ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2279
Committed: Tue Aug 30 18:23:50 2005 UTC (18 years, 10 months ago) by chrisfen
File size: 32732 byte(s)
Log Message:
made some changes for implementing the wolf potential

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 gezelter 1490
52 tim 1492 #include "brains/SimInfo.hpp"
53 gezelter 1930 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55     #include "UseTheForce/doForces_interface.h"
56     #include "UseTheForce/notifyCutoffs_interface.h"
57     #include "utils/MemoryUtils.hpp"
58 tim 1492 #include "utils/simError.h"
59 tim 2000 #include "selection/SelectionManager.hpp"
60 gezelter 1490
61 gezelter 1930 #ifdef IS_MPI
62     #include "UseTheForce/mpiComponentPlan.h"
63     #include "UseTheForce/DarkSide/simParallel_interface.h"
64     #endif
65 gezelter 1490
66 gezelter 1930 namespace oopse {
67 gezelter 1490
68 gezelter 2204 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69     ForceField* ff, Globals* simParams) :
70     stamps_(stamps), forceField_(ff), simParams_(simParams),
71     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76     sman_(NULL), fortranInitialized_(false) {
77 gezelter 1490
78 gezelter 1930
79 gezelter 2204 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80     MoleculeStamp* molStamp;
81     int nMolWithSameStamp;
82     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83     int nGroups = 0; //total cutoff groups defined in meta-data file
84     CutoffGroupStamp* cgStamp;
85     RigidBodyStamp* rbStamp;
86     int nRigidAtoms = 0;
87 gezelter 1930
88 gezelter 2204 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 gezelter 1930 molStamp = i->first;
90     nMolWithSameStamp = i->second;
91    
92     addMoleculeStamp(molStamp, nMolWithSameStamp);
93 gezelter 1490
94 gezelter 1930 //calculate atoms in molecules
95     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96 gezelter 1490
97    
98 gezelter 1930 //calculate atoms in cutoff groups
99     int nAtomsInGroups = 0;
100     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101    
102     for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 gezelter 2204 cgStamp = molStamp->getCutoffGroup(j);
104     nAtomsInGroups += cgStamp->getNMembers();
105 gezelter 1930 }
106 gezelter 1490
107 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108     nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109 gezelter 1490
110 gezelter 1930 //calculate atoms in rigid bodies
111     int nAtomsInRigidBodies = 0;
112 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113 gezelter 1930
114     for (int j=0; j < nRigidBodiesInStamp; j++) {
115 gezelter 2204 rbStamp = molStamp->getRigidBody(j);
116     nAtomsInRigidBodies += rbStamp->getNMembers();
117 gezelter 1930 }
118 gezelter 1490
119 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121    
122 gezelter 2204 }
123 chrisfen 1636
124 gezelter 2204 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125     //therefore the total number of cutoff groups in the system is equal to
126     //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127     //file plus the number of cutoff groups defined in meta-data file
128     nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129 gezelter 1490
130 gezelter 2204 //every free atom (atom does not belong to rigid bodies) is an integrable object
131     //therefore the total number of integrable objects in the system is equal to
132     //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133     //file plus the number of rigid bodies defined in meta-data file
134     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135 gezelter 1490
136 gezelter 2204 nGlobalMols_ = molStampIds_.size();
137 gezelter 1490
138 gezelter 1930 #ifdef IS_MPI
139 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
140 gezelter 1930 #endif
141 tim 1976
142 gezelter 2204 }
143 gezelter 1490
144 gezelter 2204 SimInfo::~SimInfo() {
145 tim 2082 std::map<int, Molecule*>::iterator i;
146     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147 gezelter 2204 delete i->second;
148 tim 2082 }
149     molecules_.clear();
150 tim 2187
151     delete stamps_;
152 gezelter 1930 delete sman_;
153     delete simParams_;
154     delete forceField_;
155 gezelter 2204 }
156 gezelter 1490
157 gezelter 2204 int SimInfo::getNGlobalConstraints() {
158 gezelter 1930 int nGlobalConstraints;
159     #ifdef IS_MPI
160     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161     MPI_COMM_WORLD);
162     #else
163     nGlobalConstraints = nConstraints_;
164     #endif
165     return nGlobalConstraints;
166 gezelter 2204 }
167 gezelter 1490
168 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
169 gezelter 1930 MoleculeIterator i;
170 gezelter 1490
171 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
172     if (i == molecules_.end() ) {
173 gezelter 1490
174 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 gezelter 1930
176 gezelter 2204 nAtoms_ += mol->getNAtoms();
177     nBonds_ += mol->getNBonds();
178     nBends_ += mol->getNBends();
179     nTorsions_ += mol->getNTorsions();
180     nRigidBodies_ += mol->getNRigidBodies();
181     nIntegrableObjects_ += mol->getNIntegrableObjects();
182     nCutoffGroups_ += mol->getNCutoffGroups();
183     nConstraints_ += mol->getNConstraintPairs();
184 gezelter 1490
185 gezelter 2204 addExcludePairs(mol);
186 gezelter 1930
187 gezelter 2204 return true;
188 gezelter 1930 } else {
189 gezelter 2204 return false;
190 gezelter 1930 }
191 gezelter 2204 }
192 gezelter 1490
193 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
194 gezelter 1930 MoleculeIterator i;
195     i = molecules_.find(mol->getGlobalIndex());
196 gezelter 1490
197 gezelter 1930 if (i != molecules_.end() ) {
198 gezelter 1490
199 gezelter 2204 assert(mol == i->second);
200 gezelter 1930
201 gezelter 2204 nAtoms_ -= mol->getNAtoms();
202     nBonds_ -= mol->getNBonds();
203     nBends_ -= mol->getNBends();
204     nTorsions_ -= mol->getNTorsions();
205     nRigidBodies_ -= mol->getNRigidBodies();
206     nIntegrableObjects_ -= mol->getNIntegrableObjects();
207     nCutoffGroups_ -= mol->getNCutoffGroups();
208     nConstraints_ -= mol->getNConstraintPairs();
209 gezelter 1490
210 gezelter 2204 removeExcludePairs(mol);
211     molecules_.erase(mol->getGlobalIndex());
212 gezelter 1490
213 gezelter 2204 delete mol;
214 gezelter 1930
215 gezelter 2204 return true;
216 gezelter 1930 } else {
217 gezelter 2204 return false;
218 gezelter 1930 }
219    
220    
221 gezelter 2204 }
222 gezelter 1930
223    
224 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 gezelter 1930 i = molecules_.begin();
226     return i == molecules_.end() ? NULL : i->second;
227 gezelter 2204 }
228 gezelter 1930
229 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 gezelter 1930 ++i;
231     return i == molecules_.end() ? NULL : i->second;
232 gezelter 2204 }
233 gezelter 1490
234    
235 gezelter 2204 void SimInfo::calcNdf() {
236 gezelter 1930 int ndf_local;
237     MoleculeIterator i;
238     std::vector<StuntDouble*>::iterator j;
239     Molecule* mol;
240     StuntDouble* integrableObject;
241 gezelter 1490
242 gezelter 1930 ndf_local = 0;
243    
244     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246     integrableObject = mol->nextIntegrableObject(j)) {
247 gezelter 1490
248 gezelter 2204 ndf_local += 3;
249 gezelter 1490
250 gezelter 2204 if (integrableObject->isDirectional()) {
251     if (integrableObject->isLinear()) {
252     ndf_local += 2;
253     } else {
254     ndf_local += 3;
255     }
256     }
257 gezelter 1930
258 gezelter 2204 }//end for (integrableObject)
259 gezelter 1930 }// end for (mol)
260    
261     // n_constraints is local, so subtract them on each processor
262     ndf_local -= nConstraints_;
263    
264     #ifdef IS_MPI
265     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266     #else
267     ndf_ = ndf_local;
268     #endif
269    
270     // nZconstraints_ is global, as are the 3 COM translations for the
271     // entire system:
272     ndf_ = ndf_ - 3 - nZconstraint_;
273    
274 gezelter 2204 }
275 gezelter 1490
276 gezelter 2204 void SimInfo::calcNdfRaw() {
277 gezelter 1930 int ndfRaw_local;
278 gezelter 1490
279 gezelter 1930 MoleculeIterator i;
280     std::vector<StuntDouble*>::iterator j;
281     Molecule* mol;
282     StuntDouble* integrableObject;
283    
284     // Raw degrees of freedom that we have to set
285     ndfRaw_local = 0;
286    
287     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
288 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
289     integrableObject = mol->nextIntegrableObject(j)) {
290 gezelter 1930
291 gezelter 2204 ndfRaw_local += 3;
292 gezelter 1930
293 gezelter 2204 if (integrableObject->isDirectional()) {
294     if (integrableObject->isLinear()) {
295     ndfRaw_local += 2;
296     } else {
297     ndfRaw_local += 3;
298     }
299     }
300 gezelter 1930
301 gezelter 2204 }
302 gezelter 1930 }
303    
304     #ifdef IS_MPI
305     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
306     #else
307     ndfRaw_ = ndfRaw_local;
308     #endif
309 gezelter 2204 }
310 gezelter 1490
311 gezelter 2204 void SimInfo::calcNdfTrans() {
312 gezelter 1930 int ndfTrans_local;
313 gezelter 1490
314 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
315 gezelter 1490
316    
317 gezelter 1930 #ifdef IS_MPI
318     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
319     #else
320     ndfTrans_ = ndfTrans_local;
321     #endif
322 gezelter 1490
323 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
324    
325 gezelter 2204 }
326 gezelter 1490
327 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
328 gezelter 1930 std::vector<Bond*>::iterator bondIter;
329     std::vector<Bend*>::iterator bendIter;
330     std::vector<Torsion*>::iterator torsionIter;
331     Bond* bond;
332     Bend* bend;
333     Torsion* torsion;
334     int a;
335     int b;
336     int c;
337     int d;
338    
339     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
341     b = bond->getAtomB()->getGlobalIndex();
342     exclude_.addPair(a, b);
343 gezelter 1930 }
344 gezelter 1490
345 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
346 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
347     b = bend->getAtomB()->getGlobalIndex();
348     c = bend->getAtomC()->getGlobalIndex();
349 gezelter 1490
350 gezelter 2204 exclude_.addPair(a, b);
351     exclude_.addPair(a, c);
352     exclude_.addPair(b, c);
353 gezelter 1930 }
354 gezelter 1490
355 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
356 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
357     b = torsion->getAtomB()->getGlobalIndex();
358     c = torsion->getAtomC()->getGlobalIndex();
359     d = torsion->getAtomD()->getGlobalIndex();
360 gezelter 1490
361 gezelter 2204 exclude_.addPair(a, b);
362     exclude_.addPair(a, c);
363     exclude_.addPair(a, d);
364     exclude_.addPair(b, c);
365     exclude_.addPair(b, d);
366     exclude_.addPair(c, d);
367 gezelter 1490 }
368    
369 tim 2114 Molecule::RigidBodyIterator rbIter;
370     RigidBody* rb;
371     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
372 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
373     for (int i = 0; i < atoms.size() -1 ; ++i) {
374     for (int j = i + 1; j < atoms.size(); ++j) {
375     a = atoms[i]->getGlobalIndex();
376     b = atoms[j]->getGlobalIndex();
377     exclude_.addPair(a, b);
378     }
379     }
380 tim 2114 }
381    
382 gezelter 2204 }
383 gezelter 1930
384 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
385 gezelter 1930 std::vector<Bond*>::iterator bondIter;
386     std::vector<Bend*>::iterator bendIter;
387     std::vector<Torsion*>::iterator torsionIter;
388     Bond* bond;
389     Bend* bend;
390     Torsion* torsion;
391     int a;
392     int b;
393     int c;
394     int d;
395    
396     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
397 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
398     b = bond->getAtomB()->getGlobalIndex();
399     exclude_.removePair(a, b);
400 gezelter 1490 }
401 gezelter 1930
402     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
403 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
404     b = bend->getAtomB()->getGlobalIndex();
405     c = bend->getAtomC()->getGlobalIndex();
406 gezelter 1930
407 gezelter 2204 exclude_.removePair(a, b);
408     exclude_.removePair(a, c);
409     exclude_.removePair(b, c);
410 gezelter 1490 }
411 gezelter 1930
412     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
413 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
414     b = torsion->getAtomB()->getGlobalIndex();
415     c = torsion->getAtomC()->getGlobalIndex();
416     d = torsion->getAtomD()->getGlobalIndex();
417 gezelter 1930
418 gezelter 2204 exclude_.removePair(a, b);
419     exclude_.removePair(a, c);
420     exclude_.removePair(a, d);
421     exclude_.removePair(b, c);
422     exclude_.removePair(b, d);
423     exclude_.removePair(c, d);
424 gezelter 1930 }
425    
426 tim 2114 Molecule::RigidBodyIterator rbIter;
427     RigidBody* rb;
428     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
429 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
430     for (int i = 0; i < atoms.size() -1 ; ++i) {
431     for (int j = i + 1; j < atoms.size(); ++j) {
432     a = atoms[i]->getGlobalIndex();
433     b = atoms[j]->getGlobalIndex();
434     exclude_.removePair(a, b);
435     }
436     }
437 tim 2114 }
438    
439 gezelter 2204 }
440 gezelter 1490
441    
442 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
443 gezelter 1930 int curStampId;
444 gezelter 1490
445 gezelter 1930 //index from 0
446     curStampId = moleculeStamps_.size();
447 gezelter 1490
448 gezelter 1930 moleculeStamps_.push_back(molStamp);
449     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
450 gezelter 2204 }
451 gezelter 1490
452 gezelter 2204 void SimInfo::update() {
453 gezelter 1490
454 gezelter 1930 setupSimType();
455 gezelter 1490
456 gezelter 1930 #ifdef IS_MPI
457     setupFortranParallel();
458     #endif
459 gezelter 1490
460 gezelter 1930 setupFortranSim();
461 gezelter 1490
462 gezelter 1930 //setup fortran force field
463     /** @deprecate */
464     int isError = 0;
465 chrisfen 2279 initFortranFF( &fInfo_.SIM_uses_RF, &fInfo_.SIM_uses_UW,
466     &fInfo_.SIM_uses_DW, &isError );
467 gezelter 1930 if(isError){
468 gezelter 2204 sprintf( painCave.errMsg,
469     "ForceField error: There was an error initializing the forceField in fortran.\n" );
470     painCave.isFatal = 1;
471     simError();
472 gezelter 1930 }
473 gezelter 1490
474 gezelter 1930
475     setupCutoff();
476 gezelter 1490
477 gezelter 1930 calcNdf();
478     calcNdfRaw();
479     calcNdfTrans();
480    
481     fortranInitialized_ = true;
482 gezelter 2204 }
483 gezelter 1490
484 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
485 gezelter 1930 SimInfo::MoleculeIterator mi;
486     Molecule* mol;
487     Molecule::AtomIterator ai;
488     Atom* atom;
489     std::set<AtomType*> atomTypes;
490 gezelter 1490
491 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
492 gezelter 1490
493 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
494     atomTypes.insert(atom->getAtomType());
495     }
496 gezelter 1930
497     }
498 gezelter 1490
499 gezelter 1930 return atomTypes;
500 gezelter 2204 }
501 gezelter 1490
502 gezelter 2204 void SimInfo::setupSimType() {
503 gezelter 1930 std::set<AtomType*>::iterator i;
504     std::set<AtomType*> atomTypes;
505     atomTypes = getUniqueAtomTypes();
506 gezelter 1490
507 gezelter 1930 int useLennardJones = 0;
508     int useElectrostatic = 0;
509     int useEAM = 0;
510     int useCharge = 0;
511     int useDirectional = 0;
512     int useDipole = 0;
513     int useGayBerne = 0;
514     int useSticky = 0;
515 chrisfen 2220 int useStickyPower = 0;
516 gezelter 1930 int useShape = 0;
517     int useFLARB = 0; //it is not in AtomType yet
518     int useDirectionalAtom = 0;
519     int useElectrostatics = 0;
520     //usePBC and useRF are from simParams
521     int usePBC = simParams_->getPBC();
522     int useRF = simParams_->getUseRF();
523 chrisfen 2279 int useUW = simParams_->getUseUndampedWolf();
524     int useDW = simParams_->getUseDampedWolf();
525 gezelter 1490
526 gezelter 1930 //loop over all of the atom types
527     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
528 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
529     useElectrostatic |= (*i)->isElectrostatic();
530     useEAM |= (*i)->isEAM();
531     useCharge |= (*i)->isCharge();
532     useDirectional |= (*i)->isDirectional();
533     useDipole |= (*i)->isDipole();
534     useGayBerne |= (*i)->isGayBerne();
535     useSticky |= (*i)->isSticky();
536 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
537 gezelter 2204 useShape |= (*i)->isShape();
538 gezelter 1930 }
539 gezelter 1490
540 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
541 gezelter 2204 useDirectionalAtom = 1;
542 gezelter 1930 }
543 gezelter 1490
544 gezelter 1930 if (useCharge || useDipole) {
545 gezelter 2204 useElectrostatics = 1;
546 gezelter 1930 }
547 gezelter 1490
548 gezelter 1930 #ifdef IS_MPI
549     int temp;
550 gezelter 1490
551 gezelter 1930 temp = usePBC;
552     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
553 gezelter 1490
554 gezelter 1930 temp = useDirectionalAtom;
555     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
556 gezelter 1490
557 gezelter 1930 temp = useLennardJones;
558     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
559 gezelter 1490
560 gezelter 1930 temp = useElectrostatics;
561     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
562 gezelter 1490
563 gezelter 1930 temp = useCharge;
564     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
565 gezelter 1490
566 gezelter 1930 temp = useDipole;
567     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
568 gezelter 1490
569 gezelter 1930 temp = useSticky;
570     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
571 gezelter 1490
572 chrisfen 2220 temp = useStickyPower;
573     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
574    
575 gezelter 1930 temp = useGayBerne;
576     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
577 gezelter 1490
578 gezelter 1930 temp = useEAM;
579     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
580 gezelter 1490
581 gezelter 1930 temp = useShape;
582     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
583    
584     temp = useFLARB;
585     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
586    
587     temp = useRF;
588     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
589 chrisfen 2279
590     temp = useUW;
591     MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
592    
593     temp = useDW;
594     MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
595 gezelter 1930
596 gezelter 1490 #endif
597    
598 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
599     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
600     fInfo_.SIM_uses_LennardJones = useLennardJones;
601     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
602     fInfo_.SIM_uses_Charges = useCharge;
603     fInfo_.SIM_uses_Dipoles = useDipole;
604     fInfo_.SIM_uses_Sticky = useSticky;
605 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
606 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
607     fInfo_.SIM_uses_EAM = useEAM;
608     fInfo_.SIM_uses_Shapes = useShape;
609     fInfo_.SIM_uses_FLARB = useFLARB;
610     fInfo_.SIM_uses_RF = useRF;
611 chrisfen 2279 fInfo_.SIM_uses_UW = useUW;
612     fInfo_.SIM_uses_DW = useDW;
613 gezelter 1490
614 gezelter 1930 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
615 gezelter 1490
616 gezelter 2204 if (simParams_->haveDielectric()) {
617     fInfo_.dielect = simParams_->getDielectric();
618     } else {
619     sprintf(painCave.errMsg,
620     "SimSetup Error: No Dielectric constant was set.\n"
621     "\tYou are trying to use Reaction Field without"
622     "\tsetting a dielectric constant!\n");
623     painCave.isFatal = 1;
624     simError();
625     }
626 gezelter 1930
627     } else {
628 gezelter 2204 fInfo_.dielect = 0.0;
629 gezelter 1930 }
630    
631 gezelter 2204 }
632 gezelter 1490
633 gezelter 2204 void SimInfo::setupFortranSim() {
634 gezelter 1930 int isError;
635     int nExclude;
636     std::vector<int> fortranGlobalGroupMembership;
637    
638     nExclude = exclude_.getSize();
639     isError = 0;
640 gezelter 1490
641 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
642     for (int i = 0; i < nGlobalAtoms_; i++) {
643 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
644 gezelter 1930 }
645 gezelter 1490
646 gezelter 1930 //calculate mass ratio of cutoff group
647     std::vector<double> mfact;
648     SimInfo::MoleculeIterator mi;
649     Molecule* mol;
650     Molecule::CutoffGroupIterator ci;
651     CutoffGroup* cg;
652     Molecule::AtomIterator ai;
653     Atom* atom;
654     double totalMass;
655    
656     //to avoid memory reallocation, reserve enough space for mfact
657     mfact.reserve(getNCutoffGroups());
658 gezelter 1490
659 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
660 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
661 gezelter 1490
662 gezelter 2204 totalMass = cg->getMass();
663     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
664     mfact.push_back(atom->getMass()/totalMass);
665     }
666 gezelter 1490
667 gezelter 2204 }
668 gezelter 1930 }
669 gezelter 1490
670 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
671     std::vector<int> identArray;
672 gezelter 1490
673 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
674     identArray.reserve(getNAtoms());
675    
676     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
677 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
678     identArray.push_back(atom->getIdent());
679     }
680 gezelter 1930 }
681 gezelter 1490
682 gezelter 1930 //fill molMembershipArray
683     //molMembershipArray is filled by SimCreator
684     std::vector<int> molMembershipArray(nGlobalAtoms_);
685     for (int i = 0; i < nGlobalAtoms_; i++) {
686 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
687 gezelter 1930 }
688    
689     //setup fortran simulation
690     int nGlobalExcludes = 0;
691     int* globalExcludes = NULL;
692     int* excludeList = exclude_.getExcludeList();
693     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
694 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
695     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
696 gezelter 1490
697 gezelter 1930 if( isError ){
698 gezelter 1490
699 gezelter 2204 sprintf( painCave.errMsg,
700     "There was an error setting the simulation information in fortran.\n" );
701     painCave.isFatal = 1;
702     painCave.severity = OOPSE_ERROR;
703     simError();
704 gezelter 1930 }
705    
706     #ifdef IS_MPI
707     sprintf( checkPointMsg,
708 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
709 gezelter 1930 MPIcheckPoint();
710     #endif // is_mpi
711 gezelter 2204 }
712 gezelter 1490
713    
714 gezelter 1930 #ifdef IS_MPI
715 gezelter 2204 void SimInfo::setupFortranParallel() {
716 gezelter 1930
717     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
718     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
719     std::vector<int> localToGlobalCutoffGroupIndex;
720     SimInfo::MoleculeIterator mi;
721     Molecule::AtomIterator ai;
722     Molecule::CutoffGroupIterator ci;
723     Molecule* mol;
724     Atom* atom;
725     CutoffGroup* cg;
726     mpiSimData parallelData;
727     int isError;
728 gezelter 1490
729 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
730 gezelter 1490
731 gezelter 2204 //local index(index in DataStorge) of atom is important
732     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
733     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
734     }
735 gezelter 1490
736 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
737     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
738     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
739     }
740 gezelter 1930
741     }
742 gezelter 1490
743 gezelter 1930 //fill up mpiSimData struct
744     parallelData.nMolGlobal = getNGlobalMolecules();
745     parallelData.nMolLocal = getNMolecules();
746     parallelData.nAtomsGlobal = getNGlobalAtoms();
747     parallelData.nAtomsLocal = getNAtoms();
748     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
749     parallelData.nGroupsLocal = getNCutoffGroups();
750     parallelData.myNode = worldRank;
751     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
752 gezelter 1490
753 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
754     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
755     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
756     &localToGlobalCutoffGroupIndex[0], &isError);
757 gezelter 1490
758 gezelter 1930 if (isError) {
759 gezelter 2204 sprintf(painCave.errMsg,
760     "mpiRefresh errror: fortran didn't like something we gave it.\n");
761     painCave.isFatal = 1;
762     simError();
763 gezelter 1930 }
764 gezelter 1490
765 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
766     MPIcheckPoint();
767 gezelter 1490
768    
769 gezelter 2204 }
770 chrisfen 1636
771 gezelter 1930 #endif
772 chrisfen 1636
773 gezelter 2204 double SimInfo::calcMaxCutoffRadius() {
774 chrisfen 1636
775    
776 gezelter 1930 std::set<AtomType*> atomTypes;
777     std::set<AtomType*>::iterator i;
778     std::vector<double> cutoffRadius;
779 gezelter 1490
780 gezelter 1930 //get the unique atom types
781     atomTypes = getUniqueAtomTypes();
782    
783     //query the max cutoff radius among these atom types
784     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
785 gezelter 2204 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
786 gezelter 1930 }
787    
788     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
789 gezelter 1490 #ifdef IS_MPI
790 gezelter 1930 //pick the max cutoff radius among the processors
791 gezelter 1490 #endif
792    
793 gezelter 1930 return maxCutoffRadius;
794 gezelter 2204 }
795 gezelter 1930
796 gezelter 2204 void SimInfo::getCutoff(double& rcut, double& rsw) {
797 gezelter 1490
798 gezelter 1930 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
799    
800 gezelter 2204 if (!simParams_->haveRcut()){
801     sprintf(painCave.errMsg,
802 gezelter 1930 "SimCreator Warning: No value was set for the cutoffRadius.\n"
803     "\tOOPSE will use a default value of 15.0 angstroms"
804     "\tfor the cutoffRadius.\n");
805 gezelter 2204 painCave.isFatal = 0;
806     simError();
807     rcut = 15.0;
808     } else{
809     rcut = simParams_->getRcut();
810     }
811 gezelter 1930
812 gezelter 2204 if (!simParams_->haveRsw()){
813     sprintf(painCave.errMsg,
814 gezelter 1930 "SimCreator Warning: No value was set for switchingRadius.\n"
815     "\tOOPSE will use a default value of\n"
816     "\t0.95 * cutoffRadius for the switchingRadius\n");
817 gezelter 2204 painCave.isFatal = 0;
818     simError();
819     rsw = 0.95 * rcut;
820     } else{
821     rsw = simParams_->getRsw();
822     }
823 gezelter 1930
824     } else {
825 gezelter 2204 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
826     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
827 gezelter 1930
828 gezelter 2204 if (simParams_->haveRcut()) {
829     rcut = simParams_->getRcut();
830     } else {
831     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
832     rcut = calcMaxCutoffRadius();
833     }
834 gezelter 1930
835 gezelter 2204 if (simParams_->haveRsw()) {
836     rsw = simParams_->getRsw();
837     } else {
838     rsw = rcut;
839     }
840 gezelter 1930
841     }
842 gezelter 2204 }
843 tim 2010
844 gezelter 2204 void SimInfo::setupCutoff() {
845 tim 2010 getCutoff(rcut_, rsw_);
846 gezelter 1930 double rnblist = rcut_ + 1; // skin of neighbor list
847    
848     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
849     notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
850 gezelter 2204 }
851 gezelter 1490
852 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
853 gezelter 1930 properties_.addProperty(genData);
854 gezelter 2204 }
855 gezelter 1490
856 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
857 gezelter 1930 properties_.removeProperty(propName);
858 gezelter 2204 }
859 gezelter 1490
860 gezelter 2204 void SimInfo::clearProperties() {
861 gezelter 1930 properties_.clearProperties();
862 gezelter 2204 }
863 gezelter 1490
864 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
865 gezelter 1930 return properties_.getPropertyNames();
866 gezelter 2204 }
867 gezelter 1930
868 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
869 gezelter 1930 return properties_.getProperties();
870 gezelter 2204 }
871 gezelter 1490
872 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
873 gezelter 1930 return properties_.getPropertyByName(propName);
874 gezelter 2204 }
875 gezelter 1490
876 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
877 tim 2116 if (sman_ == sman) {
878 gezelter 2204 return;
879 tim 2116 }
880     delete sman_;
881 gezelter 1930 sman_ = sman;
882 gezelter 1490
883 gezelter 1930 Molecule* mol;
884     RigidBody* rb;
885     Atom* atom;
886     SimInfo::MoleculeIterator mi;
887     Molecule::RigidBodyIterator rbIter;
888     Molecule::AtomIterator atomIter;;
889    
890     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
891    
892 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
893     atom->setSnapshotManager(sman_);
894     }
895 gezelter 1930
896 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
897     rb->setSnapshotManager(sman_);
898     }
899 gezelter 1930 }
900 gezelter 1490
901 gezelter 2204 }
902 gezelter 1490
903 gezelter 2204 Vector3d SimInfo::getComVel(){
904 gezelter 1930 SimInfo::MoleculeIterator i;
905     Molecule* mol;
906 gezelter 1490
907 gezelter 1930 Vector3d comVel(0.0);
908     double totalMass = 0.0;
909 gezelter 1490
910 gezelter 1930
911     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
912 gezelter 2204 double mass = mol->getMass();
913     totalMass += mass;
914     comVel += mass * mol->getComVel();
915 gezelter 1930 }
916 gezelter 1490
917 gezelter 1930 #ifdef IS_MPI
918     double tmpMass = totalMass;
919     Vector3d tmpComVel(comVel);
920     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
921     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
922     #endif
923    
924     comVel /= totalMass;
925    
926     return comVel;
927 gezelter 2204 }
928 gezelter 1490
929 gezelter 2204 Vector3d SimInfo::getCom(){
930 gezelter 1930 SimInfo::MoleculeIterator i;
931     Molecule* mol;
932 gezelter 1490
933 gezelter 1930 Vector3d com(0.0);
934     double totalMass = 0.0;
935    
936     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
937 gezelter 2204 double mass = mol->getMass();
938     totalMass += mass;
939     com += mass * mol->getCom();
940 gezelter 1930 }
941 gezelter 1490
942     #ifdef IS_MPI
943 gezelter 1930 double tmpMass = totalMass;
944     Vector3d tmpCom(com);
945     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
946     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
947 gezelter 1490 #endif
948    
949 gezelter 1930 com /= totalMass;
950 gezelter 1490
951 gezelter 1930 return com;
952 gezelter 1490
953 gezelter 2204 }
954 gezelter 1930
955 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
956 gezelter 1930
957     return o;
958 gezelter 2204 }
959 chuckv 2252
960    
961     /*
962     Returns center of mass and center of mass velocity in one function call.
963     */
964    
965     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
966     SimInfo::MoleculeIterator i;
967     Molecule* mol;
968    
969    
970     double totalMass = 0.0;
971    
972 gezelter 1930
973 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
974     double mass = mol->getMass();
975     totalMass += mass;
976     com += mass * mol->getCom();
977     comVel += mass * mol->getComVel();
978     }
979    
980     #ifdef IS_MPI
981     double tmpMass = totalMass;
982     Vector3d tmpCom(com);
983     Vector3d tmpComVel(comVel);
984     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
985     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
986     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
987     #endif
988    
989     com /= totalMass;
990     comVel /= totalMass;
991     }
992    
993     /*
994     Return intertia tensor for entire system and angular momentum Vector.
995 chuckv 2256
996    
997     [ Ixx -Ixy -Ixz ]
998     J =| -Iyx Iyy -Iyz |
999     [ -Izx -Iyz Izz ]
1000 chuckv 2252 */
1001    
1002     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1003    
1004    
1005     double xx = 0.0;
1006     double yy = 0.0;
1007     double zz = 0.0;
1008     double xy = 0.0;
1009     double xz = 0.0;
1010     double yz = 0.0;
1011     Vector3d com(0.0);
1012     Vector3d comVel(0.0);
1013    
1014     getComAll(com, comVel);
1015    
1016     SimInfo::MoleculeIterator i;
1017     Molecule* mol;
1018    
1019     Vector3d thisq(0.0);
1020     Vector3d thisv(0.0);
1021    
1022     double thisMass = 0.0;
1023    
1024    
1025    
1026    
1027     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1028    
1029     thisq = mol->getCom()-com;
1030     thisv = mol->getComVel()-comVel;
1031     thisMass = mol->getMass();
1032     // Compute moment of intertia coefficients.
1033     xx += thisq[0]*thisq[0]*thisMass;
1034     yy += thisq[1]*thisq[1]*thisMass;
1035     zz += thisq[2]*thisq[2]*thisMass;
1036    
1037     // compute products of intertia
1038     xy += thisq[0]*thisq[1]*thisMass;
1039     xz += thisq[0]*thisq[2]*thisMass;
1040     yz += thisq[1]*thisq[2]*thisMass;
1041    
1042     angularMomentum += cross( thisq, thisv ) * thisMass;
1043    
1044     }
1045    
1046    
1047     inertiaTensor(0,0) = yy + zz;
1048     inertiaTensor(0,1) = -xy;
1049     inertiaTensor(0,2) = -xz;
1050     inertiaTensor(1,0) = -xy;
1051 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1052 chuckv 2252 inertiaTensor(1,2) = -yz;
1053     inertiaTensor(2,0) = -xz;
1054     inertiaTensor(2,1) = -yz;
1055     inertiaTensor(2,2) = xx + yy;
1056    
1057     #ifdef IS_MPI
1058     Mat3x3d tmpI(inertiaTensor);
1059     Vector3d tmpAngMom;
1060     MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1061     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1062     #endif
1063    
1064     return;
1065     }
1066    
1067     //Returns the angular momentum of the system
1068     Vector3d SimInfo::getAngularMomentum(){
1069    
1070     Vector3d com(0.0);
1071     Vector3d comVel(0.0);
1072     Vector3d angularMomentum(0.0);
1073    
1074     getComAll(com,comVel);
1075    
1076     SimInfo::MoleculeIterator i;
1077     Molecule* mol;
1078    
1079 chuckv 2256 Vector3d thisr(0.0);
1080     Vector3d thisp(0.0);
1081 chuckv 2252
1082 chuckv 2256 double thisMass;
1083 chuckv 2252
1084     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1085 chuckv 2256 thisMass = mol->getMass();
1086     thisr = mol->getCom()-com;
1087     thisp = (mol->getComVel()-comVel)*thisMass;
1088 chuckv 2252
1089 chuckv 2256 angularMomentum += cross( thisr, thisp );
1090    
1091 chuckv 2252 }
1092    
1093     #ifdef IS_MPI
1094     Vector3d tmpAngMom;
1095     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1096     #endif
1097    
1098     return angularMomentum;
1099     }
1100    
1101    
1102 gezelter 1930 }//end namespace oopse
1103