ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2425
Committed: Fri Nov 11 15:22:11 2005 UTC (18 years, 8 months ago) by chrisfen
File size: 37653 byte(s)
Log Message:
added in a 5th order polynomial switching function option

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 gezelter 1490
52 tim 1492 #include "brains/SimInfo.hpp"
53 gezelter 1930 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
56 chrisfen 2305 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 chrisfen 2415 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58 chrisfen 2425 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 gezelter 1930 #include "UseTheForce/doForces_interface.h"
60 chrisfen 2309 #include "UseTheForce/DarkSide/electrostatic_interface.h"
61 gezelter 1930 #include "UseTheForce/notifyCutoffs_interface.h"
62 chrisfen 2425 #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 gezelter 1930 #include "utils/MemoryUtils.hpp"
64 tim 1492 #include "utils/simError.h"
65 tim 2000 #include "selection/SelectionManager.hpp"
66 gezelter 1490
67 gezelter 1930 #ifdef IS_MPI
68     #include "UseTheForce/mpiComponentPlan.h"
69     #include "UseTheForce/DarkSide/simParallel_interface.h"
70     #endif
71 gezelter 1490
72 gezelter 1930 namespace oopse {
73 gezelter 1490
74 gezelter 2204 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
75     ForceField* ff, Globals* simParams) :
76     stamps_(stamps), forceField_(ff), simParams_(simParams),
77     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
78     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
79     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
80     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
81     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
82     sman_(NULL), fortranInitialized_(false) {
83 gezelter 1490
84 gezelter 1930
85 gezelter 2204 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
86     MoleculeStamp* molStamp;
87     int nMolWithSameStamp;
88     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 chrisfen 2344 int nGroups = 0; //total cutoff groups defined in meta-data file
90 gezelter 2204 CutoffGroupStamp* cgStamp;
91     RigidBodyStamp* rbStamp;
92     int nRigidAtoms = 0;
93 gezelter 1930
94 gezelter 2204 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
95 gezelter 1930 molStamp = i->first;
96     nMolWithSameStamp = i->second;
97    
98     addMoleculeStamp(molStamp, nMolWithSameStamp);
99 gezelter 1490
100 gezelter 1930 //calculate atoms in molecules
101     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
102 gezelter 1490
103    
104 gezelter 1930 //calculate atoms in cutoff groups
105     int nAtomsInGroups = 0;
106     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
107    
108     for (int j=0; j < nCutoffGroupsInStamp; j++) {
109 gezelter 2204 cgStamp = molStamp->getCutoffGroup(j);
110     nAtomsInGroups += cgStamp->getNMembers();
111 gezelter 1930 }
112 gezelter 1490
113 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
114 chrisfen 2344
115 gezelter 1930 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
116 gezelter 1490
117 gezelter 1930 //calculate atoms in rigid bodies
118     int nAtomsInRigidBodies = 0;
119 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
120 gezelter 1930
121     for (int j=0; j < nRigidBodiesInStamp; j++) {
122 gezelter 2204 rbStamp = molStamp->getRigidBody(j);
123     nAtomsInRigidBodies += rbStamp->getNMembers();
124 gezelter 1930 }
125 gezelter 1490
126 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
128    
129 gezelter 2204 }
130 chrisfen 1636
131 chrisfen 2344 //every free atom (atom does not belong to cutoff groups) is a cutoff
132     //group therefore the total number of cutoff groups in the system is
133     //equal to the total number of atoms minus number of atoms belong to
134     //cutoff group defined in meta-data file plus the number of cutoff
135     //groups defined in meta-data file
136 gezelter 2204 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
137 gezelter 1490
138 chrisfen 2344 //every free atom (atom does not belong to rigid bodies) is an
139     //integrable object therefore the total number of integrable objects
140     //in the system is equal to the total number of atoms minus number of
141     //atoms belong to rigid body defined in meta-data file plus the number
142     //of rigid bodies defined in meta-data file
143     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
144     + nGlobalRigidBodies_;
145    
146 gezelter 2204 nGlobalMols_ = molStampIds_.size();
147 gezelter 1490
148 gezelter 1930 #ifdef IS_MPI
149 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
150 gezelter 1930 #endif
151 tim 1976
152 gezelter 2204 }
153 gezelter 1490
154 gezelter 2204 SimInfo::~SimInfo() {
155 tim 2082 std::map<int, Molecule*>::iterator i;
156     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
157 gezelter 2204 delete i->second;
158 tim 2082 }
159     molecules_.clear();
160 tim 2187
161     delete stamps_;
162 gezelter 1930 delete sman_;
163     delete simParams_;
164     delete forceField_;
165 gezelter 2204 }
166 gezelter 1490
167 gezelter 2204 int SimInfo::getNGlobalConstraints() {
168 gezelter 1930 int nGlobalConstraints;
169     #ifdef IS_MPI
170     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
171     MPI_COMM_WORLD);
172     #else
173     nGlobalConstraints = nConstraints_;
174     #endif
175     return nGlobalConstraints;
176 gezelter 2204 }
177 gezelter 1490
178 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
179 gezelter 1930 MoleculeIterator i;
180 gezelter 1490
181 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
182     if (i == molecules_.end() ) {
183 gezelter 1490
184 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
185 gezelter 1930
186 gezelter 2204 nAtoms_ += mol->getNAtoms();
187     nBonds_ += mol->getNBonds();
188     nBends_ += mol->getNBends();
189     nTorsions_ += mol->getNTorsions();
190     nRigidBodies_ += mol->getNRigidBodies();
191     nIntegrableObjects_ += mol->getNIntegrableObjects();
192     nCutoffGroups_ += mol->getNCutoffGroups();
193     nConstraints_ += mol->getNConstraintPairs();
194 gezelter 1490
195 gezelter 2204 addExcludePairs(mol);
196 gezelter 1930
197 gezelter 2204 return true;
198 gezelter 1930 } else {
199 gezelter 2204 return false;
200 gezelter 1930 }
201 gezelter 2204 }
202 gezelter 1490
203 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
204 gezelter 1930 MoleculeIterator i;
205     i = molecules_.find(mol->getGlobalIndex());
206 gezelter 1490
207 gezelter 1930 if (i != molecules_.end() ) {
208 gezelter 1490
209 gezelter 2204 assert(mol == i->second);
210 gezelter 1930
211 gezelter 2204 nAtoms_ -= mol->getNAtoms();
212     nBonds_ -= mol->getNBonds();
213     nBends_ -= mol->getNBends();
214     nTorsions_ -= mol->getNTorsions();
215     nRigidBodies_ -= mol->getNRigidBodies();
216     nIntegrableObjects_ -= mol->getNIntegrableObjects();
217     nCutoffGroups_ -= mol->getNCutoffGroups();
218     nConstraints_ -= mol->getNConstraintPairs();
219 gezelter 1490
220 gezelter 2204 removeExcludePairs(mol);
221     molecules_.erase(mol->getGlobalIndex());
222 gezelter 1490
223 gezelter 2204 delete mol;
224 gezelter 1930
225 gezelter 2204 return true;
226 gezelter 1930 } else {
227 gezelter 2204 return false;
228 gezelter 1930 }
229    
230    
231 gezelter 2204 }
232 gezelter 1930
233    
234 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
235 gezelter 1930 i = molecules_.begin();
236     return i == molecules_.end() ? NULL : i->second;
237 gezelter 2204 }
238 gezelter 1930
239 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
240 gezelter 1930 ++i;
241     return i == molecules_.end() ? NULL : i->second;
242 gezelter 2204 }
243 gezelter 1490
244    
245 gezelter 2204 void SimInfo::calcNdf() {
246 gezelter 1930 int ndf_local;
247     MoleculeIterator i;
248     std::vector<StuntDouble*>::iterator j;
249     Molecule* mol;
250     StuntDouble* integrableObject;
251 gezelter 1490
252 gezelter 1930 ndf_local = 0;
253    
254     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
255 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
256     integrableObject = mol->nextIntegrableObject(j)) {
257 gezelter 1490
258 gezelter 2204 ndf_local += 3;
259 gezelter 1490
260 gezelter 2204 if (integrableObject->isDirectional()) {
261     if (integrableObject->isLinear()) {
262     ndf_local += 2;
263     } else {
264     ndf_local += 3;
265     }
266     }
267 gezelter 1930
268 gezelter 2204 }//end for (integrableObject)
269 gezelter 1930 }// end for (mol)
270    
271     // n_constraints is local, so subtract them on each processor
272     ndf_local -= nConstraints_;
273    
274     #ifdef IS_MPI
275     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
276     #else
277     ndf_ = ndf_local;
278     #endif
279    
280     // nZconstraints_ is global, as are the 3 COM translations for the
281     // entire system:
282     ndf_ = ndf_ - 3 - nZconstraint_;
283    
284 gezelter 2204 }
285 gezelter 1490
286 gezelter 2204 void SimInfo::calcNdfRaw() {
287 gezelter 1930 int ndfRaw_local;
288 gezelter 1490
289 gezelter 1930 MoleculeIterator i;
290     std::vector<StuntDouble*>::iterator j;
291     Molecule* mol;
292     StuntDouble* integrableObject;
293    
294     // Raw degrees of freedom that we have to set
295     ndfRaw_local = 0;
296    
297     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
298 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
299     integrableObject = mol->nextIntegrableObject(j)) {
300 gezelter 1930
301 gezelter 2204 ndfRaw_local += 3;
302 gezelter 1930
303 gezelter 2204 if (integrableObject->isDirectional()) {
304     if (integrableObject->isLinear()) {
305     ndfRaw_local += 2;
306     } else {
307     ndfRaw_local += 3;
308     }
309     }
310 gezelter 1930
311 gezelter 2204 }
312 gezelter 1930 }
313    
314     #ifdef IS_MPI
315     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
316     #else
317     ndfRaw_ = ndfRaw_local;
318     #endif
319 gezelter 2204 }
320 gezelter 1490
321 gezelter 2204 void SimInfo::calcNdfTrans() {
322 gezelter 1930 int ndfTrans_local;
323 gezelter 1490
324 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
325 gezelter 1490
326    
327 gezelter 1930 #ifdef IS_MPI
328     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
329     #else
330     ndfTrans_ = ndfTrans_local;
331     #endif
332 gezelter 1490
333 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
334    
335 gezelter 2204 }
336 gezelter 1490
337 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
338 gezelter 1930 std::vector<Bond*>::iterator bondIter;
339     std::vector<Bend*>::iterator bendIter;
340     std::vector<Torsion*>::iterator torsionIter;
341     Bond* bond;
342     Bend* bend;
343     Torsion* torsion;
344     int a;
345     int b;
346     int c;
347     int d;
348    
349     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
350 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
351     b = bond->getAtomB()->getGlobalIndex();
352     exclude_.addPair(a, b);
353 gezelter 1930 }
354 gezelter 1490
355 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
356 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
357     b = bend->getAtomB()->getGlobalIndex();
358     c = bend->getAtomC()->getGlobalIndex();
359 gezelter 1490
360 gezelter 2204 exclude_.addPair(a, b);
361     exclude_.addPair(a, c);
362     exclude_.addPair(b, c);
363 gezelter 1930 }
364 gezelter 1490
365 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
366 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
367     b = torsion->getAtomB()->getGlobalIndex();
368     c = torsion->getAtomC()->getGlobalIndex();
369     d = torsion->getAtomD()->getGlobalIndex();
370 gezelter 1490
371 gezelter 2204 exclude_.addPair(a, b);
372     exclude_.addPair(a, c);
373     exclude_.addPair(a, d);
374     exclude_.addPair(b, c);
375     exclude_.addPair(b, d);
376     exclude_.addPair(c, d);
377 gezelter 1490 }
378    
379 tim 2114 Molecule::RigidBodyIterator rbIter;
380     RigidBody* rb;
381     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
382 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
383     for (int i = 0; i < atoms.size() -1 ; ++i) {
384     for (int j = i + 1; j < atoms.size(); ++j) {
385     a = atoms[i]->getGlobalIndex();
386     b = atoms[j]->getGlobalIndex();
387     exclude_.addPair(a, b);
388     }
389     }
390 tim 2114 }
391    
392 gezelter 2204 }
393 gezelter 1930
394 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
395 gezelter 1930 std::vector<Bond*>::iterator bondIter;
396     std::vector<Bend*>::iterator bendIter;
397     std::vector<Torsion*>::iterator torsionIter;
398     Bond* bond;
399     Bend* bend;
400     Torsion* torsion;
401     int a;
402     int b;
403     int c;
404     int d;
405    
406     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
407 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
408     b = bond->getAtomB()->getGlobalIndex();
409     exclude_.removePair(a, b);
410 gezelter 1490 }
411 gezelter 1930
412     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
413 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
414     b = bend->getAtomB()->getGlobalIndex();
415     c = bend->getAtomC()->getGlobalIndex();
416 gezelter 1930
417 gezelter 2204 exclude_.removePair(a, b);
418     exclude_.removePair(a, c);
419     exclude_.removePair(b, c);
420 gezelter 1490 }
421 gezelter 1930
422     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
423 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
424     b = torsion->getAtomB()->getGlobalIndex();
425     c = torsion->getAtomC()->getGlobalIndex();
426     d = torsion->getAtomD()->getGlobalIndex();
427 gezelter 1930
428 gezelter 2204 exclude_.removePair(a, b);
429     exclude_.removePair(a, c);
430     exclude_.removePair(a, d);
431     exclude_.removePair(b, c);
432     exclude_.removePair(b, d);
433     exclude_.removePair(c, d);
434 gezelter 1930 }
435    
436 tim 2114 Molecule::RigidBodyIterator rbIter;
437     RigidBody* rb;
438     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
439 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
440     for (int i = 0; i < atoms.size() -1 ; ++i) {
441     for (int j = i + 1; j < atoms.size(); ++j) {
442     a = atoms[i]->getGlobalIndex();
443     b = atoms[j]->getGlobalIndex();
444     exclude_.removePair(a, b);
445     }
446     }
447 tim 2114 }
448    
449 gezelter 2204 }
450 gezelter 1490
451    
452 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
453 gezelter 1930 int curStampId;
454 gezelter 1490
455 gezelter 1930 //index from 0
456     curStampId = moleculeStamps_.size();
457 gezelter 1490
458 gezelter 1930 moleculeStamps_.push_back(molStamp);
459     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
460 gezelter 2204 }
461 gezelter 1490
462 gezelter 2204 void SimInfo::update() {
463 gezelter 1490
464 gezelter 1930 setupSimType();
465 gezelter 1490
466 gezelter 1930 #ifdef IS_MPI
467     setupFortranParallel();
468     #endif
469 gezelter 1490
470 gezelter 1930 setupFortranSim();
471 gezelter 1490
472 gezelter 1930 //setup fortran force field
473     /** @deprecate */
474     int isError = 0;
475 chrisfen 2297
476 chrisfen 2302 setupElectrostaticSummationMethod( isError );
477 chrisfen 2425 setupSwitchingFunction();
478 chrisfen 2297
479 gezelter 1930 if(isError){
480 gezelter 2204 sprintf( painCave.errMsg,
481     "ForceField error: There was an error initializing the forceField in fortran.\n" );
482     painCave.isFatal = 1;
483     simError();
484 gezelter 1930 }
485 gezelter 1490
486 gezelter 1930
487     setupCutoff();
488 gezelter 1490
489 gezelter 1930 calcNdf();
490     calcNdfRaw();
491     calcNdfTrans();
492    
493     fortranInitialized_ = true;
494 gezelter 2204 }
495 gezelter 1490
496 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
497 gezelter 1930 SimInfo::MoleculeIterator mi;
498     Molecule* mol;
499     Molecule::AtomIterator ai;
500     Atom* atom;
501     std::set<AtomType*> atomTypes;
502 gezelter 1490
503 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
504 gezelter 1490
505 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
506     atomTypes.insert(atom->getAtomType());
507     }
508 gezelter 1930
509     }
510 gezelter 1490
511 gezelter 1930 return atomTypes;
512 gezelter 2204 }
513 gezelter 1490
514 gezelter 2204 void SimInfo::setupSimType() {
515 gezelter 1930 std::set<AtomType*>::iterator i;
516     std::set<AtomType*> atomTypes;
517     atomTypes = getUniqueAtomTypes();
518 gezelter 1490
519 gezelter 1930 int useLennardJones = 0;
520     int useElectrostatic = 0;
521     int useEAM = 0;
522     int useCharge = 0;
523     int useDirectional = 0;
524     int useDipole = 0;
525     int useGayBerne = 0;
526     int useSticky = 0;
527 chrisfen 2220 int useStickyPower = 0;
528 gezelter 1930 int useShape = 0;
529     int useFLARB = 0; //it is not in AtomType yet
530     int useDirectionalAtom = 0;
531     int useElectrostatics = 0;
532     //usePBC and useRF are from simParams
533 tim 2364 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
534 chrisfen 2310 int useRF;
535 chrisfen 2419 int useSF;
536 tim 2364 std::string myMethod;
537 gezelter 1490
538 chrisfen 2310 // set the useRF logical
539 tim 2364 useRF = 0;
540 chrisfen 2419 useSF = 0;
541 chrisfen 2390
542    
543 tim 2364 if (simParams_->haveElectrostaticSummationMethod()) {
544 chrisfen 2390 std::string myMethod = simParams_->getElectrostaticSummationMethod();
545     toUpper(myMethod);
546     if (myMethod == "REACTION_FIELD") {
547     useRF=1;
548 chrisfen 2404 } else {
549 chrisfen 2419 if (myMethod == "SHIFTED_FORCE") {
550     useSF = 1;
551 chrisfen 2404 }
552 chrisfen 2390 }
553 tim 2364 }
554 chrisfen 2310
555 gezelter 1930 //loop over all of the atom types
556     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
557 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
558     useElectrostatic |= (*i)->isElectrostatic();
559     useEAM |= (*i)->isEAM();
560     useCharge |= (*i)->isCharge();
561     useDirectional |= (*i)->isDirectional();
562     useDipole |= (*i)->isDipole();
563     useGayBerne |= (*i)->isGayBerne();
564     useSticky |= (*i)->isSticky();
565 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
566 gezelter 2204 useShape |= (*i)->isShape();
567 gezelter 1930 }
568 gezelter 1490
569 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
570 gezelter 2204 useDirectionalAtom = 1;
571 gezelter 1930 }
572 gezelter 1490
573 gezelter 1930 if (useCharge || useDipole) {
574 gezelter 2204 useElectrostatics = 1;
575 gezelter 1930 }
576 gezelter 1490
577 gezelter 1930 #ifdef IS_MPI
578     int temp;
579 gezelter 1490
580 gezelter 1930 temp = usePBC;
581     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
582 gezelter 1490
583 gezelter 1930 temp = useDirectionalAtom;
584     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
585 gezelter 1490
586 gezelter 1930 temp = useLennardJones;
587     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
588 gezelter 1490
589 gezelter 1930 temp = useElectrostatics;
590     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
591 gezelter 1490
592 gezelter 1930 temp = useCharge;
593     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
594 gezelter 1490
595 gezelter 1930 temp = useDipole;
596     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
597 gezelter 1490
598 gezelter 1930 temp = useSticky;
599     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
600 gezelter 1490
601 chrisfen 2220 temp = useStickyPower;
602     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
603    
604 gezelter 1930 temp = useGayBerne;
605     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
606 gezelter 1490
607 gezelter 1930 temp = useEAM;
608     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
609 gezelter 1490
610 gezelter 1930 temp = useShape;
611     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
612    
613     temp = useFLARB;
614     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
615    
616 chrisfen 2310 temp = useRF;
617     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
618    
619 chrisfen 2419 temp = useSF;
620     MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
621 chrisfen 2404
622 gezelter 1490 #endif
623    
624 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
625     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
626     fInfo_.SIM_uses_LennardJones = useLennardJones;
627     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
628     fInfo_.SIM_uses_Charges = useCharge;
629     fInfo_.SIM_uses_Dipoles = useDipole;
630     fInfo_.SIM_uses_Sticky = useSticky;
631 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
632 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
633     fInfo_.SIM_uses_EAM = useEAM;
634     fInfo_.SIM_uses_Shapes = useShape;
635     fInfo_.SIM_uses_FLARB = useFLARB;
636 chrisfen 2310 fInfo_.SIM_uses_RF = useRF;
637 chrisfen 2419 fInfo_.SIM_uses_SF = useSF;
638 gezelter 1490
639 chrisfen 2390 if( myMethod == "REACTION_FIELD") {
640    
641 gezelter 2204 if (simParams_->haveDielectric()) {
642     fInfo_.dielect = simParams_->getDielectric();
643     } else {
644     sprintf(painCave.errMsg,
645     "SimSetup Error: No Dielectric constant was set.\n"
646     "\tYou are trying to use Reaction Field without"
647     "\tsetting a dielectric constant!\n");
648     painCave.isFatal = 1;
649     simError();
650 chrisfen 2390 }
651 gezelter 1930 }
652 chrisfen 2404
653 gezelter 2204 }
654 gezelter 1490
655 gezelter 2204 void SimInfo::setupFortranSim() {
656 gezelter 1930 int isError;
657     int nExclude;
658     std::vector<int> fortranGlobalGroupMembership;
659    
660     nExclude = exclude_.getSize();
661     isError = 0;
662 gezelter 1490
663 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
664     for (int i = 0; i < nGlobalAtoms_; i++) {
665 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
666 gezelter 1930 }
667 gezelter 1490
668 gezelter 1930 //calculate mass ratio of cutoff group
669     std::vector<double> mfact;
670     SimInfo::MoleculeIterator mi;
671     Molecule* mol;
672     Molecule::CutoffGroupIterator ci;
673     CutoffGroup* cg;
674     Molecule::AtomIterator ai;
675     Atom* atom;
676     double totalMass;
677    
678     //to avoid memory reallocation, reserve enough space for mfact
679     mfact.reserve(getNCutoffGroups());
680 gezelter 1490
681 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
682 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
683 gezelter 1490
684 gezelter 2204 totalMass = cg->getMass();
685     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
686 chrisfen 2344 // Check for massless groups - set mfact to 1 if true
687     if (totalMass != 0)
688     mfact.push_back(atom->getMass()/totalMass);
689     else
690     mfact.push_back( 1.0 );
691 gezelter 2204 }
692 gezelter 1490
693 gezelter 2204 }
694 gezelter 1930 }
695 gezelter 1490
696 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
697     std::vector<int> identArray;
698 gezelter 1490
699 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
700     identArray.reserve(getNAtoms());
701    
702     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
703 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
704     identArray.push_back(atom->getIdent());
705     }
706 gezelter 1930 }
707 gezelter 1490
708 gezelter 1930 //fill molMembershipArray
709     //molMembershipArray is filled by SimCreator
710     std::vector<int> molMembershipArray(nGlobalAtoms_);
711     for (int i = 0; i < nGlobalAtoms_; i++) {
712 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
713 gezelter 1930 }
714    
715     //setup fortran simulation
716     int nGlobalExcludes = 0;
717     int* globalExcludes = NULL;
718     int* excludeList = exclude_.getExcludeList();
719     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
720 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
721     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
722 gezelter 1490
723 gezelter 1930 if( isError ){
724 gezelter 1490
725 gezelter 2204 sprintf( painCave.errMsg,
726     "There was an error setting the simulation information in fortran.\n" );
727     painCave.isFatal = 1;
728     painCave.severity = OOPSE_ERROR;
729     simError();
730 gezelter 1930 }
731    
732     #ifdef IS_MPI
733     sprintf( checkPointMsg,
734 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
735 gezelter 1930 MPIcheckPoint();
736     #endif // is_mpi
737 gezelter 2204 }
738 gezelter 1490
739    
740 gezelter 1930 #ifdef IS_MPI
741 gezelter 2204 void SimInfo::setupFortranParallel() {
742 gezelter 1930
743     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
744     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
745     std::vector<int> localToGlobalCutoffGroupIndex;
746     SimInfo::MoleculeIterator mi;
747     Molecule::AtomIterator ai;
748     Molecule::CutoffGroupIterator ci;
749     Molecule* mol;
750     Atom* atom;
751     CutoffGroup* cg;
752     mpiSimData parallelData;
753     int isError;
754 gezelter 1490
755 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
756 gezelter 1490
757 gezelter 2204 //local index(index in DataStorge) of atom is important
758     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
759     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
760     }
761 gezelter 1490
762 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
763     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
764     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
765     }
766 gezelter 1930
767     }
768 gezelter 1490
769 gezelter 1930 //fill up mpiSimData struct
770     parallelData.nMolGlobal = getNGlobalMolecules();
771     parallelData.nMolLocal = getNMolecules();
772     parallelData.nAtomsGlobal = getNGlobalAtoms();
773     parallelData.nAtomsLocal = getNAtoms();
774     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
775     parallelData.nGroupsLocal = getNCutoffGroups();
776     parallelData.myNode = worldRank;
777     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
778 gezelter 1490
779 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
780     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
781     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
782     &localToGlobalCutoffGroupIndex[0], &isError);
783 gezelter 1490
784 gezelter 1930 if (isError) {
785 gezelter 2204 sprintf(painCave.errMsg,
786     "mpiRefresh errror: fortran didn't like something we gave it.\n");
787     painCave.isFatal = 1;
788     simError();
789 gezelter 1930 }
790 gezelter 1490
791 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
792     MPIcheckPoint();
793 gezelter 1490
794    
795 gezelter 2204 }
796 chrisfen 1636
797 gezelter 1930 #endif
798 chrisfen 1636
799 gezelter 2204 double SimInfo::calcMaxCutoffRadius() {
800 chrisfen 1636
801    
802 gezelter 1930 std::set<AtomType*> atomTypes;
803     std::set<AtomType*>::iterator i;
804     std::vector<double> cutoffRadius;
805 gezelter 1490
806 gezelter 1930 //get the unique atom types
807     atomTypes = getUniqueAtomTypes();
808    
809     //query the max cutoff radius among these atom types
810     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
811 gezelter 2204 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
812 gezelter 1930 }
813    
814     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
815 gezelter 1490 #ifdef IS_MPI
816 gezelter 1930 //pick the max cutoff radius among the processors
817 gezelter 1490 #endif
818    
819 gezelter 1930 return maxCutoffRadius;
820 gezelter 2204 }
821 gezelter 1930
822 gezelter 2204 void SimInfo::getCutoff(double& rcut, double& rsw) {
823 gezelter 1490
824 gezelter 1930 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
825    
826 tim 2364 if (!simParams_->haveCutoffRadius()){
827 gezelter 2204 sprintf(painCave.errMsg,
828 gezelter 1930 "SimCreator Warning: No value was set for the cutoffRadius.\n"
829     "\tOOPSE will use a default value of 15.0 angstroms"
830     "\tfor the cutoffRadius.\n");
831 gezelter 2204 painCave.isFatal = 0;
832     simError();
833     rcut = 15.0;
834     } else{
835 tim 2364 rcut = simParams_->getCutoffRadius();
836 gezelter 2204 }
837 gezelter 1930
838 tim 2364 if (!simParams_->haveSwitchingRadius()){
839 gezelter 2204 sprintf(painCave.errMsg,
840 gezelter 1930 "SimCreator Warning: No value was set for switchingRadius.\n"
841     "\tOOPSE will use a default value of\n"
842 chrisfen 2400 "\t0.85 * cutoffRadius for the switchingRadius\n");
843 gezelter 2204 painCave.isFatal = 0;
844     simError();
845 chrisfen 2400 rsw = 0.85 * rcut;
846 gezelter 2204 } else{
847 tim 2364 rsw = simParams_->getSwitchingRadius();
848 gezelter 2204 }
849 gezelter 1930
850     } else {
851 gezelter 2204 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
852     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
853 gezelter 1930
854 tim 2364 if (simParams_->haveCutoffRadius()) {
855     rcut = simParams_->getCutoffRadius();
856 gezelter 2204 } else {
857     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
858     rcut = calcMaxCutoffRadius();
859     }
860 gezelter 1930
861 tim 2364 if (simParams_->haveSwitchingRadius()) {
862     rsw = simParams_->getSwitchingRadius();
863 gezelter 2204 } else {
864     rsw = rcut;
865     }
866 gezelter 1930
867     }
868 gezelter 2204 }
869 tim 2010
870 gezelter 2285 void SimInfo::setupCutoff() {
871 tim 2010 getCutoff(rcut_, rsw_);
872 gezelter 1930 double rnblist = rcut_ + 1; // skin of neighbor list
873    
874     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
875 gezelter 2285
876     int cp = TRADITIONAL_CUTOFF_POLICY;
877     if (simParams_->haveCutoffPolicy()) {
878     std::string myPolicy = simParams_->getCutoffPolicy();
879 tim 2364 toUpper(myPolicy);
880 gezelter 2285 if (myPolicy == "MIX") {
881     cp = MIX_CUTOFF_POLICY;
882     } else {
883     if (myPolicy == "MAX") {
884     cp = MAX_CUTOFF_POLICY;
885     } else {
886     if (myPolicy == "TRADITIONAL") {
887     cp = TRADITIONAL_CUTOFF_POLICY;
888     } else {
889     // throw error
890     sprintf( painCave.errMsg,
891     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
892     painCave.isFatal = 1;
893     simError();
894     }
895     }
896     }
897     }
898 chuckv 2328
899    
900     if (simParams_->haveSkinThickness()) {
901     double skinThickness = simParams_->getSkinThickness();
902     }
903    
904 gezelter 2285 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
905 chrisfen 2309 // also send cutoff notification to electrostatics
906 chrisfen 2381 setElectrostaticCutoffRadius(&rcut_, &rsw_);
907 gezelter 2204 }
908 gezelter 1490
909 chrisfen 2302 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
910 chrisfen 2297
911     int errorOut;
912 chrisfen 2302 int esm = NONE;
913 chrisfen 2408 int sm = UNDAMPED;
914 chrisfen 2297 double alphaVal;
915 chrisfen 2309 double dielectric;
916 chrisfen 2297
917     errorOut = isError;
918 chrisfen 2309 alphaVal = simParams_->getDampingAlpha();
919     dielectric = simParams_->getDielectric();
920 chrisfen 2297
921 chrisfen 2302 if (simParams_->haveElectrostaticSummationMethod()) {
922 chrisfen 2303 std::string myMethod = simParams_->getElectrostaticSummationMethod();
923 tim 2364 toUpper(myMethod);
924 chrisfen 2302 if (myMethod == "NONE") {
925     esm = NONE;
926 chrisfen 2297 } else {
927 chrisfen 2408 if (myMethod == "SWITCHING_FUNCTION") {
928     esm = SWITCHING_FUNCTION;
929 chrisfen 2297 } else {
930 chrisfen 2408 if (myMethod == "SHIFTED_POTENTIAL") {
931     esm = SHIFTED_POTENTIAL;
932     } else {
933     if (myMethod == "SHIFTED_FORCE") {
934     esm = SHIFTED_FORCE;
935 chrisfen 2297 } else {
936 chrisfen 2408 if (myMethod == "REACTION_FIELD") {
937     esm = REACTION_FIELD;
938     } else {
939     // throw error
940     sprintf( painCave.errMsg,
941     "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
942     painCave.isFatal = 1;
943     simError();
944     }
945     }
946     }
947 chrisfen 2297 }
948     }
949     }
950 chrisfen 2408
951 chrisfen 2415 if (simParams_->haveElectrostaticScreeningMethod()) {
952     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
953 chrisfen 2408 toUpper(myScreen);
954     if (myScreen == "UNDAMPED") {
955     sm = UNDAMPED;
956     } else {
957     if (myScreen == "DAMPED") {
958     sm = DAMPED;
959     if (!simParams_->haveDampingAlpha()) {
960     //throw error
961     sprintf( painCave.errMsg,
962     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
963     painCave.isFatal = 0;
964     simError();
965     }
966 chrisfen 2415 } else {
967     // throw error
968     sprintf( painCave.errMsg,
969     "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
970     painCave.isFatal = 1;
971     simError();
972 chrisfen 2408 }
973     }
974     }
975 chrisfen 2415
976 chrisfen 2309 // let's pass some summation method variables to fortran
977     setElectrostaticSummationMethod( &esm );
978 chrisfen 2408 setScreeningMethod( &sm );
979     setDampingAlpha( &alphaVal );
980 chrisfen 2309 setReactionFieldDielectric( &dielectric );
981     initFortranFF( &esm, &errorOut );
982 chrisfen 2297 }
983    
984 chrisfen 2425 void SimInfo::setupSwitchingFunction() {
985     int ft = CUBIC;
986    
987     if (simParams_->haveSwitchingFunctionType()) {
988     std::string funcType = simParams_->getSwitchingFunctionType();
989     toUpper(funcType);
990     if (funcType == "CUBIC") {
991     ft = CUBIC;
992     } else {
993     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
994     ft = FIFTH_ORDER_POLY;
995     } else {
996     // throw error
997     sprintf( painCave.errMsg,
998     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
999     painCave.isFatal = 1;
1000     simError();
1001     }
1002     }
1003     }
1004    
1005     // send switching function notification to switcheroo
1006     setFunctionType(&ft);
1007    
1008     }
1009    
1010 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
1011 gezelter 1930 properties_.addProperty(genData);
1012 gezelter 2204 }
1013 gezelter 1490
1014 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
1015 gezelter 1930 properties_.removeProperty(propName);
1016 gezelter 2204 }
1017 gezelter 1490
1018 gezelter 2204 void SimInfo::clearProperties() {
1019 gezelter 1930 properties_.clearProperties();
1020 gezelter 2204 }
1021 gezelter 1490
1022 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
1023 gezelter 1930 return properties_.getPropertyNames();
1024 gezelter 2204 }
1025 gezelter 1930
1026 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
1027 gezelter 1930 return properties_.getProperties();
1028 gezelter 2204 }
1029 gezelter 1490
1030 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1031 gezelter 1930 return properties_.getPropertyByName(propName);
1032 gezelter 2204 }
1033 gezelter 1490
1034 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1035 tim 2116 if (sman_ == sman) {
1036 gezelter 2204 return;
1037 tim 2116 }
1038     delete sman_;
1039 gezelter 1930 sman_ = sman;
1040 gezelter 1490
1041 gezelter 1930 Molecule* mol;
1042     RigidBody* rb;
1043     Atom* atom;
1044     SimInfo::MoleculeIterator mi;
1045     Molecule::RigidBodyIterator rbIter;
1046     Molecule::AtomIterator atomIter;;
1047    
1048     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1049    
1050 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1051     atom->setSnapshotManager(sman_);
1052     }
1053 gezelter 1930
1054 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1055     rb->setSnapshotManager(sman_);
1056     }
1057 gezelter 1930 }
1058 gezelter 1490
1059 gezelter 2204 }
1060 gezelter 1490
1061 gezelter 2204 Vector3d SimInfo::getComVel(){
1062 gezelter 1930 SimInfo::MoleculeIterator i;
1063     Molecule* mol;
1064 gezelter 1490
1065 gezelter 1930 Vector3d comVel(0.0);
1066     double totalMass = 0.0;
1067 gezelter 1490
1068 gezelter 1930
1069     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1070 gezelter 2204 double mass = mol->getMass();
1071     totalMass += mass;
1072     comVel += mass * mol->getComVel();
1073 gezelter 1930 }
1074 gezelter 1490
1075 gezelter 1930 #ifdef IS_MPI
1076     double tmpMass = totalMass;
1077     Vector3d tmpComVel(comVel);
1078     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1079     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1080     #endif
1081    
1082     comVel /= totalMass;
1083    
1084     return comVel;
1085 gezelter 2204 }
1086 gezelter 1490
1087 gezelter 2204 Vector3d SimInfo::getCom(){
1088 gezelter 1930 SimInfo::MoleculeIterator i;
1089     Molecule* mol;
1090 gezelter 1490
1091 gezelter 1930 Vector3d com(0.0);
1092     double totalMass = 0.0;
1093    
1094     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1095 gezelter 2204 double mass = mol->getMass();
1096     totalMass += mass;
1097     com += mass * mol->getCom();
1098 gezelter 1930 }
1099 gezelter 1490
1100     #ifdef IS_MPI
1101 gezelter 1930 double tmpMass = totalMass;
1102     Vector3d tmpCom(com);
1103     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1104     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1105 gezelter 1490 #endif
1106    
1107 gezelter 1930 com /= totalMass;
1108 gezelter 1490
1109 gezelter 1930 return com;
1110 gezelter 1490
1111 gezelter 2204 }
1112 gezelter 1930
1113 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1114 gezelter 1930
1115     return o;
1116 gezelter 2204 }
1117 chuckv 2252
1118    
1119     /*
1120     Returns center of mass and center of mass velocity in one function call.
1121     */
1122    
1123     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1124     SimInfo::MoleculeIterator i;
1125     Molecule* mol;
1126    
1127    
1128     double totalMass = 0.0;
1129    
1130 gezelter 1930
1131 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1132     double mass = mol->getMass();
1133     totalMass += mass;
1134     com += mass * mol->getCom();
1135     comVel += mass * mol->getComVel();
1136     }
1137    
1138     #ifdef IS_MPI
1139     double tmpMass = totalMass;
1140     Vector3d tmpCom(com);
1141     Vector3d tmpComVel(comVel);
1142     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1143     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1144     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1145     #endif
1146    
1147     com /= totalMass;
1148     comVel /= totalMass;
1149     }
1150    
1151     /*
1152     Return intertia tensor for entire system and angular momentum Vector.
1153 chuckv 2256
1154    
1155     [ Ixx -Ixy -Ixz ]
1156     J =| -Iyx Iyy -Iyz |
1157     [ -Izx -Iyz Izz ]
1158 chuckv 2252 */
1159    
1160     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1161    
1162    
1163     double xx = 0.0;
1164     double yy = 0.0;
1165     double zz = 0.0;
1166     double xy = 0.0;
1167     double xz = 0.0;
1168     double yz = 0.0;
1169     Vector3d com(0.0);
1170     Vector3d comVel(0.0);
1171    
1172     getComAll(com, comVel);
1173    
1174     SimInfo::MoleculeIterator i;
1175     Molecule* mol;
1176    
1177     Vector3d thisq(0.0);
1178     Vector3d thisv(0.0);
1179    
1180     double thisMass = 0.0;
1181    
1182    
1183    
1184    
1185     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1186    
1187     thisq = mol->getCom()-com;
1188     thisv = mol->getComVel()-comVel;
1189     thisMass = mol->getMass();
1190     // Compute moment of intertia coefficients.
1191     xx += thisq[0]*thisq[0]*thisMass;
1192     yy += thisq[1]*thisq[1]*thisMass;
1193     zz += thisq[2]*thisq[2]*thisMass;
1194    
1195     // compute products of intertia
1196     xy += thisq[0]*thisq[1]*thisMass;
1197     xz += thisq[0]*thisq[2]*thisMass;
1198     yz += thisq[1]*thisq[2]*thisMass;
1199    
1200     angularMomentum += cross( thisq, thisv ) * thisMass;
1201    
1202     }
1203    
1204    
1205     inertiaTensor(0,0) = yy + zz;
1206     inertiaTensor(0,1) = -xy;
1207     inertiaTensor(0,2) = -xz;
1208     inertiaTensor(1,0) = -xy;
1209 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1210 chuckv 2252 inertiaTensor(1,2) = -yz;
1211     inertiaTensor(2,0) = -xz;
1212     inertiaTensor(2,1) = -yz;
1213     inertiaTensor(2,2) = xx + yy;
1214    
1215     #ifdef IS_MPI
1216     Mat3x3d tmpI(inertiaTensor);
1217     Vector3d tmpAngMom;
1218     MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1219     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1220     #endif
1221    
1222     return;
1223     }
1224    
1225     //Returns the angular momentum of the system
1226     Vector3d SimInfo::getAngularMomentum(){
1227    
1228     Vector3d com(0.0);
1229     Vector3d comVel(0.0);
1230     Vector3d angularMomentum(0.0);
1231    
1232     getComAll(com,comVel);
1233    
1234     SimInfo::MoleculeIterator i;
1235     Molecule* mol;
1236    
1237 chuckv 2256 Vector3d thisr(0.0);
1238     Vector3d thisp(0.0);
1239 chuckv 2252
1240 chuckv 2256 double thisMass;
1241 chuckv 2252
1242     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1243 chuckv 2256 thisMass = mol->getMass();
1244     thisr = mol->getCom()-com;
1245     thisp = (mol->getComVel()-comVel)*thisMass;
1246 chuckv 2252
1247 chuckv 2256 angularMomentum += cross( thisr, thisp );
1248    
1249 chuckv 2252 }
1250    
1251     #ifdef IS_MPI
1252     Vector3d tmpAngMom;
1253     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1254     #endif
1255    
1256     return angularMomentum;
1257     }
1258    
1259    
1260 gezelter 1930 }//end namespace oopse
1261