ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2404
Committed: Tue Nov 1 19:14:27 2005 UTC (18 years, 8 months ago) by chrisfen
File size: 36002 byte(s)
Log Message:
fixed a capitalization problem with NPT integrator initialization

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 gezelter 1490
52 tim 1492 #include "brains/SimInfo.hpp"
53 gezelter 1930 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
56 chrisfen 2305 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 gezelter 1930 #include "UseTheForce/doForces_interface.h"
58 chrisfen 2309 #include "UseTheForce/DarkSide/electrostatic_interface.h"
59 gezelter 1930 #include "UseTheForce/notifyCutoffs_interface.h"
60     #include "utils/MemoryUtils.hpp"
61 tim 1492 #include "utils/simError.h"
62 tim 2000 #include "selection/SelectionManager.hpp"
63 gezelter 1490
64 gezelter 1930 #ifdef IS_MPI
65     #include "UseTheForce/mpiComponentPlan.h"
66     #include "UseTheForce/DarkSide/simParallel_interface.h"
67     #endif
68 gezelter 1490
69 gezelter 1930 namespace oopse {
70 gezelter 1490
71 gezelter 2204 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72     ForceField* ff, Globals* simParams) :
73     stamps_(stamps), forceField_(ff), simParams_(simParams),
74     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
78     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
79     sman_(NULL), fortranInitialized_(false) {
80 gezelter 1490
81 gezelter 1930
82 gezelter 2204 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83     MoleculeStamp* molStamp;
84     int nMolWithSameStamp;
85     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 chrisfen 2344 int nGroups = 0; //total cutoff groups defined in meta-data file
87 gezelter 2204 CutoffGroupStamp* cgStamp;
88     RigidBodyStamp* rbStamp;
89     int nRigidAtoms = 0;
90 gezelter 1930
91 gezelter 2204 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92 gezelter 1930 molStamp = i->first;
93     nMolWithSameStamp = i->second;
94    
95     addMoleculeStamp(molStamp, nMolWithSameStamp);
96 gezelter 1490
97 gezelter 1930 //calculate atoms in molecules
98     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
99 gezelter 1490
100    
101 gezelter 1930 //calculate atoms in cutoff groups
102     int nAtomsInGroups = 0;
103     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104    
105     for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 gezelter 2204 cgStamp = molStamp->getCutoffGroup(j);
107     nAtomsInGroups += cgStamp->getNMembers();
108 gezelter 1930 }
109 gezelter 1490
110 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 chrisfen 2344
112 gezelter 1930 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
113 gezelter 1490
114 gezelter 1930 //calculate atoms in rigid bodies
115     int nAtomsInRigidBodies = 0;
116 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 gezelter 1930
118     for (int j=0; j < nRigidBodiesInStamp; j++) {
119 gezelter 2204 rbStamp = molStamp->getRigidBody(j);
120     nAtomsInRigidBodies += rbStamp->getNMembers();
121 gezelter 1930 }
122 gezelter 1490
123 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
125    
126 gezelter 2204 }
127 chrisfen 1636
128 chrisfen 2344 //every free atom (atom does not belong to cutoff groups) is a cutoff
129     //group therefore the total number of cutoff groups in the system is
130     //equal to the total number of atoms minus number of atoms belong to
131     //cutoff group defined in meta-data file plus the number of cutoff
132     //groups defined in meta-data file
133 gezelter 2204 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 gezelter 1490
135 chrisfen 2344 //every free atom (atom does not belong to rigid bodies) is an
136     //integrable object therefore the total number of integrable objects
137     //in the system is equal to the total number of atoms minus number of
138     //atoms belong to rigid body defined in meta-data file plus the number
139     //of rigid bodies defined in meta-data file
140     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141     + nGlobalRigidBodies_;
142    
143 gezelter 2204 nGlobalMols_ = molStampIds_.size();
144 gezelter 1490
145 gezelter 1930 #ifdef IS_MPI
146 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
147 gezelter 1930 #endif
148 tim 1976
149 gezelter 2204 }
150 gezelter 1490
151 gezelter 2204 SimInfo::~SimInfo() {
152 tim 2082 std::map<int, Molecule*>::iterator i;
153     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
154 gezelter 2204 delete i->second;
155 tim 2082 }
156     molecules_.clear();
157 tim 2187
158     delete stamps_;
159 gezelter 1930 delete sman_;
160     delete simParams_;
161     delete forceField_;
162 gezelter 2204 }
163 gezelter 1490
164 gezelter 2204 int SimInfo::getNGlobalConstraints() {
165 gezelter 1930 int nGlobalConstraints;
166     #ifdef IS_MPI
167     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
168     MPI_COMM_WORLD);
169     #else
170     nGlobalConstraints = nConstraints_;
171     #endif
172     return nGlobalConstraints;
173 gezelter 2204 }
174 gezelter 1490
175 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
176 gezelter 1930 MoleculeIterator i;
177 gezelter 1490
178 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
179     if (i == molecules_.end() ) {
180 gezelter 1490
181 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
182 gezelter 1930
183 gezelter 2204 nAtoms_ += mol->getNAtoms();
184     nBonds_ += mol->getNBonds();
185     nBends_ += mol->getNBends();
186     nTorsions_ += mol->getNTorsions();
187     nRigidBodies_ += mol->getNRigidBodies();
188     nIntegrableObjects_ += mol->getNIntegrableObjects();
189     nCutoffGroups_ += mol->getNCutoffGroups();
190     nConstraints_ += mol->getNConstraintPairs();
191 gezelter 1490
192 gezelter 2204 addExcludePairs(mol);
193 gezelter 1930
194 gezelter 2204 return true;
195 gezelter 1930 } else {
196 gezelter 2204 return false;
197 gezelter 1930 }
198 gezelter 2204 }
199 gezelter 1490
200 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
201 gezelter 1930 MoleculeIterator i;
202     i = molecules_.find(mol->getGlobalIndex());
203 gezelter 1490
204 gezelter 1930 if (i != molecules_.end() ) {
205 gezelter 1490
206 gezelter 2204 assert(mol == i->second);
207 gezelter 1930
208 gezelter 2204 nAtoms_ -= mol->getNAtoms();
209     nBonds_ -= mol->getNBonds();
210     nBends_ -= mol->getNBends();
211     nTorsions_ -= mol->getNTorsions();
212     nRigidBodies_ -= mol->getNRigidBodies();
213     nIntegrableObjects_ -= mol->getNIntegrableObjects();
214     nCutoffGroups_ -= mol->getNCutoffGroups();
215     nConstraints_ -= mol->getNConstraintPairs();
216 gezelter 1490
217 gezelter 2204 removeExcludePairs(mol);
218     molecules_.erase(mol->getGlobalIndex());
219 gezelter 1490
220 gezelter 2204 delete mol;
221 gezelter 1930
222 gezelter 2204 return true;
223 gezelter 1930 } else {
224 gezelter 2204 return false;
225 gezelter 1930 }
226    
227    
228 gezelter 2204 }
229 gezelter 1930
230    
231 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
232 gezelter 1930 i = molecules_.begin();
233     return i == molecules_.end() ? NULL : i->second;
234 gezelter 2204 }
235 gezelter 1930
236 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
237 gezelter 1930 ++i;
238     return i == molecules_.end() ? NULL : i->second;
239 gezelter 2204 }
240 gezelter 1490
241    
242 gezelter 2204 void SimInfo::calcNdf() {
243 gezelter 1930 int ndf_local;
244     MoleculeIterator i;
245     std::vector<StuntDouble*>::iterator j;
246     Molecule* mol;
247     StuntDouble* integrableObject;
248 gezelter 1490
249 gezelter 1930 ndf_local = 0;
250    
251     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
252 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
253     integrableObject = mol->nextIntegrableObject(j)) {
254 gezelter 1490
255 gezelter 2204 ndf_local += 3;
256 gezelter 1490
257 gezelter 2204 if (integrableObject->isDirectional()) {
258     if (integrableObject->isLinear()) {
259     ndf_local += 2;
260     } else {
261     ndf_local += 3;
262     }
263     }
264 gezelter 1930
265 gezelter 2204 }//end for (integrableObject)
266 gezelter 1930 }// end for (mol)
267    
268     // n_constraints is local, so subtract them on each processor
269     ndf_local -= nConstraints_;
270    
271     #ifdef IS_MPI
272     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273     #else
274     ndf_ = ndf_local;
275     #endif
276    
277     // nZconstraints_ is global, as are the 3 COM translations for the
278     // entire system:
279     ndf_ = ndf_ - 3 - nZconstraint_;
280    
281 gezelter 2204 }
282 gezelter 1490
283 gezelter 2204 void SimInfo::calcNdfRaw() {
284 gezelter 1930 int ndfRaw_local;
285 gezelter 1490
286 gezelter 1930 MoleculeIterator i;
287     std::vector<StuntDouble*>::iterator j;
288     Molecule* mol;
289     StuntDouble* integrableObject;
290    
291     // Raw degrees of freedom that we have to set
292     ndfRaw_local = 0;
293    
294     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296     integrableObject = mol->nextIntegrableObject(j)) {
297 gezelter 1930
298 gezelter 2204 ndfRaw_local += 3;
299 gezelter 1930
300 gezelter 2204 if (integrableObject->isDirectional()) {
301     if (integrableObject->isLinear()) {
302     ndfRaw_local += 2;
303     } else {
304     ndfRaw_local += 3;
305     }
306     }
307 gezelter 1930
308 gezelter 2204 }
309 gezelter 1930 }
310    
311     #ifdef IS_MPI
312     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
313     #else
314     ndfRaw_ = ndfRaw_local;
315     #endif
316 gezelter 2204 }
317 gezelter 1490
318 gezelter 2204 void SimInfo::calcNdfTrans() {
319 gezelter 1930 int ndfTrans_local;
320 gezelter 1490
321 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
322 gezelter 1490
323    
324 gezelter 1930 #ifdef IS_MPI
325     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
326     #else
327     ndfTrans_ = ndfTrans_local;
328     #endif
329 gezelter 1490
330 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
331    
332 gezelter 2204 }
333 gezelter 1490
334 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
335 gezelter 1930 std::vector<Bond*>::iterator bondIter;
336     std::vector<Bend*>::iterator bendIter;
337     std::vector<Torsion*>::iterator torsionIter;
338     Bond* bond;
339     Bend* bend;
340     Torsion* torsion;
341     int a;
342     int b;
343     int c;
344     int d;
345    
346     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
347 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
348     b = bond->getAtomB()->getGlobalIndex();
349     exclude_.addPair(a, b);
350 gezelter 1930 }
351 gezelter 1490
352 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
353 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
354     b = bend->getAtomB()->getGlobalIndex();
355     c = bend->getAtomC()->getGlobalIndex();
356 gezelter 1490
357 gezelter 2204 exclude_.addPair(a, b);
358     exclude_.addPair(a, c);
359     exclude_.addPair(b, c);
360 gezelter 1930 }
361 gezelter 1490
362 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
363 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
364     b = torsion->getAtomB()->getGlobalIndex();
365     c = torsion->getAtomC()->getGlobalIndex();
366     d = torsion->getAtomD()->getGlobalIndex();
367 gezelter 1490
368 gezelter 2204 exclude_.addPair(a, b);
369     exclude_.addPair(a, c);
370     exclude_.addPair(a, d);
371     exclude_.addPair(b, c);
372     exclude_.addPair(b, d);
373     exclude_.addPair(c, d);
374 gezelter 1490 }
375    
376 tim 2114 Molecule::RigidBodyIterator rbIter;
377     RigidBody* rb;
378     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
379 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
380     for (int i = 0; i < atoms.size() -1 ; ++i) {
381     for (int j = i + 1; j < atoms.size(); ++j) {
382     a = atoms[i]->getGlobalIndex();
383     b = atoms[j]->getGlobalIndex();
384     exclude_.addPair(a, b);
385     }
386     }
387 tim 2114 }
388    
389 gezelter 2204 }
390 gezelter 1930
391 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
392 gezelter 1930 std::vector<Bond*>::iterator bondIter;
393     std::vector<Bend*>::iterator bendIter;
394     std::vector<Torsion*>::iterator torsionIter;
395     Bond* bond;
396     Bend* bend;
397     Torsion* torsion;
398     int a;
399     int b;
400     int c;
401     int d;
402    
403     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
404 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
405     b = bond->getAtomB()->getGlobalIndex();
406     exclude_.removePair(a, b);
407 gezelter 1490 }
408 gezelter 1930
409     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
410 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
411     b = bend->getAtomB()->getGlobalIndex();
412     c = bend->getAtomC()->getGlobalIndex();
413 gezelter 1930
414 gezelter 2204 exclude_.removePair(a, b);
415     exclude_.removePair(a, c);
416     exclude_.removePair(b, c);
417 gezelter 1490 }
418 gezelter 1930
419     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
420 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
421     b = torsion->getAtomB()->getGlobalIndex();
422     c = torsion->getAtomC()->getGlobalIndex();
423     d = torsion->getAtomD()->getGlobalIndex();
424 gezelter 1930
425 gezelter 2204 exclude_.removePair(a, b);
426     exclude_.removePair(a, c);
427     exclude_.removePair(a, d);
428     exclude_.removePair(b, c);
429     exclude_.removePair(b, d);
430     exclude_.removePair(c, d);
431 gezelter 1930 }
432    
433 tim 2114 Molecule::RigidBodyIterator rbIter;
434     RigidBody* rb;
435     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
436 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
437     for (int i = 0; i < atoms.size() -1 ; ++i) {
438     for (int j = i + 1; j < atoms.size(); ++j) {
439     a = atoms[i]->getGlobalIndex();
440     b = atoms[j]->getGlobalIndex();
441     exclude_.removePair(a, b);
442     }
443     }
444 tim 2114 }
445    
446 gezelter 2204 }
447 gezelter 1490
448    
449 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
450 gezelter 1930 int curStampId;
451 gezelter 1490
452 gezelter 1930 //index from 0
453     curStampId = moleculeStamps_.size();
454 gezelter 1490
455 gezelter 1930 moleculeStamps_.push_back(molStamp);
456     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
457 gezelter 2204 }
458 gezelter 1490
459 gezelter 2204 void SimInfo::update() {
460 gezelter 1490
461 gezelter 1930 setupSimType();
462 gezelter 1490
463 gezelter 1930 #ifdef IS_MPI
464     setupFortranParallel();
465     #endif
466 gezelter 1490
467 gezelter 1930 setupFortranSim();
468 gezelter 1490
469 gezelter 1930 //setup fortran force field
470     /** @deprecate */
471     int isError = 0;
472 chrisfen 2297
473 chrisfen 2302 setupElectrostaticSummationMethod( isError );
474 chrisfen 2297
475 gezelter 1930 if(isError){
476 gezelter 2204 sprintf( painCave.errMsg,
477     "ForceField error: There was an error initializing the forceField in fortran.\n" );
478     painCave.isFatal = 1;
479     simError();
480 gezelter 1930 }
481 gezelter 1490
482 gezelter 1930
483     setupCutoff();
484 gezelter 1490
485 gezelter 1930 calcNdf();
486     calcNdfRaw();
487     calcNdfTrans();
488    
489     fortranInitialized_ = true;
490 gezelter 2204 }
491 gezelter 1490
492 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
493 gezelter 1930 SimInfo::MoleculeIterator mi;
494     Molecule* mol;
495     Molecule::AtomIterator ai;
496     Atom* atom;
497     std::set<AtomType*> atomTypes;
498 gezelter 1490
499 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
500 gezelter 1490
501 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
502     atomTypes.insert(atom->getAtomType());
503     }
504 gezelter 1930
505     }
506 gezelter 1490
507 gezelter 1930 return atomTypes;
508 gezelter 2204 }
509 gezelter 1490
510 gezelter 2204 void SimInfo::setupSimType() {
511 gezelter 1930 std::set<AtomType*>::iterator i;
512     std::set<AtomType*> atomTypes;
513     atomTypes = getUniqueAtomTypes();
514 gezelter 1490
515 gezelter 1930 int useLennardJones = 0;
516     int useElectrostatic = 0;
517     int useEAM = 0;
518     int useCharge = 0;
519     int useDirectional = 0;
520     int useDipole = 0;
521     int useGayBerne = 0;
522     int useSticky = 0;
523 chrisfen 2220 int useStickyPower = 0;
524 gezelter 1930 int useShape = 0;
525     int useFLARB = 0; //it is not in AtomType yet
526     int useDirectionalAtom = 0;
527     int useElectrostatics = 0;
528     //usePBC and useRF are from simParams
529 tim 2364 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
530 chrisfen 2310 int useRF;
531 chrisfen 2404 int useDW;
532 tim 2364 std::string myMethod;
533 gezelter 1490
534 chrisfen 2310 // set the useRF logical
535 tim 2364 useRF = 0;
536 chrisfen 2404 useDW = 0;
537 chrisfen 2390
538    
539 tim 2364 if (simParams_->haveElectrostaticSummationMethod()) {
540 chrisfen 2390 std::string myMethod = simParams_->getElectrostaticSummationMethod();
541     toUpper(myMethod);
542     if (myMethod == "REACTION_FIELD") {
543     useRF=1;
544 chrisfen 2404 } else {
545     if (myMethod == "DAMPED_WOLF") {
546     useDW = 1;
547     }
548 chrisfen 2390 }
549 tim 2364 }
550 chrisfen 2310
551 gezelter 1930 //loop over all of the atom types
552     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
553 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
554     useElectrostatic |= (*i)->isElectrostatic();
555     useEAM |= (*i)->isEAM();
556     useCharge |= (*i)->isCharge();
557     useDirectional |= (*i)->isDirectional();
558     useDipole |= (*i)->isDipole();
559     useGayBerne |= (*i)->isGayBerne();
560     useSticky |= (*i)->isSticky();
561 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
562 gezelter 2204 useShape |= (*i)->isShape();
563 gezelter 1930 }
564 gezelter 1490
565 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
566 gezelter 2204 useDirectionalAtom = 1;
567 gezelter 1930 }
568 gezelter 1490
569 gezelter 1930 if (useCharge || useDipole) {
570 gezelter 2204 useElectrostatics = 1;
571 gezelter 1930 }
572 gezelter 1490
573 gezelter 1930 #ifdef IS_MPI
574     int temp;
575 gezelter 1490
576 gezelter 1930 temp = usePBC;
577     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
578 gezelter 1490
579 gezelter 1930 temp = useDirectionalAtom;
580     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
581 gezelter 1490
582 gezelter 1930 temp = useLennardJones;
583     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
584 gezelter 1490
585 gezelter 1930 temp = useElectrostatics;
586     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
587 gezelter 1490
588 gezelter 1930 temp = useCharge;
589     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
590 gezelter 1490
591 gezelter 1930 temp = useDipole;
592     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
593 gezelter 1490
594 gezelter 1930 temp = useSticky;
595     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
596 gezelter 1490
597 chrisfen 2220 temp = useStickyPower;
598     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
599    
600 gezelter 1930 temp = useGayBerne;
601     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
602 gezelter 1490
603 gezelter 1930 temp = useEAM;
604     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
605 gezelter 1490
606 gezelter 1930 temp = useShape;
607     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
608    
609     temp = useFLARB;
610     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
611    
612 chrisfen 2310 temp = useRF;
613     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
614    
615 chrisfen 2404 temp = useDW;
616     MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
617    
618 gezelter 1490 #endif
619    
620 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
621     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
622     fInfo_.SIM_uses_LennardJones = useLennardJones;
623     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
624     fInfo_.SIM_uses_Charges = useCharge;
625     fInfo_.SIM_uses_Dipoles = useDipole;
626     fInfo_.SIM_uses_Sticky = useSticky;
627 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
628 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
629     fInfo_.SIM_uses_EAM = useEAM;
630     fInfo_.SIM_uses_Shapes = useShape;
631     fInfo_.SIM_uses_FLARB = useFLARB;
632 chrisfen 2310 fInfo_.SIM_uses_RF = useRF;
633 chrisfen 2404 fInfo_.SIM_uses_DampedWolf = useDW;
634 gezelter 1490
635 chrisfen 2390 if( myMethod == "REACTION_FIELD") {
636    
637 gezelter 2204 if (simParams_->haveDielectric()) {
638     fInfo_.dielect = simParams_->getDielectric();
639     } else {
640     sprintf(painCave.errMsg,
641     "SimSetup Error: No Dielectric constant was set.\n"
642     "\tYou are trying to use Reaction Field without"
643     "\tsetting a dielectric constant!\n");
644     painCave.isFatal = 1;
645     simError();
646 chrisfen 2390 }
647 gezelter 1930 }
648 chrisfen 2404
649 gezelter 2204 }
650 gezelter 1490
651 gezelter 2204 void SimInfo::setupFortranSim() {
652 gezelter 1930 int isError;
653     int nExclude;
654     std::vector<int> fortranGlobalGroupMembership;
655    
656     nExclude = exclude_.getSize();
657     isError = 0;
658 gezelter 1490
659 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
660     for (int i = 0; i < nGlobalAtoms_; i++) {
661 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
662 gezelter 1930 }
663 gezelter 1490
664 gezelter 1930 //calculate mass ratio of cutoff group
665     std::vector<double> mfact;
666     SimInfo::MoleculeIterator mi;
667     Molecule* mol;
668     Molecule::CutoffGroupIterator ci;
669     CutoffGroup* cg;
670     Molecule::AtomIterator ai;
671     Atom* atom;
672     double totalMass;
673    
674     //to avoid memory reallocation, reserve enough space for mfact
675     mfact.reserve(getNCutoffGroups());
676 gezelter 1490
677 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
678 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
679 gezelter 1490
680 gezelter 2204 totalMass = cg->getMass();
681     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
682 chrisfen 2344 // Check for massless groups - set mfact to 1 if true
683     if (totalMass != 0)
684     mfact.push_back(atom->getMass()/totalMass);
685     else
686     mfact.push_back( 1.0 );
687 gezelter 2204 }
688 gezelter 1490
689 gezelter 2204 }
690 gezelter 1930 }
691 gezelter 1490
692 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
693     std::vector<int> identArray;
694 gezelter 1490
695 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
696     identArray.reserve(getNAtoms());
697    
698     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
699 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
700     identArray.push_back(atom->getIdent());
701     }
702 gezelter 1930 }
703 gezelter 1490
704 gezelter 1930 //fill molMembershipArray
705     //molMembershipArray is filled by SimCreator
706     std::vector<int> molMembershipArray(nGlobalAtoms_);
707     for (int i = 0; i < nGlobalAtoms_; i++) {
708 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
709 gezelter 1930 }
710    
711     //setup fortran simulation
712     int nGlobalExcludes = 0;
713     int* globalExcludes = NULL;
714     int* excludeList = exclude_.getExcludeList();
715     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
716 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
717     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
718 gezelter 1490
719 gezelter 1930 if( isError ){
720 gezelter 1490
721 gezelter 2204 sprintf( painCave.errMsg,
722     "There was an error setting the simulation information in fortran.\n" );
723     painCave.isFatal = 1;
724     painCave.severity = OOPSE_ERROR;
725     simError();
726 gezelter 1930 }
727    
728     #ifdef IS_MPI
729     sprintf( checkPointMsg,
730 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
731 gezelter 1930 MPIcheckPoint();
732     #endif // is_mpi
733 gezelter 2204 }
734 gezelter 1490
735    
736 gezelter 1930 #ifdef IS_MPI
737 gezelter 2204 void SimInfo::setupFortranParallel() {
738 gezelter 1930
739     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
740     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
741     std::vector<int> localToGlobalCutoffGroupIndex;
742     SimInfo::MoleculeIterator mi;
743     Molecule::AtomIterator ai;
744     Molecule::CutoffGroupIterator ci;
745     Molecule* mol;
746     Atom* atom;
747     CutoffGroup* cg;
748     mpiSimData parallelData;
749     int isError;
750 gezelter 1490
751 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
752 gezelter 1490
753 gezelter 2204 //local index(index in DataStorge) of atom is important
754     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
755     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
756     }
757 gezelter 1490
758 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
759     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
760     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
761     }
762 gezelter 1930
763     }
764 gezelter 1490
765 gezelter 1930 //fill up mpiSimData struct
766     parallelData.nMolGlobal = getNGlobalMolecules();
767     parallelData.nMolLocal = getNMolecules();
768     parallelData.nAtomsGlobal = getNGlobalAtoms();
769     parallelData.nAtomsLocal = getNAtoms();
770     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
771     parallelData.nGroupsLocal = getNCutoffGroups();
772     parallelData.myNode = worldRank;
773     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
774 gezelter 1490
775 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
776     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
777     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
778     &localToGlobalCutoffGroupIndex[0], &isError);
779 gezelter 1490
780 gezelter 1930 if (isError) {
781 gezelter 2204 sprintf(painCave.errMsg,
782     "mpiRefresh errror: fortran didn't like something we gave it.\n");
783     painCave.isFatal = 1;
784     simError();
785 gezelter 1930 }
786 gezelter 1490
787 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
788     MPIcheckPoint();
789 gezelter 1490
790    
791 gezelter 2204 }
792 chrisfen 1636
793 gezelter 1930 #endif
794 chrisfen 1636
795 gezelter 2204 double SimInfo::calcMaxCutoffRadius() {
796 chrisfen 1636
797    
798 gezelter 1930 std::set<AtomType*> atomTypes;
799     std::set<AtomType*>::iterator i;
800     std::vector<double> cutoffRadius;
801 gezelter 1490
802 gezelter 1930 //get the unique atom types
803     atomTypes = getUniqueAtomTypes();
804    
805     //query the max cutoff radius among these atom types
806     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
807 gezelter 2204 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
808 gezelter 1930 }
809    
810     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
811 gezelter 1490 #ifdef IS_MPI
812 gezelter 1930 //pick the max cutoff radius among the processors
813 gezelter 1490 #endif
814    
815 gezelter 1930 return maxCutoffRadius;
816 gezelter 2204 }
817 gezelter 1930
818 gezelter 2204 void SimInfo::getCutoff(double& rcut, double& rsw) {
819 gezelter 1490
820 gezelter 1930 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
821    
822 tim 2364 if (!simParams_->haveCutoffRadius()){
823 gezelter 2204 sprintf(painCave.errMsg,
824 gezelter 1930 "SimCreator Warning: No value was set for the cutoffRadius.\n"
825     "\tOOPSE will use a default value of 15.0 angstroms"
826     "\tfor the cutoffRadius.\n");
827 gezelter 2204 painCave.isFatal = 0;
828     simError();
829     rcut = 15.0;
830     } else{
831 tim 2364 rcut = simParams_->getCutoffRadius();
832 gezelter 2204 }
833 gezelter 1930
834 tim 2364 if (!simParams_->haveSwitchingRadius()){
835 gezelter 2204 sprintf(painCave.errMsg,
836 gezelter 1930 "SimCreator Warning: No value was set for switchingRadius.\n"
837     "\tOOPSE will use a default value of\n"
838 chrisfen 2400 "\t0.85 * cutoffRadius for the switchingRadius\n");
839 gezelter 2204 painCave.isFatal = 0;
840     simError();
841 chrisfen 2400 rsw = 0.85 * rcut;
842 gezelter 2204 } else{
843 tim 2364 rsw = simParams_->getSwitchingRadius();
844 gezelter 2204 }
845 gezelter 1930
846     } else {
847 gezelter 2204 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
848     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
849 gezelter 1930
850 tim 2364 if (simParams_->haveCutoffRadius()) {
851     rcut = simParams_->getCutoffRadius();
852 gezelter 2204 } else {
853     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
854     rcut = calcMaxCutoffRadius();
855     }
856 gezelter 1930
857 tim 2364 if (simParams_->haveSwitchingRadius()) {
858     rsw = simParams_->getSwitchingRadius();
859 gezelter 2204 } else {
860     rsw = rcut;
861     }
862 gezelter 1930
863     }
864 gezelter 2204 }
865 tim 2010
866 gezelter 2285 void SimInfo::setupCutoff() {
867 tim 2010 getCutoff(rcut_, rsw_);
868 gezelter 1930 double rnblist = rcut_ + 1; // skin of neighbor list
869    
870     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
871 gezelter 2285
872     int cp = TRADITIONAL_CUTOFF_POLICY;
873     if (simParams_->haveCutoffPolicy()) {
874     std::string myPolicy = simParams_->getCutoffPolicy();
875 tim 2364 toUpper(myPolicy);
876 gezelter 2285 if (myPolicy == "MIX") {
877     cp = MIX_CUTOFF_POLICY;
878     } else {
879     if (myPolicy == "MAX") {
880     cp = MAX_CUTOFF_POLICY;
881     } else {
882     if (myPolicy == "TRADITIONAL") {
883     cp = TRADITIONAL_CUTOFF_POLICY;
884     } else {
885     // throw error
886     sprintf( painCave.errMsg,
887     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
888     painCave.isFatal = 1;
889     simError();
890     }
891     }
892     }
893     }
894 chuckv 2328
895    
896     if (simParams_->haveSkinThickness()) {
897     double skinThickness = simParams_->getSkinThickness();
898     }
899    
900 gezelter 2285 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
901 chrisfen 2309 // also send cutoff notification to electrostatics
902 chrisfen 2381 setElectrostaticCutoffRadius(&rcut_, &rsw_);
903 gezelter 2204 }
904 gezelter 1490
905 chrisfen 2302 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
906 chrisfen 2297
907     int errorOut;
908 chrisfen 2302 int esm = NONE;
909 chrisfen 2297 double alphaVal;
910 chrisfen 2309 double dielectric;
911 chrisfen 2297
912     errorOut = isError;
913 chrisfen 2309 alphaVal = simParams_->getDampingAlpha();
914     dielectric = simParams_->getDielectric();
915 chrisfen 2297
916 chrisfen 2302 if (simParams_->haveElectrostaticSummationMethod()) {
917 chrisfen 2303 std::string myMethod = simParams_->getElectrostaticSummationMethod();
918 tim 2364 toUpper(myMethod);
919 chrisfen 2302 if (myMethod == "NONE") {
920     esm = NONE;
921 chrisfen 2297 } else {
922 chrisfen 2302 if (myMethod == "UNDAMPED_WOLF") {
923     esm = UNDAMPED_WOLF;
924 chrisfen 2297 } else {
925 chrisfen 2302 if (myMethod == "DAMPED_WOLF") {
926 chrisfen 2303 esm = DAMPED_WOLF;
927 chrisfen 2297 if (!simParams_->haveDampingAlpha()) {
928     //throw error
929     sprintf( painCave.errMsg,
930 chrisfen 2309 "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
931 chrisfen 2297 painCave.isFatal = 0;
932     simError();
933     }
934     } else {
935 chrisfen 2390 if (myMethod == "REACTION_FIELD") {
936 chrisfen 2302 esm = REACTION_FIELD;
937 chrisfen 2297 } else {
938     // throw error
939     sprintf( painCave.errMsg,
940 chrisfen 2302 "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
941 chrisfen 2297 painCave.isFatal = 1;
942     simError();
943     }
944     }
945     }
946     }
947     }
948 chrisfen 2309 // let's pass some summation method variables to fortran
949     setElectrostaticSummationMethod( &esm );
950     setDampedWolfAlpha( &alphaVal );
951     setReactionFieldDielectric( &dielectric );
952     initFortranFF( &esm, &errorOut );
953 chrisfen 2297 }
954    
955 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
956 gezelter 1930 properties_.addProperty(genData);
957 gezelter 2204 }
958 gezelter 1490
959 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
960 gezelter 1930 properties_.removeProperty(propName);
961 gezelter 2204 }
962 gezelter 1490
963 gezelter 2204 void SimInfo::clearProperties() {
964 gezelter 1930 properties_.clearProperties();
965 gezelter 2204 }
966 gezelter 1490
967 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
968 gezelter 1930 return properties_.getPropertyNames();
969 gezelter 2204 }
970 gezelter 1930
971 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
972 gezelter 1930 return properties_.getProperties();
973 gezelter 2204 }
974 gezelter 1490
975 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
976 gezelter 1930 return properties_.getPropertyByName(propName);
977 gezelter 2204 }
978 gezelter 1490
979 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
980 tim 2116 if (sman_ == sman) {
981 gezelter 2204 return;
982 tim 2116 }
983     delete sman_;
984 gezelter 1930 sman_ = sman;
985 gezelter 1490
986 gezelter 1930 Molecule* mol;
987     RigidBody* rb;
988     Atom* atom;
989     SimInfo::MoleculeIterator mi;
990     Molecule::RigidBodyIterator rbIter;
991     Molecule::AtomIterator atomIter;;
992    
993     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
994    
995 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
996     atom->setSnapshotManager(sman_);
997     }
998 gezelter 1930
999 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1000     rb->setSnapshotManager(sman_);
1001     }
1002 gezelter 1930 }
1003 gezelter 1490
1004 gezelter 2204 }
1005 gezelter 1490
1006 gezelter 2204 Vector3d SimInfo::getComVel(){
1007 gezelter 1930 SimInfo::MoleculeIterator i;
1008     Molecule* mol;
1009 gezelter 1490
1010 gezelter 1930 Vector3d comVel(0.0);
1011     double totalMass = 0.0;
1012 gezelter 1490
1013 gezelter 1930
1014     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1015 gezelter 2204 double mass = mol->getMass();
1016     totalMass += mass;
1017     comVel += mass * mol->getComVel();
1018 gezelter 1930 }
1019 gezelter 1490
1020 gezelter 1930 #ifdef IS_MPI
1021     double tmpMass = totalMass;
1022     Vector3d tmpComVel(comVel);
1023     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1024     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1025     #endif
1026    
1027     comVel /= totalMass;
1028    
1029     return comVel;
1030 gezelter 2204 }
1031 gezelter 1490
1032 gezelter 2204 Vector3d SimInfo::getCom(){
1033 gezelter 1930 SimInfo::MoleculeIterator i;
1034     Molecule* mol;
1035 gezelter 1490
1036 gezelter 1930 Vector3d com(0.0);
1037     double totalMass = 0.0;
1038    
1039     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1040 gezelter 2204 double mass = mol->getMass();
1041     totalMass += mass;
1042     com += mass * mol->getCom();
1043 gezelter 1930 }
1044 gezelter 1490
1045     #ifdef IS_MPI
1046 gezelter 1930 double tmpMass = totalMass;
1047     Vector3d tmpCom(com);
1048     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1049     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1050 gezelter 1490 #endif
1051    
1052 gezelter 1930 com /= totalMass;
1053 gezelter 1490
1054 gezelter 1930 return com;
1055 gezelter 1490
1056 gezelter 2204 }
1057 gezelter 1930
1058 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1059 gezelter 1930
1060     return o;
1061 gezelter 2204 }
1062 chuckv 2252
1063    
1064     /*
1065     Returns center of mass and center of mass velocity in one function call.
1066     */
1067    
1068     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1069     SimInfo::MoleculeIterator i;
1070     Molecule* mol;
1071    
1072    
1073     double totalMass = 0.0;
1074    
1075 gezelter 1930
1076 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1077     double mass = mol->getMass();
1078     totalMass += mass;
1079     com += mass * mol->getCom();
1080     comVel += mass * mol->getComVel();
1081     }
1082    
1083     #ifdef IS_MPI
1084     double tmpMass = totalMass;
1085     Vector3d tmpCom(com);
1086     Vector3d tmpComVel(comVel);
1087     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1088     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1089     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1090     #endif
1091    
1092     com /= totalMass;
1093     comVel /= totalMass;
1094     }
1095    
1096     /*
1097     Return intertia tensor for entire system and angular momentum Vector.
1098 chuckv 2256
1099    
1100     [ Ixx -Ixy -Ixz ]
1101     J =| -Iyx Iyy -Iyz |
1102     [ -Izx -Iyz Izz ]
1103 chuckv 2252 */
1104    
1105     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1106    
1107    
1108     double xx = 0.0;
1109     double yy = 0.0;
1110     double zz = 0.0;
1111     double xy = 0.0;
1112     double xz = 0.0;
1113     double yz = 0.0;
1114     Vector3d com(0.0);
1115     Vector3d comVel(0.0);
1116    
1117     getComAll(com, comVel);
1118    
1119     SimInfo::MoleculeIterator i;
1120     Molecule* mol;
1121    
1122     Vector3d thisq(0.0);
1123     Vector3d thisv(0.0);
1124    
1125     double thisMass = 0.0;
1126    
1127    
1128    
1129    
1130     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1131    
1132     thisq = mol->getCom()-com;
1133     thisv = mol->getComVel()-comVel;
1134     thisMass = mol->getMass();
1135     // Compute moment of intertia coefficients.
1136     xx += thisq[0]*thisq[0]*thisMass;
1137     yy += thisq[1]*thisq[1]*thisMass;
1138     zz += thisq[2]*thisq[2]*thisMass;
1139    
1140     // compute products of intertia
1141     xy += thisq[0]*thisq[1]*thisMass;
1142     xz += thisq[0]*thisq[2]*thisMass;
1143     yz += thisq[1]*thisq[2]*thisMass;
1144    
1145     angularMomentum += cross( thisq, thisv ) * thisMass;
1146    
1147     }
1148    
1149    
1150     inertiaTensor(0,0) = yy + zz;
1151     inertiaTensor(0,1) = -xy;
1152     inertiaTensor(0,2) = -xz;
1153     inertiaTensor(1,0) = -xy;
1154 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1155 chuckv 2252 inertiaTensor(1,2) = -yz;
1156     inertiaTensor(2,0) = -xz;
1157     inertiaTensor(2,1) = -yz;
1158     inertiaTensor(2,2) = xx + yy;
1159    
1160     #ifdef IS_MPI
1161     Mat3x3d tmpI(inertiaTensor);
1162     Vector3d tmpAngMom;
1163     MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1164     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1165     #endif
1166    
1167     return;
1168     }
1169    
1170     //Returns the angular momentum of the system
1171     Vector3d SimInfo::getAngularMomentum(){
1172    
1173     Vector3d com(0.0);
1174     Vector3d comVel(0.0);
1175     Vector3d angularMomentum(0.0);
1176    
1177     getComAll(com,comVel);
1178    
1179     SimInfo::MoleculeIterator i;
1180     Molecule* mol;
1181    
1182 chuckv 2256 Vector3d thisr(0.0);
1183     Vector3d thisp(0.0);
1184 chuckv 2252
1185 chuckv 2256 double thisMass;
1186 chuckv 2252
1187     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 chuckv 2256 thisMass = mol->getMass();
1189     thisr = mol->getCom()-com;
1190     thisp = (mol->getComVel()-comVel)*thisMass;
1191 chuckv 2252
1192 chuckv 2256 angularMomentum += cross( thisr, thisp );
1193    
1194 chuckv 2252 }
1195    
1196     #ifdef IS_MPI
1197     Vector3d tmpAngMom;
1198     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1199     #endif
1200    
1201     return angularMomentum;
1202     }
1203    
1204    
1205 gezelter 1930 }//end namespace oopse
1206