ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2119
Committed: Fri Mar 11 15:55:17 2005 UTC (19 years, 4 months ago) by tim
File size: 29333 byte(s)
Log Message:
pairs inside cutoff group should not be excluded

File Contents

# User Rev Content
1 gezelter 1930 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 gezelter 1490
52 tim 1492 #include "brains/SimInfo.hpp"
53 gezelter 1930 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55     #include "UseTheForce/doForces_interface.h"
56     #include "UseTheForce/notifyCutoffs_interface.h"
57     #include "utils/MemoryUtils.hpp"
58 tim 1492 #include "utils/simError.h"
59 tim 2000 #include "selection/SelectionManager.hpp"
60 gezelter 1490
61 gezelter 1930 #ifdef IS_MPI
62     #include "UseTheForce/mpiComponentPlan.h"
63     #include "UseTheForce/DarkSide/simParallel_interface.h"
64     #endif
65 gezelter 1490
66 gezelter 1930 namespace oopse {
67 gezelter 1490
68 gezelter 1930 SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69     ForceField* ff, Globals* simParams) :
70     forceField_(ff), simParams_(simParams),
71     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76 tim 2097 sman_(NULL), fortranInitialized_(false) {
77 gezelter 1490
78 gezelter 1930
79     std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80     MoleculeStamp* molStamp;
81     int nMolWithSameStamp;
82     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83     int nGroups = 0; //total cutoff groups defined in meta-data file
84     CutoffGroupStamp* cgStamp;
85     RigidBodyStamp* rbStamp;
86     int nRigidAtoms = 0;
87    
88     for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89     molStamp = i->first;
90     nMolWithSameStamp = i->second;
91    
92     addMoleculeStamp(molStamp, nMolWithSameStamp);
93 gezelter 1490
94 gezelter 1930 //calculate atoms in molecules
95     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96 gezelter 1490
97    
98 gezelter 1930 //calculate atoms in cutoff groups
99     int nAtomsInGroups = 0;
100     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101    
102     for (int j=0; j < nCutoffGroupsInStamp; j++) {
103     cgStamp = molStamp->getCutoffGroup(j);
104     nAtomsInGroups += cgStamp->getNMembers();
105     }
106 gezelter 1490
107 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108     nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109 gezelter 1490
110 gezelter 1930 //calculate atoms in rigid bodies
111     int nAtomsInRigidBodies = 0;
112 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113 gezelter 1930
114     for (int j=0; j < nRigidBodiesInStamp; j++) {
115     rbStamp = molStamp->getRigidBody(j);
116     nAtomsInRigidBodies += rbStamp->getNMembers();
117     }
118 gezelter 1490
119 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121    
122     }
123 chrisfen 1636
124 gezelter 1930 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125     //therefore the total number of cutoff groups in the system is equal to
126     //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127     //file plus the number of cutoff groups defined in meta-data file
128     nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129 gezelter 1490
130 gezelter 1930 //every free atom (atom does not belong to rigid bodies) is an integrable object
131     //therefore the total number of integrable objects in the system is equal to
132     //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133     //file plus the number of rigid bodies defined in meta-data file
134     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135 gezelter 1490
136 gezelter 1930 nGlobalMols_ = molStampIds_.size();
137 gezelter 1490
138 gezelter 1930 #ifdef IS_MPI
139     molToProcMap_.resize(nGlobalMols_);
140     #endif
141 tim 1976
142 gezelter 1930 }
143 gezelter 1490
144 gezelter 1930 SimInfo::~SimInfo() {
145 tim 2082 std::map<int, Molecule*>::iterator i;
146     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147     delete i->second;
148     }
149     molecules_.clear();
150 gezelter 1930
151 tim 2082 MemoryUtils::deletePointers(moleculeStamps_);
152    
153 gezelter 1930 delete sman_;
154     delete simParams_;
155     delete forceField_;
156 gezelter 1490 }
157    
158 gezelter 1930 int SimInfo::getNGlobalConstraints() {
159     int nGlobalConstraints;
160     #ifdef IS_MPI
161     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162     MPI_COMM_WORLD);
163     #else
164     nGlobalConstraints = nConstraints_;
165     #endif
166     return nGlobalConstraints;
167     }
168 gezelter 1490
169 gezelter 1930 bool SimInfo::addMolecule(Molecule* mol) {
170     MoleculeIterator i;
171 gezelter 1490
172 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
173     if (i == molecules_.end() ) {
174 gezelter 1490
175 gezelter 1930 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
176    
177     nAtoms_ += mol->getNAtoms();
178     nBonds_ += mol->getNBonds();
179     nBends_ += mol->getNBends();
180     nTorsions_ += mol->getNTorsions();
181     nRigidBodies_ += mol->getNRigidBodies();
182     nIntegrableObjects_ += mol->getNIntegrableObjects();
183     nCutoffGroups_ += mol->getNCutoffGroups();
184     nConstraints_ += mol->getNConstraintPairs();
185 gezelter 1490
186 gezelter 1930 addExcludePairs(mol);
187    
188     return true;
189     } else {
190     return false;
191     }
192 gezelter 1490 }
193    
194 gezelter 1930 bool SimInfo::removeMolecule(Molecule* mol) {
195     MoleculeIterator i;
196     i = molecules_.find(mol->getGlobalIndex());
197 gezelter 1490
198 gezelter 1930 if (i != molecules_.end() ) {
199 gezelter 1490
200 gezelter 1930 assert(mol == i->second);
201    
202     nAtoms_ -= mol->getNAtoms();
203     nBonds_ -= mol->getNBonds();
204     nBends_ -= mol->getNBends();
205     nTorsions_ -= mol->getNTorsions();
206     nRigidBodies_ -= mol->getNRigidBodies();
207     nIntegrableObjects_ -= mol->getNIntegrableObjects();
208     nCutoffGroups_ -= mol->getNCutoffGroups();
209     nConstraints_ -= mol->getNConstraintPairs();
210 gezelter 1490
211 gezelter 1930 removeExcludePairs(mol);
212     molecules_.erase(mol->getGlobalIndex());
213 gezelter 1490
214 gezelter 1930 delete mol;
215    
216     return true;
217     } else {
218     return false;
219     }
220    
221    
222     }
223    
224    
225     Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
226     i = molecules_.begin();
227     return i == molecules_.end() ? NULL : i->second;
228     }
229    
230     Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
231     ++i;
232     return i == molecules_.end() ? NULL : i->second;
233 gezelter 1490 }
234    
235    
236 gezelter 1930 void SimInfo::calcNdf() {
237     int ndf_local;
238     MoleculeIterator i;
239     std::vector<StuntDouble*>::iterator j;
240     Molecule* mol;
241     StuntDouble* integrableObject;
242 gezelter 1490
243 gezelter 1930 ndf_local = 0;
244    
245     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
246     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
247     integrableObject = mol->nextIntegrableObject(j)) {
248 gezelter 1490
249 gezelter 1930 ndf_local += 3;
250 gezelter 1490
251 gezelter 1930 if (integrableObject->isDirectional()) {
252     if (integrableObject->isLinear()) {
253     ndf_local += 2;
254     } else {
255     ndf_local += 3;
256     }
257     }
258    
259     }//end for (integrableObject)
260     }// end for (mol)
261    
262     // n_constraints is local, so subtract them on each processor
263     ndf_local -= nConstraints_;
264    
265     #ifdef IS_MPI
266     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267     #else
268     ndf_ = ndf_local;
269     #endif
270    
271     // nZconstraints_ is global, as are the 3 COM translations for the
272     // entire system:
273     ndf_ = ndf_ - 3 - nZconstraint_;
274    
275 gezelter 1490 }
276    
277 gezelter 1930 void SimInfo::calcNdfRaw() {
278     int ndfRaw_local;
279 gezelter 1490
280 gezelter 1930 MoleculeIterator i;
281     std::vector<StuntDouble*>::iterator j;
282     Molecule* mol;
283     StuntDouble* integrableObject;
284    
285     // Raw degrees of freedom that we have to set
286     ndfRaw_local = 0;
287    
288     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
289     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
290     integrableObject = mol->nextIntegrableObject(j)) {
291    
292     ndfRaw_local += 3;
293    
294     if (integrableObject->isDirectional()) {
295     if (integrableObject->isLinear()) {
296     ndfRaw_local += 2;
297     } else {
298     ndfRaw_local += 3;
299     }
300     }
301    
302     }
303     }
304    
305     #ifdef IS_MPI
306     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
307     #else
308     ndfRaw_ = ndfRaw_local;
309     #endif
310 gezelter 1490 }
311    
312 gezelter 1930 void SimInfo::calcNdfTrans() {
313     int ndfTrans_local;
314 gezelter 1490
315 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
316 gezelter 1490
317    
318 gezelter 1930 #ifdef IS_MPI
319     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
320     #else
321     ndfTrans_ = ndfTrans_local;
322     #endif
323 gezelter 1490
324 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
325    
326 gezelter 1490 }
327    
328 gezelter 1930 void SimInfo::addExcludePairs(Molecule* mol) {
329     std::vector<Bond*>::iterator bondIter;
330     std::vector<Bend*>::iterator bendIter;
331     std::vector<Torsion*>::iterator torsionIter;
332     Bond* bond;
333     Bend* bend;
334     Torsion* torsion;
335     int a;
336     int b;
337     int c;
338     int d;
339    
340     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
341     a = bond->getAtomA()->getGlobalIndex();
342     b = bond->getAtomB()->getGlobalIndex();
343     exclude_.addPair(a, b);
344     }
345 gezelter 1490
346 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
347     a = bend->getAtomA()->getGlobalIndex();
348     b = bend->getAtomB()->getGlobalIndex();
349     c = bend->getAtomC()->getGlobalIndex();
350 gezelter 1490
351 gezelter 1930 exclude_.addPair(a, b);
352     exclude_.addPair(a, c);
353     exclude_.addPair(b, c);
354     }
355 gezelter 1490
356 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
357     a = torsion->getAtomA()->getGlobalIndex();
358     b = torsion->getAtomB()->getGlobalIndex();
359     c = torsion->getAtomC()->getGlobalIndex();
360     d = torsion->getAtomD()->getGlobalIndex();
361 gezelter 1490
362 gezelter 1930 exclude_.addPair(a, b);
363     exclude_.addPair(a, c);
364     exclude_.addPair(a, d);
365     exclude_.addPair(b, c);
366     exclude_.addPair(b, d);
367     exclude_.addPair(c, d);
368 gezelter 1490 }
369    
370 tim 2114 Molecule::RigidBodyIterator rbIter;
371     RigidBody* rb;
372     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
373     std::vector<Atom*> atoms = rb->getAtoms();
374     for (int i = 0; i < atoms.size() -1 ; ++i) {
375     for (int j = i + 1; j < atoms.size(); ++j) {
376     a = atoms[i]->getGlobalIndex();
377     b = atoms[j]->getGlobalIndex();
378     exclude_.addPair(a, b);
379     }
380     }
381     }
382    
383 gezelter 1930 }
384    
385     void SimInfo::removeExcludePairs(Molecule* mol) {
386     std::vector<Bond*>::iterator bondIter;
387     std::vector<Bend*>::iterator bendIter;
388     std::vector<Torsion*>::iterator torsionIter;
389     Bond* bond;
390     Bend* bend;
391     Torsion* torsion;
392     int a;
393     int b;
394     int c;
395     int d;
396    
397     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
398     a = bond->getAtomA()->getGlobalIndex();
399     b = bond->getAtomB()->getGlobalIndex();
400     exclude_.removePair(a, b);
401 gezelter 1490 }
402 gezelter 1930
403     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
404     a = bend->getAtomA()->getGlobalIndex();
405     b = bend->getAtomB()->getGlobalIndex();
406     c = bend->getAtomC()->getGlobalIndex();
407    
408     exclude_.removePair(a, b);
409     exclude_.removePair(a, c);
410     exclude_.removePair(b, c);
411 gezelter 1490 }
412 gezelter 1930
413     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
414     a = torsion->getAtomA()->getGlobalIndex();
415     b = torsion->getAtomB()->getGlobalIndex();
416     c = torsion->getAtomC()->getGlobalIndex();
417     d = torsion->getAtomD()->getGlobalIndex();
418    
419     exclude_.removePair(a, b);
420     exclude_.removePair(a, c);
421     exclude_.removePair(a, d);
422     exclude_.removePair(b, c);
423     exclude_.removePair(b, d);
424     exclude_.removePair(c, d);
425     }
426    
427 tim 2114 Molecule::RigidBodyIterator rbIter;
428     RigidBody* rb;
429     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
430     std::vector<Atom*> atoms = rb->getAtoms();
431     for (int i = 0; i < atoms.size() -1 ; ++i) {
432     for (int j = i + 1; j < atoms.size(); ++j) {
433     a = atoms[i]->getGlobalIndex();
434     b = atoms[j]->getGlobalIndex();
435     exclude_.removePair(a, b);
436     }
437     }
438     }
439    
440 gezelter 1490 }
441    
442    
443 gezelter 1930 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
444     int curStampId;
445 gezelter 1490
446 gezelter 1930 //index from 0
447     curStampId = moleculeStamps_.size();
448 gezelter 1490
449 gezelter 1930 moleculeStamps_.push_back(molStamp);
450     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
451     }
452 gezelter 1490
453 gezelter 1930 void SimInfo::update() {
454 gezelter 1490
455 gezelter 1930 setupSimType();
456 gezelter 1490
457 gezelter 1930 #ifdef IS_MPI
458     setupFortranParallel();
459     #endif
460 gezelter 1490
461 gezelter 1930 setupFortranSim();
462 gezelter 1490
463 gezelter 1930 //setup fortran force field
464     /** @deprecate */
465     int isError = 0;
466     initFortranFF( &fInfo_.SIM_uses_RF , &isError );
467     if(isError){
468     sprintf( painCave.errMsg,
469     "ForceField error: There was an error initializing the forceField in fortran.\n" );
470     painCave.isFatal = 1;
471     simError();
472     }
473 gezelter 1490
474 gezelter 1930
475     setupCutoff();
476 gezelter 1490
477 gezelter 1930 calcNdf();
478     calcNdfRaw();
479     calcNdfTrans();
480    
481     fortranInitialized_ = true;
482 gezelter 1490 }
483    
484 gezelter 1930 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
485     SimInfo::MoleculeIterator mi;
486     Molecule* mol;
487     Molecule::AtomIterator ai;
488     Atom* atom;
489     std::set<AtomType*> atomTypes;
490 gezelter 1490
491 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
492 gezelter 1490
493 gezelter 1930 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
494     atomTypes.insert(atom->getAtomType());
495     }
496    
497     }
498 gezelter 1490
499 gezelter 1930 return atomTypes;
500     }
501 gezelter 1490
502 gezelter 1930 void SimInfo::setupSimType() {
503     std::set<AtomType*>::iterator i;
504     std::set<AtomType*> atomTypes;
505     atomTypes = getUniqueAtomTypes();
506 gezelter 1490
507 gezelter 1930 int useLennardJones = 0;
508     int useElectrostatic = 0;
509     int useEAM = 0;
510     int useCharge = 0;
511     int useDirectional = 0;
512     int useDipole = 0;
513     int useGayBerne = 0;
514     int useSticky = 0;
515     int useShape = 0;
516     int useFLARB = 0; //it is not in AtomType yet
517     int useDirectionalAtom = 0;
518     int useElectrostatics = 0;
519     //usePBC and useRF are from simParams
520     int usePBC = simParams_->getPBC();
521     int useRF = simParams_->getUseRF();
522 gezelter 1490
523 gezelter 1930 //loop over all of the atom types
524     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
525     useLennardJones |= (*i)->isLennardJones();
526     useElectrostatic |= (*i)->isElectrostatic();
527     useEAM |= (*i)->isEAM();
528     useCharge |= (*i)->isCharge();
529     useDirectional |= (*i)->isDirectional();
530     useDipole |= (*i)->isDipole();
531     useGayBerne |= (*i)->isGayBerne();
532     useSticky |= (*i)->isSticky();
533     useShape |= (*i)->isShape();
534     }
535 gezelter 1490
536 gezelter 1930 if (useSticky || useDipole || useGayBerne || useShape) {
537     useDirectionalAtom = 1;
538     }
539 gezelter 1490
540 gezelter 1930 if (useCharge || useDipole) {
541     useElectrostatics = 1;
542     }
543 gezelter 1490
544 gezelter 1930 #ifdef IS_MPI
545     int temp;
546 gezelter 1490
547 gezelter 1930 temp = usePBC;
548     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
549 gezelter 1490
550 gezelter 1930 temp = useDirectionalAtom;
551     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
552 gezelter 1490
553 gezelter 1930 temp = useLennardJones;
554     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
555 gezelter 1490
556 gezelter 1930 temp = useElectrostatics;
557     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
558 gezelter 1490
559 gezelter 1930 temp = useCharge;
560     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
561 gezelter 1490
562 gezelter 1930 temp = useDipole;
563     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
564 gezelter 1490
565 gezelter 1930 temp = useSticky;
566     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
567 gezelter 1490
568 gezelter 1930 temp = useGayBerne;
569     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
570 gezelter 1490
571 gezelter 1930 temp = useEAM;
572     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
573 gezelter 1490
574 gezelter 1930 temp = useShape;
575     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
576    
577     temp = useFLARB;
578     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
579    
580     temp = useRF;
581     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
582    
583 gezelter 1490 #endif
584    
585 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
586     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
587     fInfo_.SIM_uses_LennardJones = useLennardJones;
588     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
589     fInfo_.SIM_uses_Charges = useCharge;
590     fInfo_.SIM_uses_Dipoles = useDipole;
591     fInfo_.SIM_uses_Sticky = useSticky;
592     fInfo_.SIM_uses_GayBerne = useGayBerne;
593     fInfo_.SIM_uses_EAM = useEAM;
594     fInfo_.SIM_uses_Shapes = useShape;
595     fInfo_.SIM_uses_FLARB = useFLARB;
596     fInfo_.SIM_uses_RF = useRF;
597 gezelter 1490
598 gezelter 1930 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
599 gezelter 1490
600 gezelter 1930 if (simParams_->haveDielectric()) {
601     fInfo_.dielect = simParams_->getDielectric();
602     } else {
603     sprintf(painCave.errMsg,
604     "SimSetup Error: No Dielectric constant was set.\n"
605     "\tYou are trying to use Reaction Field without"
606     "\tsetting a dielectric constant!\n");
607     painCave.isFatal = 1;
608     simError();
609     }
610    
611     } else {
612     fInfo_.dielect = 0.0;
613     }
614    
615 gezelter 1490 }
616    
617 gezelter 1930 void SimInfo::setupFortranSim() {
618     int isError;
619     int nExclude;
620     std::vector<int> fortranGlobalGroupMembership;
621    
622     nExclude = exclude_.getSize();
623     isError = 0;
624 gezelter 1490
625 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
626     for (int i = 0; i < nGlobalAtoms_; i++) {
627     fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
628     }
629 gezelter 1490
630 gezelter 1930 //calculate mass ratio of cutoff group
631     std::vector<double> mfact;
632     SimInfo::MoleculeIterator mi;
633     Molecule* mol;
634     Molecule::CutoffGroupIterator ci;
635     CutoffGroup* cg;
636     Molecule::AtomIterator ai;
637     Atom* atom;
638     double totalMass;
639    
640     //to avoid memory reallocation, reserve enough space for mfact
641     mfact.reserve(getNCutoffGroups());
642 gezelter 1490
643 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
644     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
645 gezelter 1490
646 gezelter 1930 totalMass = cg->getMass();
647     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
648     mfact.push_back(atom->getMass()/totalMass);
649     }
650 gezelter 1490
651 gezelter 1930 }
652     }
653 gezelter 1490
654 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
655     std::vector<int> identArray;
656 gezelter 1490
657 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
658     identArray.reserve(getNAtoms());
659    
660     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
661     for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
662     identArray.push_back(atom->getIdent());
663     }
664     }
665 gezelter 1490
666 gezelter 1930 //fill molMembershipArray
667     //molMembershipArray is filled by SimCreator
668     std::vector<int> molMembershipArray(nGlobalAtoms_);
669     for (int i = 0; i < nGlobalAtoms_; i++) {
670     molMembershipArray[i] = globalMolMembership_[i] + 1;
671     }
672    
673     //setup fortran simulation
674     int nGlobalExcludes = 0;
675     int* globalExcludes = NULL;
676     int* excludeList = exclude_.getExcludeList();
677     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
678     &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
679     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
680 gezelter 1490
681 gezelter 1930 if( isError ){
682 gezelter 1490
683 gezelter 1930 sprintf( painCave.errMsg,
684     "There was an error setting the simulation information in fortran.\n" );
685     painCave.isFatal = 1;
686     painCave.severity = OOPSE_ERROR;
687     simError();
688     }
689    
690     #ifdef IS_MPI
691     sprintf( checkPointMsg,
692     "succesfully sent the simulation information to fortran.\n");
693     MPIcheckPoint();
694     #endif // is_mpi
695 gezelter 1490 }
696    
697    
698 gezelter 1930 #ifdef IS_MPI
699     void SimInfo::setupFortranParallel() {
700    
701     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
702     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
703     std::vector<int> localToGlobalCutoffGroupIndex;
704     SimInfo::MoleculeIterator mi;
705     Molecule::AtomIterator ai;
706     Molecule::CutoffGroupIterator ci;
707     Molecule* mol;
708     Atom* atom;
709     CutoffGroup* cg;
710     mpiSimData parallelData;
711     int isError;
712 gezelter 1490
713 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
714 gezelter 1490
715 gezelter 1930 //local index(index in DataStorge) of atom is important
716     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
717     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
718     }
719 gezelter 1490
720 gezelter 1930 //local index of cutoff group is trivial, it only depends on the order of travesing
721     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
722     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
723     }
724    
725     }
726 gezelter 1490
727 gezelter 1930 //fill up mpiSimData struct
728     parallelData.nMolGlobal = getNGlobalMolecules();
729     parallelData.nMolLocal = getNMolecules();
730     parallelData.nAtomsGlobal = getNGlobalAtoms();
731     parallelData.nAtomsLocal = getNAtoms();
732     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
733     parallelData.nGroupsLocal = getNCutoffGroups();
734     parallelData.myNode = worldRank;
735     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
736 gezelter 1490
737 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
738     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
739     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
740     &localToGlobalCutoffGroupIndex[0], &isError);
741 gezelter 1490
742 gezelter 1930 if (isError) {
743     sprintf(painCave.errMsg,
744     "mpiRefresh errror: fortran didn't like something we gave it.\n");
745     painCave.isFatal = 1;
746     simError();
747     }
748 gezelter 1490
749 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
750     MPIcheckPoint();
751 gezelter 1490
752    
753 gezelter 1930 }
754 chrisfen 1636
755 gezelter 1930 #endif
756 chrisfen 1636
757 gezelter 1930 double SimInfo::calcMaxCutoffRadius() {
758 chrisfen 1636
759    
760 gezelter 1930 std::set<AtomType*> atomTypes;
761     std::set<AtomType*>::iterator i;
762     std::vector<double> cutoffRadius;
763 gezelter 1490
764 gezelter 1930 //get the unique atom types
765     atomTypes = getUniqueAtomTypes();
766    
767     //query the max cutoff radius among these atom types
768     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
769     cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
770     }
771    
772     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
773 gezelter 1490 #ifdef IS_MPI
774 gezelter 1930 //pick the max cutoff radius among the processors
775 gezelter 1490 #endif
776    
777 gezelter 1930 return maxCutoffRadius;
778     }
779    
780 tim 2010 void SimInfo::getCutoff(double& rcut, double& rsw) {
781 gezelter 1490
782 gezelter 1930 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
783    
784     if (!simParams_->haveRcut()){
785     sprintf(painCave.errMsg,
786     "SimCreator Warning: No value was set for the cutoffRadius.\n"
787     "\tOOPSE will use a default value of 15.0 angstroms"
788     "\tfor the cutoffRadius.\n");
789     painCave.isFatal = 0;
790     simError();
791 tim 2012 rcut = 15.0;
792 gezelter 1930 } else{
793 tim 2012 rcut = simParams_->getRcut();
794 gezelter 1930 }
795    
796     if (!simParams_->haveRsw()){
797     sprintf(painCave.errMsg,
798     "SimCreator Warning: No value was set for switchingRadius.\n"
799     "\tOOPSE will use a default value of\n"
800     "\t0.95 * cutoffRadius for the switchingRadius\n");
801     painCave.isFatal = 0;
802     simError();
803 tim 2012 rsw = 0.95 * rcut;
804 gezelter 1930 } else{
805 tim 2012 rsw = simParams_->getRsw();
806 gezelter 1930 }
807    
808     } else {
809     // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
810     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
811    
812     if (simParams_->haveRcut()) {
813 tim 2012 rcut = simParams_->getRcut();
814 gezelter 1930 } else {
815     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
816 tim 2012 rcut = calcMaxCutoffRadius();
817 gezelter 1930 }
818    
819     if (simParams_->haveRsw()) {
820 tim 2012 rsw = simParams_->getRsw();
821 gezelter 1930 } else {
822 tim 2012 rsw = rcut;
823 gezelter 1930 }
824    
825     }
826 tim 2010 }
827    
828     void SimInfo::setupCutoff() {
829     getCutoff(rcut_, rsw_);
830 gezelter 1930 double rnblist = rcut_ + 1; // skin of neighbor list
831    
832     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
833     notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
834 gezelter 1490 }
835    
836 gezelter 1930 void SimInfo::addProperty(GenericData* genData) {
837     properties_.addProperty(genData);
838 gezelter 1490 }
839    
840 gezelter 1930 void SimInfo::removeProperty(const std::string& propName) {
841     properties_.removeProperty(propName);
842     }
843 gezelter 1490
844 gezelter 1930 void SimInfo::clearProperties() {
845     properties_.clearProperties();
846 gezelter 1490 }
847    
848 gezelter 1930 std::vector<std::string> SimInfo::getPropertyNames() {
849     return properties_.getPropertyNames();
850     }
851    
852     std::vector<GenericData*> SimInfo::getProperties() {
853     return properties_.getProperties();
854     }
855 gezelter 1490
856 gezelter 1930 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
857     return properties_.getPropertyByName(propName);
858 gezelter 1490 }
859    
860 gezelter 1930 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
861 tim 2116 if (sman_ == sman) {
862     return;
863     }
864     delete sman_;
865 gezelter 1930 sman_ = sman;
866 gezelter 1490
867 gezelter 1930 Molecule* mol;
868     RigidBody* rb;
869     Atom* atom;
870     SimInfo::MoleculeIterator mi;
871     Molecule::RigidBodyIterator rbIter;
872     Molecule::AtomIterator atomIter;;
873    
874     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
875    
876     for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
877     atom->setSnapshotManager(sman_);
878     }
879    
880     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
881     rb->setSnapshotManager(sman_);
882     }
883     }
884 gezelter 1490
885 gezelter 1930 }
886 gezelter 1490
887 gezelter 1930 Vector3d SimInfo::getComVel(){
888     SimInfo::MoleculeIterator i;
889     Molecule* mol;
890 gezelter 1490
891 gezelter 1930 Vector3d comVel(0.0);
892     double totalMass = 0.0;
893 gezelter 1490
894 gezelter 1930
895     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
896     double mass = mol->getMass();
897     totalMass += mass;
898     comVel += mass * mol->getComVel();
899     }
900 gezelter 1490
901 gezelter 1930 #ifdef IS_MPI
902     double tmpMass = totalMass;
903     Vector3d tmpComVel(comVel);
904     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
905     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
906     #endif
907    
908     comVel /= totalMass;
909    
910     return comVel;
911 gezelter 1490 }
912    
913 gezelter 1930 Vector3d SimInfo::getCom(){
914     SimInfo::MoleculeIterator i;
915     Molecule* mol;
916 gezelter 1490
917 gezelter 1930 Vector3d com(0.0);
918     double totalMass = 0.0;
919    
920     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
921     double mass = mol->getMass();
922     totalMass += mass;
923     com += mass * mol->getCom();
924     }
925 gezelter 1490
926     #ifdef IS_MPI
927 gezelter 1930 double tmpMass = totalMass;
928     Vector3d tmpCom(com);
929     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
930     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
931 gezelter 1490 #endif
932    
933 gezelter 1930 com /= totalMass;
934 gezelter 1490
935 gezelter 1930 return com;
936 gezelter 1490
937 gezelter 1930 }
938    
939     std::ostream& operator <<(std::ostream& o, SimInfo& info) {
940    
941     return o;
942 gezelter 1490 }
943 gezelter 1930
944     }//end namespace oopse
945