ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2448
Committed: Wed Nov 16 23:10:02 2005 UTC (18 years, 8 months ago) by tim
File size: 43157 byte(s)
Log Message:
OptionSectionParser get compiled

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 tim 2448 #include <map>
52 gezelter 1490
53 tim 1492 #include "brains/SimInfo.hpp"
54 gezelter 1930 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
57 chrisfen 2305 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 chrisfen 2415 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 chrisfen 2425 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 gezelter 1930 #include "UseTheForce/doForces_interface.h"
61 chrisfen 2309 #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 gezelter 1930 #include "UseTheForce/notifyCutoffs_interface.h"
63 chrisfen 2425 #include "UseTheForce/DarkSide/switcheroo_interface.h"
64 gezelter 1930 #include "utils/MemoryUtils.hpp"
65 tim 1492 #include "utils/simError.h"
66 tim 2000 #include "selection/SelectionManager.hpp"
67 gezelter 1490
68 gezelter 1930 #ifdef IS_MPI
69     #include "UseTheForce/mpiComponentPlan.h"
70     #include "UseTheForce/DarkSide/simParallel_interface.h"
71     #endif
72 gezelter 1490
73 gezelter 1930 namespace oopse {
74 tim 2448 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
75     std::map<int, std::set<int> >::iterator i = container.find(index);
76     std::set<int> result;
77     if (i != container.end()) {
78     result = i->second;
79     }
80 gezelter 1490
81 tim 2448 return result;
82     }
83    
84 gezelter 2204 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
85     ForceField* ff, Globals* simParams) :
86     stamps_(stamps), forceField_(ff), simParams_(simParams),
87     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
91     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
92     sman_(NULL), fortranInitialized_(false) {
93 gezelter 1490
94 gezelter 1930
95 gezelter 2204 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
96     MoleculeStamp* molStamp;
97     int nMolWithSameStamp;
98     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
99 chrisfen 2344 int nGroups = 0; //total cutoff groups defined in meta-data file
100 gezelter 2204 CutoffGroupStamp* cgStamp;
101     RigidBodyStamp* rbStamp;
102     int nRigidAtoms = 0;
103 gezelter 1930
104 gezelter 2204 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
105 gezelter 1930 molStamp = i->first;
106     nMolWithSameStamp = i->second;
107    
108     addMoleculeStamp(molStamp, nMolWithSameStamp);
109 gezelter 1490
110 gezelter 1930 //calculate atoms in molecules
111     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
112 gezelter 1490
113    
114 gezelter 1930 //calculate atoms in cutoff groups
115     int nAtomsInGroups = 0;
116     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
117    
118     for (int j=0; j < nCutoffGroupsInStamp; j++) {
119 gezelter 2204 cgStamp = molStamp->getCutoffGroup(j);
120     nAtomsInGroups += cgStamp->getNMembers();
121 gezelter 1930 }
122 gezelter 1490
123 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
124 chrisfen 2344
125 gezelter 1930 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
126 gezelter 1490
127 gezelter 1930 //calculate atoms in rigid bodies
128     int nAtomsInRigidBodies = 0;
129 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
130 gezelter 1930
131     for (int j=0; j < nRigidBodiesInStamp; j++) {
132 gezelter 2204 rbStamp = molStamp->getRigidBody(j);
133     nAtomsInRigidBodies += rbStamp->getNMembers();
134 gezelter 1930 }
135 gezelter 1490
136 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
137     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
138    
139 gezelter 2204 }
140 chrisfen 1636
141 chrisfen 2344 //every free atom (atom does not belong to cutoff groups) is a cutoff
142     //group therefore the total number of cutoff groups in the system is
143     //equal to the total number of atoms minus number of atoms belong to
144     //cutoff group defined in meta-data file plus the number of cutoff
145     //groups defined in meta-data file
146 gezelter 2204 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
147 gezelter 1490
148 chrisfen 2344 //every free atom (atom does not belong to rigid bodies) is an
149     //integrable object therefore the total number of integrable objects
150     //in the system is equal to the total number of atoms minus number of
151     //atoms belong to rigid body defined in meta-data file plus the number
152     //of rigid bodies defined in meta-data file
153     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
154     + nGlobalRigidBodies_;
155    
156 gezelter 2204 nGlobalMols_ = molStampIds_.size();
157 gezelter 1490
158 gezelter 1930 #ifdef IS_MPI
159 gezelter 2204 molToProcMap_.resize(nGlobalMols_);
160 gezelter 1930 #endif
161 tim 1976
162 gezelter 2204 }
163 gezelter 1490
164 gezelter 2204 SimInfo::~SimInfo() {
165 tim 2082 std::map<int, Molecule*>::iterator i;
166     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
167 gezelter 2204 delete i->second;
168 tim 2082 }
169     molecules_.clear();
170 tim 2187
171     delete stamps_;
172 gezelter 1930 delete sman_;
173     delete simParams_;
174     delete forceField_;
175 gezelter 2204 }
176 gezelter 1490
177 gezelter 2204 int SimInfo::getNGlobalConstraints() {
178 gezelter 1930 int nGlobalConstraints;
179     #ifdef IS_MPI
180     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
181     MPI_COMM_WORLD);
182     #else
183     nGlobalConstraints = nConstraints_;
184     #endif
185     return nGlobalConstraints;
186 gezelter 2204 }
187 gezelter 1490
188 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
189 gezelter 1930 MoleculeIterator i;
190 gezelter 1490
191 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
192     if (i == molecules_.end() ) {
193 gezelter 1490
194 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
195 gezelter 1930
196 gezelter 2204 nAtoms_ += mol->getNAtoms();
197     nBonds_ += mol->getNBonds();
198     nBends_ += mol->getNBends();
199     nTorsions_ += mol->getNTorsions();
200     nRigidBodies_ += mol->getNRigidBodies();
201     nIntegrableObjects_ += mol->getNIntegrableObjects();
202     nCutoffGroups_ += mol->getNCutoffGroups();
203     nConstraints_ += mol->getNConstraintPairs();
204 gezelter 1490
205 gezelter 2204 addExcludePairs(mol);
206 gezelter 1930
207 gezelter 2204 return true;
208 gezelter 1930 } else {
209 gezelter 2204 return false;
210 gezelter 1930 }
211 gezelter 2204 }
212 gezelter 1490
213 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
214 gezelter 1930 MoleculeIterator i;
215     i = molecules_.find(mol->getGlobalIndex());
216 gezelter 1490
217 gezelter 1930 if (i != molecules_.end() ) {
218 gezelter 1490
219 gezelter 2204 assert(mol == i->second);
220 gezelter 1930
221 gezelter 2204 nAtoms_ -= mol->getNAtoms();
222     nBonds_ -= mol->getNBonds();
223     nBends_ -= mol->getNBends();
224     nTorsions_ -= mol->getNTorsions();
225     nRigidBodies_ -= mol->getNRigidBodies();
226     nIntegrableObjects_ -= mol->getNIntegrableObjects();
227     nCutoffGroups_ -= mol->getNCutoffGroups();
228     nConstraints_ -= mol->getNConstraintPairs();
229 gezelter 1490
230 gezelter 2204 removeExcludePairs(mol);
231     molecules_.erase(mol->getGlobalIndex());
232 gezelter 1490
233 gezelter 2204 delete mol;
234 gezelter 1930
235 gezelter 2204 return true;
236 gezelter 1930 } else {
237 gezelter 2204 return false;
238 gezelter 1930 }
239    
240    
241 gezelter 2204 }
242 gezelter 1930
243    
244 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
245 gezelter 1930 i = molecules_.begin();
246     return i == molecules_.end() ? NULL : i->second;
247 gezelter 2204 }
248 gezelter 1930
249 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
250 gezelter 1930 ++i;
251     return i == molecules_.end() ? NULL : i->second;
252 gezelter 2204 }
253 gezelter 1490
254    
255 gezelter 2204 void SimInfo::calcNdf() {
256 gezelter 1930 int ndf_local;
257     MoleculeIterator i;
258     std::vector<StuntDouble*>::iterator j;
259     Molecule* mol;
260     StuntDouble* integrableObject;
261 gezelter 1490
262 gezelter 1930 ndf_local = 0;
263    
264     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
265 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
266     integrableObject = mol->nextIntegrableObject(j)) {
267 gezelter 1490
268 gezelter 2204 ndf_local += 3;
269 gezelter 1490
270 gezelter 2204 if (integrableObject->isDirectional()) {
271     if (integrableObject->isLinear()) {
272     ndf_local += 2;
273     } else {
274     ndf_local += 3;
275     }
276     }
277 gezelter 1930
278 gezelter 2204 }//end for (integrableObject)
279 gezelter 1930 }// end for (mol)
280    
281     // n_constraints is local, so subtract them on each processor
282     ndf_local -= nConstraints_;
283    
284     #ifdef IS_MPI
285     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286     #else
287     ndf_ = ndf_local;
288     #endif
289    
290     // nZconstraints_ is global, as are the 3 COM translations for the
291     // entire system:
292     ndf_ = ndf_ - 3 - nZconstraint_;
293    
294 gezelter 2204 }
295 gezelter 1490
296 gezelter 2204 void SimInfo::calcNdfRaw() {
297 gezelter 1930 int ndfRaw_local;
298 gezelter 1490
299 gezelter 1930 MoleculeIterator i;
300     std::vector<StuntDouble*>::iterator j;
301     Molecule* mol;
302     StuntDouble* integrableObject;
303    
304     // Raw degrees of freedom that we have to set
305     ndfRaw_local = 0;
306    
307     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
308 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
309     integrableObject = mol->nextIntegrableObject(j)) {
310 gezelter 1930
311 gezelter 2204 ndfRaw_local += 3;
312 gezelter 1930
313 gezelter 2204 if (integrableObject->isDirectional()) {
314     if (integrableObject->isLinear()) {
315     ndfRaw_local += 2;
316     } else {
317     ndfRaw_local += 3;
318     }
319     }
320 gezelter 1930
321 gezelter 2204 }
322 gezelter 1930 }
323    
324     #ifdef IS_MPI
325     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
326     #else
327     ndfRaw_ = ndfRaw_local;
328     #endif
329 gezelter 2204 }
330 gezelter 1490
331 gezelter 2204 void SimInfo::calcNdfTrans() {
332 gezelter 1930 int ndfTrans_local;
333 gezelter 1490
334 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
335 gezelter 1490
336    
337 gezelter 1930 #ifdef IS_MPI
338     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
339     #else
340     ndfTrans_ = ndfTrans_local;
341     #endif
342 gezelter 1490
343 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
344    
345 gezelter 2204 }
346 gezelter 1490
347 gezelter 2204 void SimInfo::addExcludePairs(Molecule* mol) {
348 gezelter 1930 std::vector<Bond*>::iterator bondIter;
349     std::vector<Bend*>::iterator bendIter;
350     std::vector<Torsion*>::iterator torsionIter;
351     Bond* bond;
352     Bend* bend;
353     Torsion* torsion;
354     int a;
355     int b;
356     int c;
357     int d;
358 tim 2448
359     std::map<int, std::set<int> > atomGroups;
360    
361     Molecule::RigidBodyIterator rbIter;
362     RigidBody* rb;
363     Molecule::IntegrableObjectIterator ii;
364     StuntDouble* integrableObject;
365 gezelter 1930
366 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
367     integrableObject = mol->nextIntegrableObject(ii)) {
368    
369     if (integrableObject->isRigidBody()) {
370     rb = static_cast<RigidBody*>(integrableObject);
371     std::vector<Atom*> atoms = rb->getAtoms();
372     std::set<int> rigidAtoms;
373     for (int i = 0; i < atoms.size(); ++i) {
374     rigidAtoms.insert(atoms[i]->getGlobalIndex());
375     }
376     for (int i = 0; i < atoms.size(); ++i) {
377     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378     }
379     } else {
380     std::set<int> oneAtomSet;
381     oneAtomSet.insert(integrableObject->getGlobalIndex());
382     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
383     }
384     }
385    
386    
387    
388 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
389 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
390     b = bond->getAtomB()->getGlobalIndex();
391     exclude_.addPair(a, b);
392 gezelter 1930 }
393 gezelter 1490
394 gezelter 1930 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
395 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
396     b = bend->getAtomB()->getGlobalIndex();
397     c = bend->getAtomC()->getGlobalIndex();
398 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
399     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
400     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
401 gezelter 1490
402 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
403     exclude_.addPairs(rigidSetA, rigidSetC);
404     exclude_.addPairs(rigidSetB, rigidSetC);
405    
406     //exclude_.addPair(a, b);
407     //exclude_.addPair(a, c);
408     //exclude_.addPair(b, c);
409 gezelter 1930 }
410 gezelter 1490
411 gezelter 1930 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
412 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
413     b = torsion->getAtomB()->getGlobalIndex();
414     c = torsion->getAtomC()->getGlobalIndex();
415     d = torsion->getAtomD()->getGlobalIndex();
416 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
417     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
418     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
419     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
420 gezelter 1490
421 tim 2448 exclude_.addPairs(rigidSetA, rigidSetB);
422     exclude_.addPairs(rigidSetA, rigidSetC);
423     exclude_.addPairs(rigidSetA, rigidSetD);
424     exclude_.addPairs(rigidSetB, rigidSetC);
425     exclude_.addPairs(rigidSetB, rigidSetD);
426     exclude_.addPairs(rigidSetC, rigidSetD);
427    
428     /*
429     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
430     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
431     exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
432     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
433     exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
434     exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
435    
436    
437 gezelter 2204 exclude_.addPair(a, b);
438     exclude_.addPair(a, c);
439     exclude_.addPair(a, d);
440     exclude_.addPair(b, c);
441     exclude_.addPair(b, d);
442     exclude_.addPair(c, d);
443 tim 2448 */
444 gezelter 1490 }
445    
446 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
447 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
448     for (int i = 0; i < atoms.size() -1 ; ++i) {
449     for (int j = i + 1; j < atoms.size(); ++j) {
450     a = atoms[i]->getGlobalIndex();
451     b = atoms[j]->getGlobalIndex();
452     exclude_.addPair(a, b);
453     }
454     }
455 tim 2114 }
456    
457 gezelter 2204 }
458 gezelter 1930
459 gezelter 2204 void SimInfo::removeExcludePairs(Molecule* mol) {
460 gezelter 1930 std::vector<Bond*>::iterator bondIter;
461     std::vector<Bend*>::iterator bendIter;
462     std::vector<Torsion*>::iterator torsionIter;
463     Bond* bond;
464     Bend* bend;
465     Torsion* torsion;
466     int a;
467     int b;
468     int c;
469     int d;
470 tim 2448
471     std::map<int, std::set<int> > atomGroups;
472    
473     Molecule::RigidBodyIterator rbIter;
474     RigidBody* rb;
475     Molecule::IntegrableObjectIterator ii;
476     StuntDouble* integrableObject;
477 gezelter 1930
478 tim 2448 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
479     integrableObject = mol->nextIntegrableObject(ii)) {
480    
481     if (integrableObject->isRigidBody()) {
482     rb = static_cast<RigidBody*>(integrableObject);
483     std::vector<Atom*> atoms = rb->getAtoms();
484     std::set<int> rigidAtoms;
485     for (int i = 0; i < atoms.size(); ++i) {
486     rigidAtoms.insert(atoms[i]->getGlobalIndex());
487     }
488     for (int i = 0; i < atoms.size(); ++i) {
489     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
490     }
491     } else {
492     std::set<int> oneAtomSet;
493     oneAtomSet.insert(integrableObject->getGlobalIndex());
494     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
495     }
496     }
497    
498    
499 gezelter 1930 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
500 gezelter 2204 a = bond->getAtomA()->getGlobalIndex();
501     b = bond->getAtomB()->getGlobalIndex();
502     exclude_.removePair(a, b);
503 gezelter 1490 }
504 gezelter 1930
505     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
506 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
507     b = bend->getAtomB()->getGlobalIndex();
508     c = bend->getAtomC()->getGlobalIndex();
509 gezelter 1930
510 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
511     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
512     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
513    
514     exclude_.removePairs(rigidSetA, rigidSetB);
515     exclude_.removePairs(rigidSetA, rigidSetC);
516     exclude_.removePairs(rigidSetB, rigidSetC);
517    
518     //exclude_.removePair(a, b);
519     //exclude_.removePair(a, c);
520     //exclude_.removePair(b, c);
521 gezelter 1490 }
522 gezelter 1930
523     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
524 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
525     b = torsion->getAtomB()->getGlobalIndex();
526     c = torsion->getAtomC()->getGlobalIndex();
527     d = torsion->getAtomD()->getGlobalIndex();
528 gezelter 1930
529 tim 2448 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
530     std::set<int> rigidSetB = getRigidSet(b, atomGroups);
531     std::set<int> rigidSetC = getRigidSet(c, atomGroups);
532     std::set<int> rigidSetD = getRigidSet(d, atomGroups);
533    
534     exclude_.removePairs(rigidSetA, rigidSetB);
535     exclude_.removePairs(rigidSetA, rigidSetC);
536     exclude_.removePairs(rigidSetA, rigidSetD);
537     exclude_.removePairs(rigidSetB, rigidSetC);
538     exclude_.removePairs(rigidSetB, rigidSetD);
539     exclude_.removePairs(rigidSetC, rigidSetD);
540    
541     /*
542     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
543     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
544     exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
545     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
546     exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
547     exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
548    
549    
550 gezelter 2204 exclude_.removePair(a, b);
551     exclude_.removePair(a, c);
552     exclude_.removePair(a, d);
553     exclude_.removePair(b, c);
554     exclude_.removePair(b, d);
555     exclude_.removePair(c, d);
556 tim 2448 */
557 gezelter 1930 }
558    
559 tim 2114 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
560 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
561     for (int i = 0; i < atoms.size() -1 ; ++i) {
562     for (int j = i + 1; j < atoms.size(); ++j) {
563     a = atoms[i]->getGlobalIndex();
564     b = atoms[j]->getGlobalIndex();
565     exclude_.removePair(a, b);
566     }
567     }
568 tim 2114 }
569    
570 gezelter 2204 }
571 gezelter 1490
572    
573 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
574 gezelter 1930 int curStampId;
575 gezelter 1490
576 gezelter 1930 //index from 0
577     curStampId = moleculeStamps_.size();
578 gezelter 1490
579 gezelter 1930 moleculeStamps_.push_back(molStamp);
580     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
581 gezelter 2204 }
582 gezelter 1490
583 gezelter 2204 void SimInfo::update() {
584 gezelter 1490
585 gezelter 1930 setupSimType();
586 gezelter 1490
587 gezelter 1930 #ifdef IS_MPI
588     setupFortranParallel();
589     #endif
590 gezelter 1490
591 gezelter 1930 setupFortranSim();
592 gezelter 1490
593 gezelter 1930 //setup fortran force field
594     /** @deprecate */
595     int isError = 0;
596 chrisfen 2297
597 chrisfen 2302 setupElectrostaticSummationMethod( isError );
598 chrisfen 2425 setupSwitchingFunction();
599 chrisfen 2297
600 gezelter 1930 if(isError){
601 gezelter 2204 sprintf( painCave.errMsg,
602     "ForceField error: There was an error initializing the forceField in fortran.\n" );
603     painCave.isFatal = 1;
604     simError();
605 gezelter 1930 }
606 gezelter 1490
607 gezelter 1930
608     setupCutoff();
609 gezelter 1490
610 gezelter 1930 calcNdf();
611     calcNdfRaw();
612     calcNdfTrans();
613    
614     fortranInitialized_ = true;
615 gezelter 2204 }
616 gezelter 1490
617 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
618 gezelter 1930 SimInfo::MoleculeIterator mi;
619     Molecule* mol;
620     Molecule::AtomIterator ai;
621     Atom* atom;
622     std::set<AtomType*> atomTypes;
623 gezelter 1490
624 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
625 gezelter 1490
626 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
627     atomTypes.insert(atom->getAtomType());
628     }
629 gezelter 1930
630     }
631 gezelter 1490
632 gezelter 1930 return atomTypes;
633 gezelter 2204 }
634 gezelter 1490
635 gezelter 2204 void SimInfo::setupSimType() {
636 gezelter 1930 std::set<AtomType*>::iterator i;
637     std::set<AtomType*> atomTypes;
638     atomTypes = getUniqueAtomTypes();
639 gezelter 1490
640 gezelter 1930 int useLennardJones = 0;
641     int useElectrostatic = 0;
642     int useEAM = 0;
643 chuckv 2433 int useSC = 0;
644 gezelter 1930 int useCharge = 0;
645     int useDirectional = 0;
646     int useDipole = 0;
647     int useGayBerne = 0;
648     int useSticky = 0;
649 chrisfen 2220 int useStickyPower = 0;
650 gezelter 1930 int useShape = 0;
651     int useFLARB = 0; //it is not in AtomType yet
652     int useDirectionalAtom = 0;
653     int useElectrostatics = 0;
654     //usePBC and useRF are from simParams
655 tim 2364 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
656 chrisfen 2310 int useRF;
657 chrisfen 2419 int useSF;
658 tim 2364 std::string myMethod;
659 gezelter 1490
660 chrisfen 2310 // set the useRF logical
661 tim 2364 useRF = 0;
662 chrisfen 2419 useSF = 0;
663 chrisfen 2390
664    
665 tim 2364 if (simParams_->haveElectrostaticSummationMethod()) {
666 chrisfen 2390 std::string myMethod = simParams_->getElectrostaticSummationMethod();
667     toUpper(myMethod);
668     if (myMethod == "REACTION_FIELD") {
669     useRF=1;
670 chrisfen 2404 } else {
671 chrisfen 2419 if (myMethod == "SHIFTED_FORCE") {
672     useSF = 1;
673 chrisfen 2404 }
674 chrisfen 2390 }
675 tim 2364 }
676 chrisfen 2310
677 gezelter 1930 //loop over all of the atom types
678     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
679 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
680     useElectrostatic |= (*i)->isElectrostatic();
681     useEAM |= (*i)->isEAM();
682 chuckv 2433 useSC |= (*i)->isSC();
683 gezelter 2204 useCharge |= (*i)->isCharge();
684     useDirectional |= (*i)->isDirectional();
685     useDipole |= (*i)->isDipole();
686     useGayBerne |= (*i)->isGayBerne();
687     useSticky |= (*i)->isSticky();
688 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
689 gezelter 2204 useShape |= (*i)->isShape();
690 gezelter 1930 }
691 gezelter 1490
692 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
693 gezelter 2204 useDirectionalAtom = 1;
694 gezelter 1930 }
695 gezelter 1490
696 gezelter 1930 if (useCharge || useDipole) {
697 gezelter 2204 useElectrostatics = 1;
698 gezelter 1930 }
699 gezelter 1490
700 gezelter 1930 #ifdef IS_MPI
701     int temp;
702 gezelter 1490
703 gezelter 1930 temp = usePBC;
704     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
705 gezelter 1490
706 gezelter 1930 temp = useDirectionalAtom;
707     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
708 gezelter 1490
709 gezelter 1930 temp = useLennardJones;
710     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
711 gezelter 1490
712 gezelter 1930 temp = useElectrostatics;
713     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
714 gezelter 1490
715 gezelter 1930 temp = useCharge;
716     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
717 gezelter 1490
718 gezelter 1930 temp = useDipole;
719     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
720 gezelter 1490
721 gezelter 1930 temp = useSticky;
722     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
723 gezelter 1490
724 chrisfen 2220 temp = useStickyPower;
725     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
726    
727 gezelter 1930 temp = useGayBerne;
728     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
729 gezelter 1490
730 gezelter 1930 temp = useEAM;
731     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
732 gezelter 1490
733 chuckv 2433 temp = useSC;
734     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
735    
736 gezelter 1930 temp = useShape;
737     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
738    
739     temp = useFLARB;
740     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
741    
742 chrisfen 2310 temp = useRF;
743     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
744    
745 chrisfen 2419 temp = useSF;
746     MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
747 chrisfen 2404
748 gezelter 1490 #endif
749    
750 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
751     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
752     fInfo_.SIM_uses_LennardJones = useLennardJones;
753     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
754     fInfo_.SIM_uses_Charges = useCharge;
755     fInfo_.SIM_uses_Dipoles = useDipole;
756     fInfo_.SIM_uses_Sticky = useSticky;
757 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
758 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
759     fInfo_.SIM_uses_EAM = useEAM;
760 chuckv 2433 fInfo_.SIM_uses_SC = useSC;
761 gezelter 1930 fInfo_.SIM_uses_Shapes = useShape;
762     fInfo_.SIM_uses_FLARB = useFLARB;
763 chrisfen 2310 fInfo_.SIM_uses_RF = useRF;
764 chrisfen 2419 fInfo_.SIM_uses_SF = useSF;
765 gezelter 1490
766 chrisfen 2390 if( myMethod == "REACTION_FIELD") {
767    
768 gezelter 2204 if (simParams_->haveDielectric()) {
769     fInfo_.dielect = simParams_->getDielectric();
770     } else {
771     sprintf(painCave.errMsg,
772     "SimSetup Error: No Dielectric constant was set.\n"
773     "\tYou are trying to use Reaction Field without"
774     "\tsetting a dielectric constant!\n");
775     painCave.isFatal = 1;
776     simError();
777 chrisfen 2390 }
778 gezelter 1930 }
779 chrisfen 2404
780 gezelter 2204 }
781 gezelter 1490
782 gezelter 2204 void SimInfo::setupFortranSim() {
783 gezelter 1930 int isError;
784     int nExclude;
785     std::vector<int> fortranGlobalGroupMembership;
786    
787     nExclude = exclude_.getSize();
788     isError = 0;
789 gezelter 1490
790 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
791     for (int i = 0; i < nGlobalAtoms_; i++) {
792 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
793 gezelter 1930 }
794 gezelter 1490
795 gezelter 1930 //calculate mass ratio of cutoff group
796     std::vector<double> mfact;
797     SimInfo::MoleculeIterator mi;
798     Molecule* mol;
799     Molecule::CutoffGroupIterator ci;
800     CutoffGroup* cg;
801     Molecule::AtomIterator ai;
802     Atom* atom;
803     double totalMass;
804    
805     //to avoid memory reallocation, reserve enough space for mfact
806     mfact.reserve(getNCutoffGroups());
807 gezelter 1490
808 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
809 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
810 gezelter 1490
811 gezelter 2204 totalMass = cg->getMass();
812     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
813 chrisfen 2344 // Check for massless groups - set mfact to 1 if true
814     if (totalMass != 0)
815     mfact.push_back(atom->getMass()/totalMass);
816     else
817     mfact.push_back( 1.0 );
818 gezelter 2204 }
819 gezelter 1490
820 gezelter 2204 }
821 gezelter 1930 }
822 gezelter 1490
823 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
824     std::vector<int> identArray;
825 gezelter 1490
826 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
827     identArray.reserve(getNAtoms());
828    
829     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
830 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
831     identArray.push_back(atom->getIdent());
832     }
833 gezelter 1930 }
834 gezelter 1490
835 gezelter 1930 //fill molMembershipArray
836     //molMembershipArray is filled by SimCreator
837     std::vector<int> molMembershipArray(nGlobalAtoms_);
838     for (int i = 0; i < nGlobalAtoms_; i++) {
839 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
840 gezelter 1930 }
841    
842     //setup fortran simulation
843     int nGlobalExcludes = 0;
844     int* globalExcludes = NULL;
845     int* excludeList = exclude_.getExcludeList();
846     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
847 gezelter 2204 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
848     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
849 gezelter 1490
850 gezelter 1930 if( isError ){
851 gezelter 1490
852 gezelter 2204 sprintf( painCave.errMsg,
853     "There was an error setting the simulation information in fortran.\n" );
854     painCave.isFatal = 1;
855     painCave.severity = OOPSE_ERROR;
856     simError();
857 gezelter 1930 }
858    
859     #ifdef IS_MPI
860     sprintf( checkPointMsg,
861 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
862 gezelter 1930 MPIcheckPoint();
863     #endif // is_mpi
864 gezelter 2204 }
865 gezelter 1490
866    
867 gezelter 1930 #ifdef IS_MPI
868 gezelter 2204 void SimInfo::setupFortranParallel() {
869 gezelter 1930
870     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
871     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
872     std::vector<int> localToGlobalCutoffGroupIndex;
873     SimInfo::MoleculeIterator mi;
874     Molecule::AtomIterator ai;
875     Molecule::CutoffGroupIterator ci;
876     Molecule* mol;
877     Atom* atom;
878     CutoffGroup* cg;
879     mpiSimData parallelData;
880     int isError;
881 gezelter 1490
882 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
883 gezelter 1490
884 gezelter 2204 //local index(index in DataStorge) of atom is important
885     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
886     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
887     }
888 gezelter 1490
889 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
890     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
891     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
892     }
893 gezelter 1930
894     }
895 gezelter 1490
896 gezelter 1930 //fill up mpiSimData struct
897     parallelData.nMolGlobal = getNGlobalMolecules();
898     parallelData.nMolLocal = getNMolecules();
899     parallelData.nAtomsGlobal = getNGlobalAtoms();
900     parallelData.nAtomsLocal = getNAtoms();
901     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
902     parallelData.nGroupsLocal = getNCutoffGroups();
903     parallelData.myNode = worldRank;
904     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
905 gezelter 1490
906 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
907     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
908     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
909     &localToGlobalCutoffGroupIndex[0], &isError);
910 gezelter 1490
911 gezelter 1930 if (isError) {
912 gezelter 2204 sprintf(painCave.errMsg,
913     "mpiRefresh errror: fortran didn't like something we gave it.\n");
914     painCave.isFatal = 1;
915     simError();
916 gezelter 1930 }
917 gezelter 1490
918 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
919     MPIcheckPoint();
920 gezelter 1490
921    
922 gezelter 2204 }
923 chrisfen 1636
924 gezelter 1930 #endif
925 chrisfen 1636
926 gezelter 2204 double SimInfo::calcMaxCutoffRadius() {
927 chrisfen 1636
928    
929 gezelter 1930 std::set<AtomType*> atomTypes;
930     std::set<AtomType*>::iterator i;
931     std::vector<double> cutoffRadius;
932 gezelter 1490
933 gezelter 1930 //get the unique atom types
934     atomTypes = getUniqueAtomTypes();
935    
936     //query the max cutoff radius among these atom types
937     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
938 gezelter 2204 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
939 gezelter 1930 }
940    
941     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
942 gezelter 1490 #ifdef IS_MPI
943 gezelter 1930 //pick the max cutoff radius among the processors
944 gezelter 1490 #endif
945    
946 gezelter 1930 return maxCutoffRadius;
947 gezelter 2204 }
948 gezelter 1930
949 gezelter 2204 void SimInfo::getCutoff(double& rcut, double& rsw) {
950 gezelter 1490
951 gezelter 1930 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
952    
953 tim 2364 if (!simParams_->haveCutoffRadius()){
954 gezelter 2204 sprintf(painCave.errMsg,
955 gezelter 1930 "SimCreator Warning: No value was set for the cutoffRadius.\n"
956     "\tOOPSE will use a default value of 15.0 angstroms"
957     "\tfor the cutoffRadius.\n");
958 gezelter 2204 painCave.isFatal = 0;
959     simError();
960     rcut = 15.0;
961     } else{
962 tim 2364 rcut = simParams_->getCutoffRadius();
963 gezelter 2204 }
964 gezelter 1930
965 tim 2364 if (!simParams_->haveSwitchingRadius()){
966 gezelter 2204 sprintf(painCave.errMsg,
967 gezelter 1930 "SimCreator Warning: No value was set for switchingRadius.\n"
968     "\tOOPSE will use a default value of\n"
969 chrisfen 2400 "\t0.85 * cutoffRadius for the switchingRadius\n");
970 gezelter 2204 painCave.isFatal = 0;
971     simError();
972 chrisfen 2400 rsw = 0.85 * rcut;
973 gezelter 2204 } else{
974 tim 2364 rsw = simParams_->getSwitchingRadius();
975 gezelter 2204 }
976 gezelter 1930
977     } else {
978 gezelter 2204 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
979     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
980 gezelter 1930
981 tim 2364 if (simParams_->haveCutoffRadius()) {
982     rcut = simParams_->getCutoffRadius();
983 gezelter 2204 } else {
984     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
985     rcut = calcMaxCutoffRadius();
986     }
987 gezelter 1930
988 tim 2364 if (simParams_->haveSwitchingRadius()) {
989     rsw = simParams_->getSwitchingRadius();
990 gezelter 2204 } else {
991     rsw = rcut;
992     }
993 gezelter 1930
994     }
995 gezelter 2204 }
996 tim 2010
997 gezelter 2285 void SimInfo::setupCutoff() {
998 tim 2010 getCutoff(rcut_, rsw_);
999 gezelter 1930 double rnblist = rcut_ + 1; // skin of neighbor list
1000    
1001     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1002 gezelter 2285
1003     int cp = TRADITIONAL_CUTOFF_POLICY;
1004     if (simParams_->haveCutoffPolicy()) {
1005     std::string myPolicy = simParams_->getCutoffPolicy();
1006 tim 2364 toUpper(myPolicy);
1007 gezelter 2285 if (myPolicy == "MIX") {
1008     cp = MIX_CUTOFF_POLICY;
1009     } else {
1010     if (myPolicy == "MAX") {
1011     cp = MAX_CUTOFF_POLICY;
1012     } else {
1013     if (myPolicy == "TRADITIONAL") {
1014     cp = TRADITIONAL_CUTOFF_POLICY;
1015     } else {
1016     // throw error
1017     sprintf( painCave.errMsg,
1018     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1019     painCave.isFatal = 1;
1020     simError();
1021     }
1022     }
1023     }
1024     }
1025 chuckv 2328
1026    
1027     if (simParams_->haveSkinThickness()) {
1028     double skinThickness = simParams_->getSkinThickness();
1029     }
1030    
1031 gezelter 2285 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
1032 chrisfen 2309 // also send cutoff notification to electrostatics
1033 chrisfen 2381 setElectrostaticCutoffRadius(&rcut_, &rsw_);
1034 gezelter 2204 }
1035 gezelter 1490
1036 chrisfen 2302 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1037 chrisfen 2297
1038     int errorOut;
1039 chrisfen 2302 int esm = NONE;
1040 chrisfen 2408 int sm = UNDAMPED;
1041 chrisfen 2297 double alphaVal;
1042 chrisfen 2309 double dielectric;
1043 chrisfen 2297
1044     errorOut = isError;
1045 chrisfen 2309 alphaVal = simParams_->getDampingAlpha();
1046     dielectric = simParams_->getDielectric();
1047 chrisfen 2297
1048 chrisfen 2302 if (simParams_->haveElectrostaticSummationMethod()) {
1049 chrisfen 2303 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1050 tim 2364 toUpper(myMethod);
1051 chrisfen 2302 if (myMethod == "NONE") {
1052     esm = NONE;
1053 chrisfen 2297 } else {
1054 chrisfen 2408 if (myMethod == "SWITCHING_FUNCTION") {
1055     esm = SWITCHING_FUNCTION;
1056 chrisfen 2297 } else {
1057 chrisfen 2408 if (myMethod == "SHIFTED_POTENTIAL") {
1058     esm = SHIFTED_POTENTIAL;
1059     } else {
1060     if (myMethod == "SHIFTED_FORCE") {
1061     esm = SHIFTED_FORCE;
1062 chrisfen 2297 } else {
1063 chrisfen 2408 if (myMethod == "REACTION_FIELD") {
1064     esm = REACTION_FIELD;
1065     } else {
1066     // throw error
1067     sprintf( painCave.errMsg,
1068     "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
1069     painCave.isFatal = 1;
1070     simError();
1071     }
1072     }
1073     }
1074 chrisfen 2297 }
1075     }
1076     }
1077 chrisfen 2408
1078 chrisfen 2415 if (simParams_->haveElectrostaticScreeningMethod()) {
1079     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1080 chrisfen 2408 toUpper(myScreen);
1081     if (myScreen == "UNDAMPED") {
1082     sm = UNDAMPED;
1083     } else {
1084     if (myScreen == "DAMPED") {
1085     sm = DAMPED;
1086     if (!simParams_->haveDampingAlpha()) {
1087     //throw error
1088     sprintf( painCave.errMsg,
1089     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
1090     painCave.isFatal = 0;
1091     simError();
1092     }
1093 chrisfen 2415 } else {
1094     // throw error
1095     sprintf( painCave.errMsg,
1096     "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
1097     painCave.isFatal = 1;
1098     simError();
1099 chrisfen 2408 }
1100     }
1101     }
1102 chrisfen 2415
1103 chrisfen 2309 // let's pass some summation method variables to fortran
1104     setElectrostaticSummationMethod( &esm );
1105 chrisfen 2408 setScreeningMethod( &sm );
1106     setDampingAlpha( &alphaVal );
1107 chrisfen 2309 setReactionFieldDielectric( &dielectric );
1108     initFortranFF( &esm, &errorOut );
1109 chrisfen 2297 }
1110    
1111 chrisfen 2425 void SimInfo::setupSwitchingFunction() {
1112     int ft = CUBIC;
1113    
1114     if (simParams_->haveSwitchingFunctionType()) {
1115     std::string funcType = simParams_->getSwitchingFunctionType();
1116     toUpper(funcType);
1117     if (funcType == "CUBIC") {
1118     ft = CUBIC;
1119     } else {
1120     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1121     ft = FIFTH_ORDER_POLY;
1122     } else {
1123     // throw error
1124     sprintf( painCave.errMsg,
1125     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1126     painCave.isFatal = 1;
1127     simError();
1128     }
1129     }
1130     }
1131    
1132     // send switching function notification to switcheroo
1133     setFunctionType(&ft);
1134    
1135     }
1136    
1137 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
1138 gezelter 1930 properties_.addProperty(genData);
1139 gezelter 2204 }
1140 gezelter 1490
1141 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
1142 gezelter 1930 properties_.removeProperty(propName);
1143 gezelter 2204 }
1144 gezelter 1490
1145 gezelter 2204 void SimInfo::clearProperties() {
1146 gezelter 1930 properties_.clearProperties();
1147 gezelter 2204 }
1148 gezelter 1490
1149 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
1150 gezelter 1930 return properties_.getPropertyNames();
1151 gezelter 2204 }
1152 gezelter 1930
1153 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
1154 gezelter 1930 return properties_.getProperties();
1155 gezelter 2204 }
1156 gezelter 1490
1157 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1158 gezelter 1930 return properties_.getPropertyByName(propName);
1159 gezelter 2204 }
1160 gezelter 1490
1161 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1162 tim 2116 if (sman_ == sman) {
1163 gezelter 2204 return;
1164 tim 2116 }
1165     delete sman_;
1166 gezelter 1930 sman_ = sman;
1167 gezelter 1490
1168 gezelter 1930 Molecule* mol;
1169     RigidBody* rb;
1170     Atom* atom;
1171     SimInfo::MoleculeIterator mi;
1172     Molecule::RigidBodyIterator rbIter;
1173     Molecule::AtomIterator atomIter;;
1174    
1175     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1176    
1177 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1178     atom->setSnapshotManager(sman_);
1179     }
1180 gezelter 1930
1181 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1182     rb->setSnapshotManager(sman_);
1183     }
1184 gezelter 1930 }
1185 gezelter 1490
1186 gezelter 2204 }
1187 gezelter 1490
1188 gezelter 2204 Vector3d SimInfo::getComVel(){
1189 gezelter 1930 SimInfo::MoleculeIterator i;
1190     Molecule* mol;
1191 gezelter 1490
1192 gezelter 1930 Vector3d comVel(0.0);
1193     double totalMass = 0.0;
1194 gezelter 1490
1195 gezelter 1930
1196     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1197 gezelter 2204 double mass = mol->getMass();
1198     totalMass += mass;
1199     comVel += mass * mol->getComVel();
1200 gezelter 1930 }
1201 gezelter 1490
1202 gezelter 1930 #ifdef IS_MPI
1203     double tmpMass = totalMass;
1204     Vector3d tmpComVel(comVel);
1205     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1206     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1207     #endif
1208    
1209     comVel /= totalMass;
1210    
1211     return comVel;
1212 gezelter 2204 }
1213 gezelter 1490
1214 gezelter 2204 Vector3d SimInfo::getCom(){
1215 gezelter 1930 SimInfo::MoleculeIterator i;
1216     Molecule* mol;
1217 gezelter 1490
1218 gezelter 1930 Vector3d com(0.0);
1219     double totalMass = 0.0;
1220    
1221     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1222 gezelter 2204 double mass = mol->getMass();
1223     totalMass += mass;
1224     com += mass * mol->getCom();
1225 gezelter 1930 }
1226 gezelter 1490
1227     #ifdef IS_MPI
1228 gezelter 1930 double tmpMass = totalMass;
1229     Vector3d tmpCom(com);
1230     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1231     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1232 gezelter 1490 #endif
1233    
1234 gezelter 1930 com /= totalMass;
1235 gezelter 1490
1236 gezelter 1930 return com;
1237 gezelter 1490
1238 gezelter 2204 }
1239 gezelter 1930
1240 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1241 gezelter 1930
1242     return o;
1243 gezelter 2204 }
1244 chuckv 2252
1245    
1246     /*
1247     Returns center of mass and center of mass velocity in one function call.
1248     */
1249    
1250     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1251     SimInfo::MoleculeIterator i;
1252     Molecule* mol;
1253    
1254    
1255     double totalMass = 0.0;
1256    
1257 gezelter 1930
1258 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1259     double mass = mol->getMass();
1260     totalMass += mass;
1261     com += mass * mol->getCom();
1262     comVel += mass * mol->getComVel();
1263     }
1264    
1265     #ifdef IS_MPI
1266     double tmpMass = totalMass;
1267     Vector3d tmpCom(com);
1268     Vector3d tmpComVel(comVel);
1269     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1270     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1271     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1272     #endif
1273    
1274     com /= totalMass;
1275     comVel /= totalMass;
1276     }
1277    
1278     /*
1279     Return intertia tensor for entire system and angular momentum Vector.
1280 chuckv 2256
1281    
1282     [ Ixx -Ixy -Ixz ]
1283     J =| -Iyx Iyy -Iyz |
1284     [ -Izx -Iyz Izz ]
1285 chuckv 2252 */
1286    
1287     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1288    
1289    
1290     double xx = 0.0;
1291     double yy = 0.0;
1292     double zz = 0.0;
1293     double xy = 0.0;
1294     double xz = 0.0;
1295     double yz = 0.0;
1296     Vector3d com(0.0);
1297     Vector3d comVel(0.0);
1298    
1299     getComAll(com, comVel);
1300    
1301     SimInfo::MoleculeIterator i;
1302     Molecule* mol;
1303    
1304     Vector3d thisq(0.0);
1305     Vector3d thisv(0.0);
1306    
1307     double thisMass = 0.0;
1308    
1309    
1310    
1311    
1312     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1313    
1314     thisq = mol->getCom()-com;
1315     thisv = mol->getComVel()-comVel;
1316     thisMass = mol->getMass();
1317     // Compute moment of intertia coefficients.
1318     xx += thisq[0]*thisq[0]*thisMass;
1319     yy += thisq[1]*thisq[1]*thisMass;
1320     zz += thisq[2]*thisq[2]*thisMass;
1321    
1322     // compute products of intertia
1323     xy += thisq[0]*thisq[1]*thisMass;
1324     xz += thisq[0]*thisq[2]*thisMass;
1325     yz += thisq[1]*thisq[2]*thisMass;
1326    
1327     angularMomentum += cross( thisq, thisv ) * thisMass;
1328    
1329     }
1330    
1331    
1332     inertiaTensor(0,0) = yy + zz;
1333     inertiaTensor(0,1) = -xy;
1334     inertiaTensor(0,2) = -xz;
1335     inertiaTensor(1,0) = -xy;
1336 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1337 chuckv 2252 inertiaTensor(1,2) = -yz;
1338     inertiaTensor(2,0) = -xz;
1339     inertiaTensor(2,1) = -yz;
1340     inertiaTensor(2,2) = xx + yy;
1341    
1342     #ifdef IS_MPI
1343     Mat3x3d tmpI(inertiaTensor);
1344     Vector3d tmpAngMom;
1345     MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1346     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1347     #endif
1348    
1349     return;
1350     }
1351    
1352     //Returns the angular momentum of the system
1353     Vector3d SimInfo::getAngularMomentum(){
1354    
1355     Vector3d com(0.0);
1356     Vector3d comVel(0.0);
1357     Vector3d angularMomentum(0.0);
1358    
1359     getComAll(com,comVel);
1360    
1361     SimInfo::MoleculeIterator i;
1362     Molecule* mol;
1363    
1364 chuckv 2256 Vector3d thisr(0.0);
1365     Vector3d thisp(0.0);
1366 chuckv 2252
1367 chuckv 2256 double thisMass;
1368 chuckv 2252
1369     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1370 chuckv 2256 thisMass = mol->getMass();
1371     thisr = mol->getCom()-com;
1372     thisp = (mol->getComVel()-comVel)*thisMass;
1373 chuckv 2252
1374 chuckv 2256 angularMomentum += cross( thisr, thisp );
1375    
1376 chuckv 2252 }
1377    
1378     #ifdef IS_MPI
1379     Vector3d tmpAngMom;
1380     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1381     #endif
1382    
1383     return angularMomentum;
1384     }
1385    
1386    
1387 gezelter 1930 }//end namespace oopse
1388