter;
441     RigidBody* rb;
442     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
443     std::vector<Atom*> atoms = rb->getAtoms();
444     for (int i = 0; i < atoms.size() -1 ; ++i) {
445     for (int j = i + 1; j < atoms.size(); ++j) {
446     a = atoms[i]->getGlobalIndex();
447     b = atoms[j]->getGlobalIndex();
448     exclude_.removePair(a, b);
449     }
450     }
451     }
452    
453     Molecule::CutoffGroupIterator cgIter;
454     CutoffGroup* cg;
455     for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
456     std::vector<Atom*> atoms = cg->getAtoms();
457     for (int i = 0; i < atoms.size() -1 ; ++i) {
458     for (int j = i + 1; j < atoms.size(); ++j) {
459     a = atoms[i]->getGlobalIndex();
460     b = atoms[j]->getGlobalIndex();
461     exclude_.removePair(a, b);
462     }
463     }
464     }
465    
466 gezelter 1490 }
467    
468    
469 gezelter 1930 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
470     int curStampId;
471 gezelter 1490
472 gezelter 1930 //index from 0
473     curStampId = moleculeStamps_.size();
474 gezelter 1490
475 gezelter 1930 moleculeStamps_.push_back(molStamp);
476     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
477     }
478 gezelter 1490
479 gezelter 1930 void SimInfo::update() {
480 gezelter 1490
481 gezelter 1930 setupSimType();
482 gezelter 1490
483 gezelter 1930 #ifdef IS_MPI
484     setupFortranParallel();
485     #endif
486 gezelter 1490
487 gezelter 1930 setupFortranSim();
488 gezelter 1490
489 gezelter 1930 //setup fortran force field
490     /** @deprecate */
491     int isError = 0;
492     initFortranFF( &fInfo_.SIM_uses_RF , &isError );
493     if(isError){
494     sprintf( painCave.errMsg,
495     "ForceField error: There was an error initializing the forceField in fortran.\n" );
496     painCave.isFatal = 1;
497     simError();
498     }
499 gezelter 1490
500 gezelter 1930
501     setupCutoff();
502 gezelter 1490
503 gezelter 1930 calcNdf();
504     calcNdfRaw();
505     calcNdfTrans();
506    
507     fortranInitialized_ = true;
508 gezelter 1490 }
509    
510 gezelter 1930 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
511     SimInfo::MoleculeIterator mi;
512     Molecule* mol;
513     Molecule::AtomIterator ai;
514     Atom* atom;
515     std::set<AtomType*> atomTypes;
516 gezelter 1490
517 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
518 gezelter 1490
519 gezelter 1930 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
520     atomTypes.insert(atom->getAtomType());
521     }
522    
523     }
524 gezelter 1490
525 gezelter 1930 return atomTypes;
526     }
527 gezelter 1490
528 gezelter 1930 void SimInfo::setupSimType() {
529     std::set<AtomType*>::iterator i;
530     std::set<AtomType*> atomTypes;
531     atomTypes = getUniqueAtomTypes();
532 gezelter 1490
533 gezelter 1930 int useLennardJones = 0;
534     int useElectrostatic = 0;
535     int useEAM = 0;
536     int useCharge = 0;
537     int useDirectional = 0;
538     int useDipole = 0;
539     int useGayBerne = 0;
540     int useSticky = 0;
541     int useShape = 0;
542     int useFLARB = 0; //it is not in AtomType yet
543     int useDirectionalAtom = 0;
544     int useElectrostatics = 0;
545     //usePBC and useRF are from simParams
546     int usePBC = simParams_->getPBC();
547     int useRF = simParams_->getUseRF();
548 gezelter 1490
549 gezelter 1930 //loop over all of the atom types
550     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
551     useLennardJones |= (*i)->isLennardJones();
552     useElectrostatic |= (*i)->isElectrostatic();
553     useEAM |= (*i)->isEAM();
554     useCharge |= (*i)->isCharge();
555     useDirectional |= (*i)->isDirectional();
556     useDipole |= (*i)->isDipole();
557     useGayBerne |= (*i)->isGayBerne();
558     useSticky |= (*i)->isSticky();
559     useShape |= (*i)->isShape();
560     }
561 gezelter 1490
562 gezelter 1930 if (useSticky || useDipole || useGayBerne || useShape) {
563     useDirectionalAtom = 1;
564     }
565 gezelter 1490
566 gezelter 1930 if (useCharge || useDipole) {
567     useElectrostatics = 1;
568     }
569 gezelter 1490
570 gezelter 1930 #ifdef IS_MPI
571     int temp;
572 gezelter 1490
573 gezelter 1930 temp = usePBC;
574     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
575 gezelter 1490
576 gezelter 1930 temp = useDirectionalAtom;
577     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
578 gezelter 1490
579 gezelter 1930 temp = useLennardJones;
580     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
581 gezelter 1490
582 gezelter 1930 temp = useElectrostatics;
583     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
584 gezelter 1490
585 gezelter 1930 temp = useCharge;
586     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
587 gezelter 1490
588 gezelter 1930 temp = useDipole;
589     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
590 gezelter 1490
591 gezelter 1930 temp = useSticky;
592     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
593 gezelter 1490
594 gezelter 1930 temp = useGayBerne;
595     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
596 gezelter 1490
597 gezelter 1930 temp = useEAM;
598     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
599 gezelter 1490
600 gezelter 1930 temp = useShape;
601     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
602    
603     temp = useFLARB;
604     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
605    
606     temp = useRF;
607     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
608    
609 gezelter 1490 #endif
610    
611 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
612     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
613     fInfo_.SIM_uses_LennardJones = useLennardJones;
614     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
615     fInfo_.SIM_uses_Charges = useCharge;
616     fInfo_.SIM_uses_Dipoles = useDipole;
617     fInfo_.SIM_uses_Sticky = useSticky;
618     fInfo_.SIM_uses_GayBerne = useGayBerne;
619     fInfo_.SIM_uses_EAM = useEAM;
620     fInfo_.SIM_uses_Shapes = useShape;
621     fInfo_.SIM_uses_FLARB = useFLARB;
622     fInfo_.SIM_uses_RF = useRF;
623 gezelter 1490
624 gezelter 1930 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
625 gezelter 1490
626 gezelter 1930 if (simParams_->haveDielectric()) {
627     fInfo_.dielect = simParams_->getDielectric();
628     } else {
629     sprintf(painCave.errMsg,
630     "SimSetup Error: No Dielectric constant was set.\n"
631     "\tYou are trying to use Reaction Field without"
632     "\tsetting a dielectric constant!\n");
633     painCave.isFatal = 1;
634     simError();
635     }
636    
637     } else {
638     fInfo_.dielect = 0.0;
639     }
640    
641 gezelter 1490 }
642    
643 gezelter 1930 void SimInfo::setupFortranSim() {
644     int isError;
645     int nExclude;
646     std::vector<int> fortranGlobalGroupMembership;
647    
648     nExclude = exclude_.getSize();
649     isError = 0;
650 gezelter 1490
651 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
652     for (int i = 0; i < nGlobalAtoms_; i++) {
653     fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
654     }
655 gezelter 1490
656 gezelter 1930 //calculate mass ratio of cutoff group
657     std::vector<double> mfact;
658     SimInfo::MoleculeIterator mi;
659     Molecule* mol;
660     Molecule::CutoffGroupIterator ci;
661     CutoffGroup* cg;
662     Molecule::AtomIterator ai;
663     Atom* atom;
664     double totalMass;
665    
666     //to avoid memory reallocation, reserve enough space for mfact
667     mfact.reserve(getNCutoffGroups());
668 gezelter 1490
669 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
670     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
671 gezelter 1490
672 gezelter 1930 totalMass = cg->getMass();
673     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
674     mfact.push_back(atom->getMass()/totalMass);
675     }
676 gezelter 1490
677 gezelter 1930 }
678     }
679 gezelter 1490
680 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
681     std::vector<int> identArray;
682 gezelter 1490
683 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
684     identArray.reserve(getNAtoms());
685    
686     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
687     for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
688     identArray.push_back(atom->getIdent());
689     }
690     }
691 gezelter 1490
692 gezelter 1930 //fill molMembershipArray
693     //molMembershipArray is filled by SimCreator
694     std::vector<int> molMembershipArray(nGlobalAtoms_);
695     for (int i = 0; i < nGlobalAtoms_; i++) {
696     molMembershipArray[i] = globalMolMembership_[i] + 1;
697     }
698    
699     //setup fortran simulation
700     //gloalExcludes and molMembershipArray should go away (They are never used)
701     //why the hell fortran need to know molecule?
702     //OOPSE = Object-Obfuscated Parallel Simulation Engine
703     int nGlobalExcludes = 0;
704     int* globalExcludes = NULL;
705     int* excludeList = exclude_.getExcludeList();
706     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
707     &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
708     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
709 gezelter 1490
710 gezelter 1930 if( isError ){
711 gezelter 1490
712 gezelter 1930 sprintf( painCave.errMsg,
713     "There was an error setting the simulation information in fortran.\n" );
714     painCave.isFatal = 1;
715     painCave.severity = OOPSE_ERROR;
716     simError();
717     }
718    
719     #ifdef IS_MPI
720     sprintf( checkPointMsg,
721     "succesfully sent the simulation information to fortran.\n");
722     MPIcheckPoint();
723     #endif // is_mpi
724 gezelter 1490 }
725    
726    
727 gezelter 1930 #ifdef IS_MPI
728     void SimInfo::setupFortranParallel() {
729    
730     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
731     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
732     std::vector<int> localToGlobalCutoffGroupIndex;
733     SimInfo::MoleculeIterator mi;
734     Molecule::AtomIterator ai;
735     Molecule::CutoffGroupIterator ci;
736     Molecule* mol;
737     Atom* atom;
738     CutoffGroup* cg;
739     mpiSimData parallelData;
740     int isError;
741 gezelter 1490
742 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
743 gezelter 1490
744 gezelter 1930 //local index(index in DataStorge) of atom is important
745     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
746     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
747     }
748 gezelter 1490
749 gezelter 1930 //local index of cutoff group is trivial, it only depends on the order of travesing
750     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
751     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
752     }
753    
754     }
755 gezelter 1490
756 gezelter 1930 //fill up mpiSimData struct
757     parallelData.nMolGlobal = getNGlobalMolecules();
758     parallelData.nMolLocal = getNMolecules();
759     parallelData.nAtomsGlobal = getNGlobalAtoms();
760     parallelData.nAtomsLocal = getNAtoms();
761     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
762     parallelData.nGroupsLocal = getNCutoffGroups();
763     parallelData.myNode = worldRank;
764     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
765 gezelter 1490
766 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
767     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
768     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
769     &localToGlobalCutoffGroupIndex[0], &isError);
770 gezelter 1490
771 gezelter 1930 if (isError) {
772     sprintf(painCave.errMsg,
773     "mpiRefresh errror: fortran didn't like something we gave it.\n");
774     painCave.isFatal = 1;
775     simError();
776     }
777 gezelter 1490
778 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
779     MPIcheckPoint();
780 gezelter 1490
781    
782 gezelter 1930 }
783 chrisfen 1636
784 gezelter 1930 #endif
785 chrisfen 1636
786 gezelter 1930 double SimInfo::calcMaxCutoffRadius() {
787 chrisfen 1636
788    
789 gezelter 1930 std::set<AtomType*> atomTypes;
790     std::set<AtomType*>::iterator i;
791     std::vector<double> cutoffRadius;
792 gezelter 1490
793 gezelter 1930 //get the unique atom types
794     atomTypes = getUniqueAtomTypes();
795    
796     //query the max cutoff radius among these atom types
797     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
798     cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
799     }
800    
801     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
802 gezelter 1490 #ifdef IS_MPI
803 gezelter 1930 //pick the max cutoff radius among the processors
804 gezelter 1490 #endif
805    
806 gezelter 1930 return maxCutoffRadius;
807     }
808    
809 tim 2010 void SimInfo::getCutoff(double& rcut, double& rsw) {
810 gezelter 1490
811 gezelter 1930 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
812    
813     if (!simParams_->haveRcut()){
814     sprintf(painCave.errMsg,
815     "SimCreator Warning: No value was set for the cutoffRadius.\n"
816     "\tOOPSE will use a default value of 15.0 angstroms"
817     "\tfor the cutoffRadius.\n");
818     painCave.isFatal = 0;
819     simError();
820 tim 2012 rcut = 15.0;
821 gezelter 1930 } else{
822 tim 2012 rcut = simParams_->getRcut();
823 gezelter 1930 }
824    
825     if (!simParams_->haveRsw()){
826     sprintf(painCave.errMsg,
827     "SimCreator Warning: No value was set for switchingRadius.\n"
828     "\tOOPSE will use a default value of\n"
829     "\t0.95 * cutoffRadius for the switchingRadius\n");
830     painCave.isFatal = 0;
831     simError();
832 tim 2012 rsw = 0.95 * rcut;
833 gezelter 1930 } else{
834 tim 2012 rsw = simParams_->getRsw();
835 gezelter 1930 }
836    
837     } else {
838     // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
839     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
840    
841     if (simParams_->haveRcut()) {
842 tim 2012 rcut = simParams_->getRcut();
843 gezelter 1930 } else {
844     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
845 tim 2012 rcut = calcMaxCutoffRadius();
846 gezelter 1930 }
847    
848     if (simParams_->haveRsw()) {
849 tim 2012 rsw = simParams_->getRsw();
850 gezelter 1930 } else {
851 tim 2012 rsw = rcut;
852 gezelter 1930 }
853    
854     }
855 tim 2010 }
856    
857     void SimInfo::setupCutoff() {
858     getCutoff(rcut_, rsw_);
859 gezelter 1930 double rnblist = rcut_ + 1; // skin of neighbor list
860    
861     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
862     notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
863 gezelter 1490 }
864    
865 gezelter 1930 void SimInfo::addProperty(GenericData* genData) {
866     properties_.addProperty(genData);
867 gezelter 1490 }
868    
869 gezelter 1930 void SimInfo::removeProperty(const std::string& propName) {
870     properties_.removeProperty(propName);
871     }
872 gezelter 1490
873 gezelter 1930 void SimInfo::clearProperties() {
874     properties_.clearProperties();
875 gezelter 1490 }
876    
877 gezelter 1930 std::vector<std::string> SimInfo::getPropertyNames() {
878     return properties_.getPropertyNames();
879     }
880    
881     std::vector<GenericData*> SimInfo::getProperties() {
882     return properties_.getProperties();
883     }
884 gezelter 1490
885 gezelter 1930 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
886     return properties_.getPropertyByName(propName);
887 gezelter 1490 }
888    
889 gezelter 1930 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
890 tim 2018 //if (sman_ == sman_) {
891     // return;
892     //}
893 tim 2015
894 tim 2018 //delete sman_;
895 gezelter 1930 sman_ = sman;
896 gezelter 1490
897 gezelter 1930 Molecule* mol;
898     RigidBody* rb;
899     Atom* atom;
900     SimInfo::MoleculeIterator mi;
901     Molecule::RigidBodyIterator rbIter;
902     Molecule::AtomIterator atomIter;;
903    
904     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
905    
906     for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
907     atom->setSnapshotManager(sman_);
908     }
909    
910     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
911     rb->setSnapshotManager(sman_);
912     }
913     }
914 gezelter 1490
915 gezelter 1930 }
916 gezelter 1490
917 gezelter 1930 Vector3d SimInfo::getComVel(){
918     SimInfo::MoleculeIterator i;
919     Molecule* mol;
920 gezelter 1490
921 gezelter 1930 Vector3d comVel(0.0);
922     double totalMass = 0.0;
923 gezelter 1490
924 gezelter 1930
925     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
926     double mass = mol->getMass();
927     totalMass += mass;
928     comVel += mass * mol->getComVel();
929     }
930 gezelter 1490
931 gezelter 1930 #ifdef IS_MPI
932     double tmpMass = totalMass;
933     Vector3d tmpComVel(comVel);
934     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
935     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
936     #endif
937    
938     comVel /= totalMass;
939    
940     return comVel;
941 gezelter 1490 }
942    
943 gezelter 1930 Vector3d SimInfo::getCom(){
944     SimInfo::MoleculeIterator i;
945     Molecule* mol;
946 gezelter 1490
947 gezelter 1930 Vector3d com(0.0);
948     double totalMass = 0.0;
949    
950     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
951     double mass = mol->getMass();
952     totalMass += mass;
953     com += mass * mol->getCom();
954     }
955 gezelter 1490
956     #ifdef IS_MPI
957 gezelter 1930 double tmpMass = totalMass;
958     Vector3d tmpCom(com);
959     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
960     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
961 gezelter 1490 #endif
962    
963 gezelter 1930 com /= totalMass;
964 gezelter 1490
965 gezelter 1930 return com;
966 gezelter 1490
967 gezelter 1930 }
968    
969     std::ostream& operator <<(std::ostream& o, SimInfo& info) {
970    
971     return o;
972 gezelter 1490 }
973 gezelter 1930
974     }//end namespace oopse
975