ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2285
Committed: Wed Sep 7 20:46:46 2005 UTC (18 years, 10 months ago) by gezelter
File size: 33570 byte(s)
Log Message:
adding c-side interface to change cutoff Policy

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 gezelter 1490
52 tim 1492 #include "brains/SimInfo.hpp"
53 gezelter 1930 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
56 gezelter 1930 #include "UseTheForce/doForces_interface.h"
57     #include "UseTheForce/notifyCutoffs_interface.h"
58     #include "utils/MemoryUtils.hpp"
59 tim 1492 #include "utils/simError.h"
60 tim 2000 #include "selection/SelectionManager.hpp"
61 gezelter 1490
62 gezelter 1930 #ifdef IS_MPI
63     #include "UseTheForce/mpiComponentPlan.h"
64     #include "UseTheForce/DarkSide/simParallel_interface.h"
65     #endif
66 gezelter 1490
67 gezelter 1930 namespace oopse {
68 gezelter 1490
69 gezelter 2204 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
70     ForceField* ff, Globals* simParams) :
71     stamps_(stamps), forceField_(ff), simParams_(simParams),
72     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
73     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
74     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
76     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
77     sman_(NULL), fortranInitialized_(false) {
78 gezelter 1490
79 gezelter 1930
80 gezelter 2204 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
81     MoleculeStamp* molStamp;
82     int nMolWithSameStamp;
83     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84     int nGroups = 0; //total cutoff groups defined in meta-data file
85     CutoffGroupStamp* cgStamp;
86     RigidBodyStamp* rbStamp;
87     int nRigidAtoms = 0;
88 gezelter 1930
89 gezelter 2204 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
90 gezelter 1930 molStamp = i->first;
91     nMolWithSameStamp = i->second;
92    
93     addMoleculeStamp(molStamp, nMolWithSameStamp);
94 gezelter 1490
95 gezelter 1930 //calculate atoms in molecules
96     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
97 gezelter 1490
98    
99 gezelter 1930 //calculate atoms in cutoff groups
100     int nAtomsInGroups = 0;
101     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
102    
103     for (int j=0; j < nCutoffGroupsInStamp; j++) {
104 gezelter 2204 cgStamp = molStamp->getCutoffGroup(j);
105     nAtomsInGroups += cgStamp->getNMembers();
106 gezelter 1930 }
107 gezelter 1490
108 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
109     nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
110 gezelter 1490
111 gezelter 1930 //calculate atoms in rigid bodies
112     int nAtomsInRigidBodies = 0;
113 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
114 gezelter 1930
115     for (int j=0; j < nRigidBodiesInStamp; j++) {
116 gezelter 2204 rbStamp = molStamp->getRigidBody(j);
117     nAtomsInRigidBodies += rbStamp->getNMembers();
118 gezelter 1930 }
119 gezelter 1490
120 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
121     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
122    
123 gezelter 2204 }
124 chrisfen 1636
125 gezelter 2204 //every free atom (atom does not belong to cutoff groups) is a cutoff group
126     //therefore the total number of cutoff groups in the system is equal to
127     //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
128     //file plus the number of cutoff groups defined in meta-data file
129     nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
130 gezelter 1490
131 gezelter 2204 //every free atom (atom does not belong to rigid bodies) is an integrable object
132     //therefore the total number of integrable objects in the system is equal to
133     //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
134     //file plus the number of rigid bodies defined in meta-data file
135     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
136 gezelter 1490
137 gezelter 2204 nGlobalMols_ = molStampIds_.size();
138 gezelter 1490
139 gezelter 1930 #ifdef IS_MPI
140 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
141 gezelter 1930 #endif
142 tim 1976
143 gezelter 2204 }
144 gezelter 1490
145 gezelter 2204 SimInfo::~SimInfo() {
146 tim 2082 std::map<int, Molecule*>::iterator i;
147     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
148 gezelter 2204 delete i->second;
149 tim 2082 }
150     molecules_.clear();
151 tim 2187
152     delete stamps_;
153 gezelter 1930 delete sman_;
154     delete simParams_;
155     delete forceField_;
156 gezelter 2204 }
157 gezelter 1490
158 gezelter 2204 int SimInfo::getNGlobalConstraints() {
159 gezelter 1930 int nGlobalConstraints;
160     #ifdef IS_MPI
161     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162     MPI_COMM_WORLD);
163     #else
164     nGlobalConstraints = nConstraints_;
165     #endif
166     return nGlobalConstraints;
167 gezelter 2204 }
168 gezelter 1490
169 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
170 gezelter 1930 MoleculeIterator i;
171 gezelter 1490
172 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
173     if (i == molecules_.end() ) {
174 gezelter 1490
175 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
176 gezelter 1930
177 gezelter 2204 nAtoms_ += mol->getNAtoms();
178     nBonds_ += mol->getNBonds();
179     nBends_ += mol->getNBends();
180     nTorsions_ += mol->getNTorsions();
181     nRigidBodies_ += mol->getNRigidBodies();
182     nIntegrableObjects_ += mol->getNIntegrableObjects();
183     nCutoffGroups_ += mol->getNCutoffGroups();
184     nConstraints_ += mol->getNConstraintPairs();
185 gezelter 1490
186 gezelter 2204 addExcludePairs(mol);
187 gezelter 1930
188 gezelter 2204 return true;
189 gezelter 1930 } else {
190 gezelter 2204 return false;
191 gezelter 1930 }
192 gezelter 2204 }
193 gezelter 1490
194 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
195 gezelter 1930 MoleculeIterator i;
196     i = molecules_.find(mol->getGlobalIndex());
197 gezelter 1490
198 gezelter 1930 if (i != molecules_.end() ) {
199 gezelter 1490
200 gezelter 2204 assert(mol == i->second);
201 gezelter 1930
202 gezelter 2204 nAtoms_ -= mol->getNAtoms();
203     nBonds_ -= mol->getNBonds();
204     nBends_ -= mol->getNBends();
205     nTorsions_ -= mol->getNTorsions();
206     nRigidBodies_ -= mol->getNRigidBodies();
207     nIntegrableObjects_ -= mol->getNIntegrableObjects();
208     nCutoffGroups_ -= mol->getNCutoffGroups();
209     nConstraints_ -= mol->getNConstraintPairs();
210 gezelter 1490
211 gezelter 2204 removeExcludePairs(mol);
212     molecules_.erase(mol->getGlobalIndex());
213 gezelter 1490
214 gezelter 2204 delete mol;
215 gezelter 1930
216 gezelter 2204 return true;
217 gezelter 1930 } else {
218 gezelter 2204 return false;
219 gezelter 1930 }
220    
221    
222 gezelter 2204 }
223 gezelter 1930
224    
225 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
226 gezelter 1930 i = molecules_.begin();
227     return i == molecules_.end() ? NULL : i->second;
228 gezelter 2204 }
229 gezelter 1930
230 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
231 gezelter 1930 ++i;
232     return i == molecules_.end() ? NULL : i->second;
233 gezelter 2204 }
234 gezelter 1490
235    
236 gezelter 2204 void SimInfo::calcNdf() {
237 gezelter 1930 int ndf_local;
238     MoleculeIterator i;
239     std::vector<StuntDouble*>::iterator j;
240     Molecule* mol;
241     StuntDouble* integrableObject;
242 gezelter 1490
243 gezelter 1930 ndf_local = 0;
244    
245     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
246 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
247     integrableObject = mol->nextIntegrableObject(j)) {
248 gezelter 1490
249 gezelter 2204 ndf_local += 3;
250 gezelter 1490
251 gezelter 2204 if (integrableObject->isDirectional()) {
252     if (integrableObject->isLinear()) {
253     ndf_local += 2;
254     } else {
255     ndf_local += 3;
256     }
257     }
258 gezelter 1930
259 gezelter 2204 }//end for (integrableObject)
260 gezelter 1930 }// end for (mol)
261    
262     // n_constraints is local, so subtract them on each processor
263     ndf_local -= nConstraints_;
264    
265     #ifdef IS_MPI
266     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267     #else
268     ndf_ = ndf_local;
269     #endif
270    
271     // nZconstraints_ is global, as are the 3 COM translations for the
272     // entire system:
273     ndf_ = ndf_ - 3 - nZconstraint_;
274    
275 gezelter 2204 }
276 gezelter 1490
277 gezelter 2204 void SimInfo::calcNdfRaw() {
278 gezelter 1930 int ndfRaw_local;
279 gezelter 1490
280 gezelter 1930 MoleculeIterator i;
281     std::vector<StuntDouble*>::iterator j;
282     Molecule* mol;
283     StuntDouble* integrableObject;
284    
285     // Raw degrees of freedom that we have to set
286     ndfRaw_local = 0;
287    
288     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
289 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
290     integrableObject = mol->nextIntegrableObject(j)) {
291 gezelter 1930
292 gezelter 2204 ndfRaw_local += 3;
293 gezelter 1930
294 gezelter 2204 if (integrableObject->isDirectional()) {
295     if (integrableObject->isLinear()) {
296     ndfRaw_local += 2;
297     } else {
298     ndfRaw_local += 3;
299     }
300     }
301 gezelter 1930
302 gezelter 2204 }
303 gezelter 1930 }
304    
305     #ifdef IS_MPI
306     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
307     #else
308     ndfRaw_ = ndfRaw_local;
309     #endif
310 gezelter 2204 }
311 gezelter 1490
312 gezelter 2204 void SimInfo::calcNdfTrans() {
313 gezelter 1930 int ndfTrans_local;
314 gezelter 1490
315 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
316 gezelter 1490
317    
318 gezelter 1930 #ifdef IS_MPI
319     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
320     #else
321     ndfTrans_ = ndfTrans_local;
322     #endif
323 gezelter 1490
324 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
325    
326 gezelter 2204 }
327 gezelter 1490
328 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
329 gezelter 1930 std::vector<Bond*>::iterator bondIter;
330     std::vector<Bend*>::iterator bendIter;
331     std::vector<Torsion*>::iterator torsionIter;
332     Bond* bond;
333     Bend* bend;
334     Torsion* torsion;
335     int a;
336     int b;
337     int c;
338     int d;
339    
340     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
341 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
342     b = bond->getAtomB()->getGlobalIndex();
343     exclude_.addPair(a, b);
344 gezelter 1930 }
345 gezelter 1490
346 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
347 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
348     b = bend->getAtomB()->getGlobalIndex();
349     c = bend->getAtomC()->getGlobalIndex();
350 gezelter 1490
351 gezelter 2204 exclude_.addPair(a, b);
352     exclude_.addPair(a, c);
353     exclude_.addPair(b, c);
354 gezelter 1930 }
355 gezelter 1490
356 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
357 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
358     b = torsion->getAtomB()->getGlobalIndex();
359     c = torsion->getAtomC()->getGlobalIndex();
360     d = torsion->getAtomD()->getGlobalIndex();
361 gezelter 1490
362 gezelter 2204 exclude_.addPair(a, b);
363     exclude_.addPair(a, c);
364     exclude_.addPair(a, d);
365     exclude_.addPair(b, c);
366     exclude_.addPair(b, d);
367     exclude_.addPair(c, d);
368 gezelter 1490 }
369    
370 tim 2114 Molecule::RigidBodyIterator rbIter;
371     RigidBody* rb;
372     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
373 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
374     for (int i = 0; i < atoms.size() -1 ; ++i) {
375     for (int j = i + 1; j < atoms.size(); ++j) {
376     a = atoms[i]->getGlobalIndex();
377     b = atoms[j]->getGlobalIndex();
378     exclude_.addPair(a, b);
379     }
380     }
381 tim 2114 }
382    
383 gezelter 2204 }
384 gezelter 1930
385 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
386 gezelter 1930 std::vector<Bond*>::iterator bondIter;
387     std::vector<Bend*>::iterator bendIter;
388     std::vector<Torsion*>::iterator torsionIter;
389     Bond* bond;
390     Bend* bend;
391     Torsion* torsion;
392     int a;
393     int b;
394     int c;
395     int d;
396    
397     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
398 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
399     b = bond->getAtomB()->getGlobalIndex();
400     exclude_.removePair(a, b);
401 gezelter 1490 }
402 gezelter 1930
403     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
404 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
405     b = bend->getAtomB()->getGlobalIndex();
406     c = bend->getAtomC()->getGlobalIndex();
407 gezelter 1930
408 gezelter 2204 exclude_.removePair(a, b);
409     exclude_.removePair(a, c);
410     exclude_.removePair(b, c);
411 gezelter 1490 }
412 gezelter 1930
413     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
414 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
415     b = torsion->getAtomB()->getGlobalIndex();
416     c = torsion->getAtomC()->getGlobalIndex();
417     d = torsion->getAtomD()->getGlobalIndex();
418 gezelter 1930
419 gezelter 2204 exclude_.removePair(a, b);
420     exclude_.removePair(a, c);
421     exclude_.removePair(a, d);
422     exclude_.removePair(b, c);
423     exclude_.removePair(b, d);
424     exclude_.removePair(c, d);
425 gezelter 1930 }
426    
427 tim 2114 Molecule::RigidBodyIterator rbIter;
428     RigidBody* rb;
429     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
430 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
431     for (int i = 0; i < atoms.size() -1 ; ++i) {
432     for (int j = i + 1; j < atoms.size(); ++j) {
433     a = atoms[i]->getGlobalIndex();
434     b = atoms[j]->getGlobalIndex();
435     exclude_.removePair(a, b);
436     }
437     }
438 tim 2114 }
439    
440 gezelter 2204 }
441 gezelter 1490
442    
443 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
444 gezelter 1930 int curStampId;
445 gezelter 1490
446 gezelter 1930 //index from 0
447     curStampId = moleculeStamps_.size();
448 gezelter 1490
449 gezelter 1930 moleculeStamps_.push_back(molStamp);
450     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
451 gezelter 2204 }
452 gezelter 1490
453 gezelter 2204 void SimInfo::update() {
454 gezelter 1490
455 gezelter 1930 setupSimType();
456 gezelter 1490
457 gezelter 1930 #ifdef IS_MPI
458     setupFortranParallel();
459     #endif
460 gezelter 1490
461 gezelter 1930 setupFortranSim();
462 gezelter 1490
463 gezelter 1930 //setup fortran force field
464     /** @deprecate */
465     int isError = 0;
466 chrisfen 2279 initFortranFF( &fInfo_.SIM_uses_RF, &fInfo_.SIM_uses_UW,
467     &fInfo_.SIM_uses_DW, &isError );
468 gezelter 1930 if(isError){
469 gezelter 2204 sprintf( painCave.errMsg,
470     "ForceField error: There was an error initializing the forceField in fortran.\n" );
471     painCave.isFatal = 1;
472     simError();
473 gezelter 1930 }
474 gezelter 1490
475 gezelter 1930
476     setupCutoff();
477 gezelter 1490
478 gezelter 1930 calcNdf();
479     calcNdfRaw();
480     calcNdfTrans();
481    
482     fortranInitialized_ = true;
483 gezelter 2204 }
484 gezelter 1490
485 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
486 gezelter 1930 SimInfo::MoleculeIterator mi;
487     Molecule* mol;
488     Molecule::AtomIterator ai;
489     Atom* atom;
490     std::set<AtomType*> atomTypes;
491 gezelter 1490
492 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
493 gezelter 1490
494 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
495     atomTypes.insert(atom->getAtomType());
496     }
497 gezelter 1930
498     }
499 gezelter 1490
500 gezelter 1930 return atomTypes;
501 gezelter 2204 }
502 gezelter 1490
503 gezelter 2204 void SimInfo::setupSimType() {
504 gezelter 1930 std::set<AtomType*>::iterator i;
505     std::set<AtomType*> atomTypes;
506     atomTypes = getUniqueAtomTypes();
507 gezelter 1490
508 gezelter 1930 int useLennardJones = 0;
509     int useElectrostatic = 0;
510     int useEAM = 0;
511     int useCharge = 0;
512     int useDirectional = 0;
513     int useDipole = 0;
514     int useGayBerne = 0;
515     int useSticky = 0;
516 chrisfen 2220 int useStickyPower = 0;
517 gezelter 1930 int useShape = 0;
518     int useFLARB = 0; //it is not in AtomType yet
519     int useDirectionalAtom = 0;
520     int useElectrostatics = 0;
521     //usePBC and useRF are from simParams
522     int usePBC = simParams_->getPBC();
523     int useRF = simParams_->getUseRF();
524 chrisfen 2279 int useUW = simParams_->getUseUndampedWolf();
525     int useDW = simParams_->getUseDampedWolf();
526 gezelter 1490
527 gezelter 1930 //loop over all of the atom types
528     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
529 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
530     useElectrostatic |= (*i)->isElectrostatic();
531     useEAM |= (*i)->isEAM();
532     useCharge |= (*i)->isCharge();
533     useDirectional |= (*i)->isDirectional();
534     useDipole |= (*i)->isDipole();
535     useGayBerne |= (*i)->isGayBerne();
536     useSticky |= (*i)->isSticky();
537 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
538 gezelter 2204 useShape |= (*i)->isShape();
539 gezelter 1930 }
540 gezelter 1490
541 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
542 gezelter 2204 useDirectionalAtom = 1;
543 gezelter 1930 }
544 gezelter 1490
545 gezelter 1930 if (useCharge || useDipole) {
546 gezelter 2204 useElectrostatics = 1;
547 gezelter 1930 }
548 gezelter 1490
549 gezelter 1930 #ifdef IS_MPI
550     int temp;
551 gezelter 1490
552 gezelter 1930 temp = usePBC;
553     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
554 gezelter 1490
555 gezelter 1930 temp = useDirectionalAtom;
556     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
557 gezelter 1490
558 gezelter 1930 temp = useLennardJones;
559     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
560 gezelter 1490
561 gezelter 1930 temp = useElectrostatics;
562     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
563 gezelter 1490
564 gezelter 1930 temp = useCharge;
565     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
566 gezelter 1490
567 gezelter 1930 temp = useDipole;
568     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
569 gezelter 1490
570 gezelter 1930 temp = useSticky;
571     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
572 gezelter 1490
573 chrisfen 2220 temp = useStickyPower;
574     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
575    
576 gezelter 1930 temp = useGayBerne;
577     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
578 gezelter 1490
579 gezelter 1930 temp = useEAM;
580     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
581 gezelter 1490
582 gezelter 1930 temp = useShape;
583     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
584    
585     temp = useFLARB;
586     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
587    
588     temp = useRF;
589     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
590 chrisfen 2279
591     temp = useUW;
592     MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
593    
594     temp = useDW;
595     MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
596 gezelter 1930
597 gezelter 1490 #endif
598    
599 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
600     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
601     fInfo_.SIM_uses_LennardJones = useLennardJones;
602     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
603     fInfo_.SIM_uses_Charges = useCharge;
604     fInfo_.SIM_uses_Dipoles = useDipole;
605     fInfo_.SIM_uses_Sticky = useSticky;
606 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
607 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
608     fInfo_.SIM_uses_EAM = useEAM;
609     fInfo_.SIM_uses_Shapes = useShape;
610     fInfo_.SIM_uses_FLARB = useFLARB;
611     fInfo_.SIM_uses_RF = useRF;
612 chrisfen 2279 fInfo_.SIM_uses_UW = useUW;
613     fInfo_.SIM_uses_DW = useDW;
614 gezelter 1490
615 gezelter 1930 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
616 gezelter 1490
617 gezelter 2204 if (simParams_->haveDielectric()) {
618     fInfo_.dielect = simParams_->getDielectric();
619     } else {
620     sprintf(painCave.errMsg,
621     "SimSetup Error: No Dielectric constant was set.\n"
622     "\tYou are trying to use Reaction Field without"
623     "\tsetting a dielectric constant!\n");
624     painCave.isFatal = 1;
625     simError();
626     }
627 gezelter 1930
628     } else {
629 gezelter 2204 fInfo_.dielect = 0.0;
630 gezelter 1930 }
631    
632 gezelter 2204 }
633 gezelter 1490
634 gezelter 2204 void SimInfo::setupFortranSim() {
635 gezelter 1930 int isError;
636     int nExclude;
637     std::vector<int> fortranGlobalGroupMembership;
638    
639     nExclude = exclude_.getSize();
640     isError = 0;
641 gezelter 1490
642 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
643     for (int i = 0; i < nGlobalAtoms_; i++) {
644 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
645 gezelter 1930 }
646 gezelter 1490
647 gezelter 1930 //calculate mass ratio of cutoff group
648     std::vector<double> mfact;
649     SimInfo::MoleculeIterator mi;
650     Molecule* mol;
651     Molecule::CutoffGroupIterator ci;
652     CutoffGroup* cg;
653     Molecule::AtomIterator ai;
654     Atom* atom;
655     double totalMass;
656    
657     //to avoid memory reallocation, reserve enough space for mfact
658     mfact.reserve(getNCutoffGroups());
659 gezelter 1490
660 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
661 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
662 gezelter 1490
663 gezelter 2204 totalMass = cg->getMass();
664     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
665     mfact.push_back(atom->getMass()/totalMass);
666     }
667 gezelter 1490
668 gezelter 2204 }
669 gezelter 1930 }
670 gezelter 1490
671 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
672     std::vector<int> identArray;
673 gezelter 1490
674 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
675     identArray.reserve(getNAtoms());
676    
677     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
678 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
679     identArray.push_back(atom->getIdent());
680     }
681 gezelter 1930 }
682 gezelter 1490
683 gezelter 1930 //fill molMembershipArray
684     //molMembershipArray is filled by SimCreator
685     std::vector<int> molMembershipArray(nGlobalAtoms_);
686     for (int i = 0; i < nGlobalAtoms_; i++) {
687 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
688 gezelter 1930 }
689    
690     //setup fortran simulation
691     int nGlobalExcludes = 0;
692     int* globalExcludes = NULL;
693     int* excludeList = exclude_.getExcludeList();
694     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
695 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
696     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
697 gezelter 1490
698 gezelter 1930 if( isError ){
699 gezelter 1490
700 gezelter 2204 sprintf( painCave.errMsg,
701     "There was an error setting the simulation information in fortran.\n" );
702     painCave.isFatal = 1;
703     painCave.severity = OOPSE_ERROR;
704     simError();
705 gezelter 1930 }
706    
707     #ifdef IS_MPI
708     sprintf( checkPointMsg,
709 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
710 gezelter 1930 MPIcheckPoint();
711     #endif // is_mpi
712 gezelter 2204 }
713 gezelter 1490
714    
715 gezelter 1930 #ifdef IS_MPI
716 gezelter 2204 void SimInfo::setupFortranParallel() {
717 gezelter 1930
718     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
719     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
720     std::vector<int> localToGlobalCutoffGroupIndex;
721     SimInfo::MoleculeIterator mi;
722     Molecule::AtomIterator ai;
723     Molecule::CutoffGroupIterator ci;
724     Molecule* mol;
725     Atom* atom;
726     CutoffGroup* cg;
727     mpiSimData parallelData;
728     int isError;
729 gezelter 1490
730 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
731 gezelter 1490
732 gezelter 2204 //local index(index in DataStorge) of atom is important
733     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
734     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
735     }
736 gezelter 1490
737 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
738     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
739     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
740     }
741 gezelter 1930
742     }
743 gezelter 1490
744 gezelter 1930 //fill up mpiSimData struct
745     parallelData.nMolGlobal = getNGlobalMolecules();
746     parallelData.nMolLocal = getNMolecules();
747     parallelData.nAtomsGlobal = getNGlobalAtoms();
748     parallelData.nAtomsLocal = getNAtoms();
749     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
750     parallelData.nGroupsLocal = getNCutoffGroups();
751     parallelData.myNode = worldRank;
752     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
753 gezelter 1490
754 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
755     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
756     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
757     &localToGlobalCutoffGroupIndex[0], &isError);
758 gezelter 1490
759 gezelter 1930 if (isError) {
760 gezelter 2204 sprintf(painCave.errMsg,
761     "mpiRefresh errror: fortran didn't like something we gave it.\n");
762     painCave.isFatal = 1;
763     simError();
764 gezelter 1930 }
765 gezelter 1490
766 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
767     MPIcheckPoint();
768 gezelter 1490
769    
770 gezelter 2204 }
771 chrisfen 1636
772 gezelter 1930 #endif
773 chrisfen 1636
774 gezelter 2204 double SimInfo::calcMaxCutoffRadius() {
775 chrisfen 1636
776    
777 gezelter 1930 std::set<AtomType*> atomTypes;
778     std::set<AtomType*>::iterator i;
779     std::vector<double> cutoffRadius;
780 gezelter 1490
781 gezelter 1930 //get the unique atom types
782     atomTypes = getUniqueAtomTypes();
783    
784     //query the max cutoff radius among these atom types
785     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
786 gezelter 2204 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
787 gezelter 1930 }
788    
789     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
790 gezelter 1490 #ifdef IS_MPI
791 gezelter 1930 //pick the max cutoff radius among the processors
792 gezelter 1490 #endif
793    
794 gezelter 1930 return maxCutoffRadius;
795 gezelter 2204 }
796 gezelter 1930
797 gezelter 2204 void SimInfo::getCutoff(double& rcut, double& rsw) {
798 gezelter 1490
799 gezelter 1930 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
800    
801 gezelter 2204 if (!simParams_->haveRcut()){
802     sprintf(painCave.errMsg,
803 gezelter 1930 "SimCreator Warning: No value was set for the cutoffRadius.\n"
804     "\tOOPSE will use a default value of 15.0 angstroms"
805     "\tfor the cutoffRadius.\n");
806 gezelter 2204 painCave.isFatal = 0;
807     simError();
808     rcut = 15.0;
809     } else{
810     rcut = simParams_->getRcut();
811     }
812 gezelter 1930
813 gezelter 2204 if (!simParams_->haveRsw()){
814     sprintf(painCave.errMsg,
815 gezelter 1930 "SimCreator Warning: No value was set for switchingRadius.\n"
816     "\tOOPSE will use a default value of\n"
817     "\t0.95 * cutoffRadius for the switchingRadius\n");
818 gezelter 2204 painCave.isFatal = 0;
819     simError();
820     rsw = 0.95 * rcut;
821     } else{
822     rsw = simParams_->getRsw();
823     }
824 gezelter 1930
825     } else {
826 gezelter 2204 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
827     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
828 gezelter 1930
829 gezelter 2204 if (simParams_->haveRcut()) {
830     rcut = simParams_->getRcut();
831     } else {
832     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
833     rcut = calcMaxCutoffRadius();
834     }
835 gezelter 1930
836 gezelter 2204 if (simParams_->haveRsw()) {
837     rsw = simParams_->getRsw();
838     } else {
839     rsw = rcut;
840     }
841 gezelter 1930
842     }
843 gezelter 2204 }
844 tim 2010
845 gezelter 2285 void SimInfo::setupCutoff() {
846 tim 2010 getCutoff(rcut_, rsw_);
847 gezelter 1930 double rnblist = rcut_ + 1; // skin of neighbor list
848    
849     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
850 gezelter 2285
851     int cp = TRADITIONAL_CUTOFF_POLICY;
852     if (simParams_->haveCutoffPolicy()) {
853     std::string myPolicy = simParams_->getCutoffPolicy();
854     if (myPolicy == "MIX") {
855     cp = MIX_CUTOFF_POLICY;
856     } else {
857     if (myPolicy == "MAX") {
858     cp = MAX_CUTOFF_POLICY;
859     } else {
860     if (myPolicy == "TRADITIONAL") {
861     cp = TRADITIONAL_CUTOFF_POLICY;
862     } else {
863     // throw error
864     sprintf( painCave.errMsg,
865     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
866     painCave.isFatal = 1;
867     simError();
868     }
869     }
870     }
871     }
872     notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
873 gezelter 2204 }
874 gezelter 1490
875 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
876 gezelter 1930 properties_.addProperty(genData);
877 gezelter 2204 }
878 gezelter 1490
879 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
880 gezelter 1930 properties_.removeProperty(propName);
881 gezelter 2204 }
882 gezelter 1490
883 gezelter 2204 void SimInfo::clearProperties() {
884 gezelter 1930 properties_.clearProperties();
885 gezelter 2204 }
886 gezelter 1490
887 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
888 gezelter 1930 return properties_.getPropertyNames();
889 gezelter 2204 }
890 gezelter 1930
891 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
892 gezelter 1930 return properties_.getProperties();
893 gezelter 2204 }
894 gezelter 1490
895 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
896 gezelter 1930 return properties_.getPropertyByName(propName);
897 gezelter 2204 }
898 gezelter 1490
899 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
900 tim 2116 if (sman_ == sman) {
901 gezelter 2204 return;
902 tim 2116 }
903     delete sman_;
904 gezelter 1930 sman_ = sman;
905 gezelter 1490
906 gezelter 1930 Molecule* mol;
907     RigidBody* rb;
908     Atom* atom;
909     SimInfo::MoleculeIterator mi;
910     Molecule::RigidBodyIterator rbIter;
911     Molecule::AtomIterator atomIter;;
912    
913     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
914    
915 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
916     atom->setSnapshotManager(sman_);
917     }
918 gezelter 1930
919 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
920     rb->setSnapshotManager(sman_);
921     }
922 gezelter 1930 }
923 gezelter 1490
924 gezelter 2204 }
925 gezelter 1490
926 gezelter 2204 Vector3d SimInfo::getComVel(){
927 gezelter 1930 SimInfo::MoleculeIterator i;
928     Molecule* mol;
929 gezelter 1490
930 gezelter 1930 Vector3d comVel(0.0);
931     double totalMass = 0.0;
932 gezelter 1490
933 gezelter 1930
934     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
935 gezelter 2204 double mass = mol->getMass();
936     totalMass += mass;
937     comVel += mass * mol->getComVel();
938 gezelter 1930 }
939 gezelter 1490
940 gezelter 1930 #ifdef IS_MPI
941     double tmpMass = totalMass;
942     Vector3d tmpComVel(comVel);
943     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
944     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
945     #endif
946    
947     comVel /= totalMass;
948    
949     return comVel;
950 gezelter 2204 }
951 gezelter 1490
952 gezelter 2204 Vector3d SimInfo::getCom(){
953 gezelter 1930 SimInfo::MoleculeIterator i;
954     Molecule* mol;
955 gezelter 1490
956 gezelter 1930 Vector3d com(0.0);
957     double totalMass = 0.0;
958    
959     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
960 gezelter 2204 double mass = mol->getMass();
961     totalMass += mass;
962     com += mass * mol->getCom();
963 gezelter 1930 }
964 gezelter 1490
965     #ifdef IS_MPI
966 gezelter 1930 double tmpMass = totalMass;
967     Vector3d tmpCom(com);
968     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
969     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
970 gezelter 1490 #endif
971    
972 gezelter 1930 com /= totalMass;
973 gezelter 1490
974 gezelter 1930 return com;
975 gezelter 1490
976 gezelter 2204 }
977 gezelter 1930
978 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
979 gezelter 1930
980     return o;
981 gezelter 2204 }
982 chuckv 2252
983    
984     /*
985     Returns center of mass and center of mass velocity in one function call.
986     */
987    
988     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
989     SimInfo::MoleculeIterator i;
990     Molecule* mol;
991    
992    
993     double totalMass = 0.0;
994    
995 gezelter 1930
996 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
997     double mass = mol->getMass();
998     totalMass += mass;
999     com += mass * mol->getCom();
1000     comVel += mass * mol->getComVel();
1001     }
1002    
1003     #ifdef IS_MPI
1004     double tmpMass = totalMass;
1005     Vector3d tmpCom(com);
1006     Vector3d tmpComVel(comVel);
1007     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1008     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1009     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1010     #endif
1011    
1012     com /= totalMass;
1013     comVel /= totalMass;
1014     }
1015    
1016     /*
1017     Return intertia tensor for entire system and angular momentum Vector.
1018 chuckv 2256
1019    
1020     [ Ixx -Ixy -Ixz ]
1021     J =| -Iyx Iyy -Iyz |
1022     [ -Izx -Iyz Izz ]
1023 chuckv 2252 */
1024    
1025     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1026    
1027    
1028     double xx = 0.0;
1029     double yy = 0.0;
1030     double zz = 0.0;
1031     double xy = 0.0;
1032     double xz = 0.0;
1033     double yz = 0.0;
1034     Vector3d com(0.0);
1035     Vector3d comVel(0.0);
1036    
1037     getComAll(com, comVel);
1038    
1039     SimInfo::MoleculeIterator i;
1040     Molecule* mol;
1041    
1042     Vector3d thisq(0.0);
1043     Vector3d thisv(0.0);
1044    
1045     double thisMass = 0.0;
1046    
1047    
1048    
1049    
1050     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1051    
1052     thisq = mol->getCom()-com;
1053     thisv = mol->getComVel()-comVel;
1054     thisMass = mol->getMass();
1055     // Compute moment of intertia coefficients.
1056     xx += thisq[0]*thisq[0]*thisMass;
1057     yy += thisq[1]*thisq[1]*thisMass;
1058     zz += thisq[2]*thisq[2]*thisMass;
1059    
1060     // compute products of intertia
1061     xy += thisq[0]*thisq[1]*thisMass;
1062     xz += thisq[0]*thisq[2]*thisMass;
1063     yz += thisq[1]*thisq[2]*thisMass;
1064    
1065     angularMomentum += cross( thisq, thisv ) * thisMass;
1066    
1067     }
1068    
1069    
1070     inertiaTensor(0,0) = yy + zz;
1071     inertiaTensor(0,1) = -xy;
1072     inertiaTensor(0,2) = -xz;
1073     inertiaTensor(1,0) = -xy;
1074 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1075 chuckv 2252 inertiaTensor(1,2) = -yz;
1076     inertiaTensor(2,0) = -xz;
1077     inertiaTensor(2,1) = -yz;
1078     inertiaTensor(2,2) = xx + yy;
1079    
1080     #ifdef IS_MPI
1081     Mat3x3d tmpI(inertiaTensor);
1082     Vector3d tmpAngMom;
1083     MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1084     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1085     #endif
1086    
1087     return;
1088     }
1089    
1090     //Returns the angular momentum of the system
1091     Vector3d SimInfo::getAngularMomentum(){
1092    
1093     Vector3d com(0.0);
1094     Vector3d comVel(0.0);
1095     Vector3d angularMomentum(0.0);
1096    
1097     getComAll(com,comVel);
1098    
1099     SimInfo::MoleculeIterator i;
1100     Molecule* mol;
1101    
1102 chuckv 2256 Vector3d thisr(0.0);
1103     Vector3d thisp(0.0);
1104 chuckv 2252
1105 chuckv 2256 double thisMass;
1106 chuckv 2252
1107     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1108 chuckv 2256 thisMass = mol->getMass();
1109     thisr = mol->getCom()-com;
1110     thisp = (mol->getComVel()-comVel)*thisMass;
1111 chuckv 2252
1112 chuckv 2256 angularMomentum += cross( thisr, thisp );
1113    
1114 chuckv 2252 }
1115    
1116     #ifdef IS_MPI
1117     Vector3d tmpAngMom;
1118     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1119     #endif
1120    
1121     return angularMomentum;
1122     }
1123    
1124    
1125 gezelter 1930 }//end namespace oopse
1126