ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1617 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
Revision 2463 by gezelter, Mon Nov 21 22:59:21 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "UseTheForce/fCutoffPolicy.h"
57 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 > #include "UseTheForce/doForces_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 > #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65 < #include "UseTheForce/DarkSide/simulation_interface.h"
13 < #include "UseTheForce/notifyCutoffs_interface.h"
65 > #include "selection/SelectionManager.hpp"
66  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
67   #ifdef IS_MPI
68 < #include "brains/mpiSimulation.hpp"
69 < #endif
68 > #include "UseTheForce/mpiComponentPlan.h"
69 > #include "UseTheForce/DarkSide/simParallel_interface.h"
70 > #endif
71  
72 < inline double roundMe( double x ){
73 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
74 < }
75 <          
76 < inline double min( double a, double b ){
77 <  return (a < b ) ? a : b;
78 < }
72 > namespace oopse {
73 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
74 >    std::map<int, std::set<int> >::iterator i = container.find(index);
75 >    std::set<int> result;
76 >    if (i != container.end()) {
77 >        result = i->second;
78 >    }
79  
80 < SimInfo* currentInfo;
81 <
33 < SimInfo::SimInfo(){
34 <
35 <  n_constraints = 0;
36 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
48 <
49 <  haveRcut = 0;
50 <  haveRsw = 0;
51 <  boxIsInit = 0;
80 >    return result;
81 >  }
82    
83 <  resetTime = 1e99;
83 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
84 >                   ForceField* ff, Globals* simParams) :
85 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
86 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
87 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
88 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
89 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
90 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
91 >    sman_(NULL), fortranInitialized_(false) {
92  
93 <  orthoRhombic = 0;
94 <  orthoTolerance = 1E-6;
95 <  useInitXSstate = true;
93 >            
94 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95 >      MoleculeStamp* molStamp;
96 >      int nMolWithSameStamp;
97 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
99 >      CutoffGroupStamp* cgStamp;    
100 >      RigidBodyStamp* rbStamp;
101 >      int nRigidAtoms = 0;
102 >    
103 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
104 >        molStamp = i->first;
105 >        nMolWithSameStamp = i->second;
106 >        
107 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
108  
109 <  usePBC = 0;
110 <  useLJ = 0;
61 <  useSticky = 0;
62 <  useCharges = 0;
63 <  useDipoles = 0;
64 <  useReactionField = 0;
65 <  useGB = 0;
66 <  useEAM = 0;
67 <  useSolidThermInt = 0;
68 <  useLiquidThermInt = 0;
109 >        //calculate atoms in molecules
110 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111  
70  haveCutoffGroups = false;
112  
113 <  excludes = Exclude::Instance();
113 >        //calculate atoms in cutoff groups
114 >        int nAtomsInGroups = 0;
115 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116 >        
117 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 >          cgStamp = molStamp->getCutoffGroup(j);
119 >          nAtomsInGroups += cgStamp->getNMembers();
120 >        }
121  
122 <  myConfiguration = new SimState();
122 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123  
124 <  has_minimizer = false;
77 <  the_minimizer =NULL;
124 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125  
126 <  ngroup = 0;
126 >        //calculate atoms in rigid bodies
127 >        int nAtomsInRigidBodies = 0;
128 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129 >        
130 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
131 >          rbStamp = molStamp->getRigidBody(j);
132 >          nAtomsInRigidBodies += rbStamp->getNMembers();
133 >        }
134  
135 < }
135 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137 >        
138 >      }
139  
140 +      //every free atom (atom does not belong to cutoff groups) is a cutoff
141 +      //group therefore the total number of cutoff groups in the system is
142 +      //equal to the total number of atoms minus number of atoms belong to
143 +      //cutoff group defined in meta-data file plus the number of cutoff
144 +      //groups defined in meta-data file
145 +      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
146  
147 < SimInfo::~SimInfo(){
148 <
149 <  delete myConfiguration;
150 <
151 <  map<string, GenericData*>::iterator i;
147 >      //every free atom (atom does not belong to rigid bodies) is an
148 >      //integrable object therefore the total number of integrable objects
149 >      //in the system is equal to the total number of atoms minus number of
150 >      //atoms belong to rigid body defined in meta-data file plus the number
151 >      //of rigid bodies defined in meta-data file
152 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
153 >                                                + nGlobalRigidBodies_;
154    
155 <  for(i = properties.begin(); i != properties.end(); i++)
91 <    delete (*i).second;
155 >      nGlobalMols_ = molStampIds_.size();
156  
157 < }
157 > #ifdef IS_MPI    
158 >      molToProcMap_.resize(nGlobalMols_);
159 > #endif
160  
161 < void SimInfo::setBox(double newBox[3]) {
96 <  
97 <  int i, j;
98 <  double tempMat[3][3];
161 >    }
162  
163 <  for(i=0; i<3; i++)
164 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
163 >  SimInfo::~SimInfo() {
164 >    std::map<int, Molecule*>::iterator i;
165 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166 >      delete i->second;
167 >    }
168 >    molecules_.clear();
169 >      
170 >    delete stamps_;
171 >    delete sman_;
172 >    delete simParams_;
173 >    delete forceField_;
174 >  }
175  
176 <  tempMat[0][0] = newBox[0];
177 <  tempMat[1][1] = newBox[1];
178 <  tempMat[2][2] = newBox[2];
176 >  int SimInfo::getNGlobalConstraints() {
177 >    int nGlobalConstraints;
178 > #ifdef IS_MPI
179 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180 >                  MPI_COMM_WORLD);    
181 > #else
182 >    nGlobalConstraints =  nConstraints_;
183 > #endif
184 >    return nGlobalConstraints;
185 >  }
186  
187 <  setBoxM( tempMat );
187 >  bool SimInfo::addMolecule(Molecule* mol) {
188 >    MoleculeIterator i;
189  
190 < }
190 >    i = molecules_.find(mol->getGlobalIndex());
191 >    if (i == molecules_.end() ) {
192  
193 < void SimInfo::setBoxM( double theBox[3][3] ){
194 <  
195 <  int i, j;
196 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
197 <                         // ordering in the array is as follows:
198 <                         // [ 0 3 6 ]
199 <                         // [ 1 4 7 ]
200 <                         // [ 2 5 8 ]
201 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
202 <
121 <  if( !boxIsInit ) boxIsInit = 1;
122 <
123 <  for(i=0; i < 3; i++)
124 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
125 <  
126 <  calcBoxL();
127 <  calcHmatInv();
193 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194 >        
195 >      nAtoms_ += mol->getNAtoms();
196 >      nBonds_ += mol->getNBonds();
197 >      nBends_ += mol->getNBends();
198 >      nTorsions_ += mol->getNTorsions();
199 >      nRigidBodies_ += mol->getNRigidBodies();
200 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
201 >      nCutoffGroups_ += mol->getNCutoffGroups();
202 >      nConstraints_ += mol->getNConstraintPairs();
203  
204 <  for(i=0; i < 3; i++) {
205 <    for (j=0; j < 3; j++) {
206 <      FortranHmat[3*j + i] = Hmat[i][j];
207 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
204 >      addExcludePairs(mol);
205 >        
206 >      return true;
207 >    } else {
208 >      return false;
209      }
210    }
211  
212 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
213 <
214 < }
139 <
212 >  bool SimInfo::removeMolecule(Molecule* mol) {
213 >    MoleculeIterator i;
214 >    i = molecules_.find(mol->getGlobalIndex());
215  
216 < void SimInfo::getBoxM (double theBox[3][3]) {
216 >    if (i != molecules_.end() ) {
217  
218 <  int i, j;
219 <  for(i=0; i<3; i++)
220 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
221 < }
218 >      assert(mol == i->second);
219 >        
220 >      nAtoms_ -= mol->getNAtoms();
221 >      nBonds_ -= mol->getNBonds();
222 >      nBends_ -= mol->getNBends();
223 >      nTorsions_ -= mol->getNTorsions();
224 >      nRigidBodies_ -= mol->getNRigidBodies();
225 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
226 >      nCutoffGroups_ -= mol->getNCutoffGroups();
227 >      nConstraints_ -= mol->getNConstraintPairs();
228  
229 +      removeExcludePairs(mol);
230 +      molecules_.erase(mol->getGlobalIndex());
231  
232 < void SimInfo::scaleBox(double scale) {
233 <  double theBox[3][3];
234 <  int i, j;
232 >      delete mol;
233 >        
234 >      return true;
235 >    } else {
236 >      return false;
237 >    }
238  
153  // cerr << "Scaling box by " << scale << "\n";
239  
240 <  for(i=0; i<3; i++)
156 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
240 >  }    
241  
242 <  setBoxM(theBox);
242 >        
243 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
244 >    i = molecules_.begin();
245 >    return i == molecules_.end() ? NULL : i->second;
246 >  }    
247  
248 < }
248 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
249 >    ++i;
250 >    return i == molecules_.end() ? NULL : i->second;    
251 >  }
252  
162 void SimInfo::calcHmatInv( void ) {
163  
164  int oldOrtho;
165  int i,j;
166  double smallDiag;
167  double tol;
168  double sanity[3][3];
253  
254 <  invertMat3( Hmat, HmatInv );
254 >  void SimInfo::calcNdf() {
255 >    int ndf_local;
256 >    MoleculeIterator i;
257 >    std::vector<StuntDouble*>::iterator j;
258 >    Molecule* mol;
259 >    StuntDouble* integrableObject;
260  
261 <  // check to see if Hmat is orthorhombic
262 <  
263 <  oldOrtho = orthoRhombic;
261 >    ndf_local = 0;
262 >    
263 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
264 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
265 >           integrableObject = mol->nextIntegrableObject(j)) {
266  
267 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
267 >        ndf_local += 3;
268  
269 <  orthoRhombic = 1;
270 <  
271 <  for (i = 0; i < 3; i++ ) {
272 <    for (j = 0 ; j < 3; j++) {
273 <      if (i != j) {
274 <        if (orthoRhombic) {
275 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
276 <        }        
277 <      }
278 <    }
269 >        if (integrableObject->isDirectional()) {
270 >          if (integrableObject->isLinear()) {
271 >            ndf_local += 2;
272 >          } else {
273 >            ndf_local += 3;
274 >          }
275 >        }
276 >            
277 >      }//end for (integrableObject)
278 >    }// end for (mol)
279 >    
280 >    // n_constraints is local, so subtract them on each processor
281 >    ndf_local -= nConstraints_;
282 >
283 > #ifdef IS_MPI
284 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
285 > #else
286 >    ndf_ = ndf_local;
287 > #endif
288 >
289 >    // nZconstraints_ is global, as are the 3 COM translations for the
290 >    // entire system:
291 >    ndf_ = ndf_ - 3 - nZconstraint_;
292 >
293    }
294  
295 <  if( oldOrtho != orthoRhombic ){
295 >  void SimInfo::calcNdfRaw() {
296 >    int ndfRaw_local;
297 >
298 >    MoleculeIterator i;
299 >    std::vector<StuntDouble*>::iterator j;
300 >    Molecule* mol;
301 >    StuntDouble* integrableObject;
302 >
303 >    // Raw degrees of freedom that we have to set
304 >    ndfRaw_local = 0;
305      
306 <    if( orthoRhombic ) {
307 <      sprintf( painCave.errMsg,
308 <               "OOPSE is switching from the default Non-Orthorhombic\n"
309 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
310 <               "\tThis is usually a good thing, but if you wan't the\n"
311 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
312 <               "\tvariable ( currently set to %G ) smaller.\n",
313 <               orthoTolerance);
314 <      painCave.severity = OOPSE_INFO;
315 <      simError();
306 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
307 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
308 >           integrableObject = mol->nextIntegrableObject(j)) {
309 >
310 >        ndfRaw_local += 3;
311 >
312 >        if (integrableObject->isDirectional()) {
313 >          if (integrableObject->isLinear()) {
314 >            ndfRaw_local += 2;
315 >          } else {
316 >            ndfRaw_local += 3;
317 >          }
318 >        }
319 >            
320 >      }
321      }
322 <    else {
323 <      sprintf( painCave.errMsg,
324 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
325 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
326 <               "\tThis is usually because the box has deformed under\n"
327 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
322 >    
323 > #ifdef IS_MPI
324 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
325 > #else
326 >    ndfRaw_ = ndfRaw_local;
327 > #endif
328    }
219 }
329  
330 < void SimInfo::calcBoxL( void ){
330 >  void SimInfo::calcNdfTrans() {
331 >    int ndfTrans_local;
332  
333 <  double dx, dy, dz, dsq;
333 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
334  
225  // boxVol = Determinant of Hmat
335  
336 <  boxVol = matDet3( Hmat );
336 > #ifdef IS_MPI
337 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
338 > #else
339 >    ndfTrans_ = ndfTrans_local;
340 > #endif
341  
342 <  // boxLx
343 <  
344 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
232 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
342 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
343 >
344 >  }
345  
346 <  // boxLy
347 <  
348 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
349 <  dsq = dx*dx + dy*dy + dz*dz;
350 <  boxL[1] = sqrt( dsq );
351 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
346 >  void SimInfo::addExcludePairs(Molecule* mol) {
347 >    std::vector<Bond*>::iterator bondIter;
348 >    std::vector<Bend*>::iterator bendIter;
349 >    std::vector<Torsion*>::iterator torsionIter;
350 >    Bond* bond;
351 >    Bend* bend;
352 >    Torsion* torsion;
353 >    int a;
354 >    int b;
355 >    int c;
356 >    int d;
357  
358 +    std::map<int, std::set<int> > atomGroups;
359  
360 <  // boxLz
361 <  
362 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
363 <  dsq = dx*dx + dy*dy + dz*dz;
364 <  boxL[2] = sqrt( dsq );
365 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
360 >    Molecule::RigidBodyIterator rbIter;
361 >    RigidBody* rb;
362 >    Molecule::IntegrableObjectIterator ii;
363 >    StuntDouble* integrableObject;
364 >    
365 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
366 >           integrableObject = mol->nextIntegrableObject(ii)) {
367  
368 <  //calculate the max cutoff
369 <  maxCutoff =  calcMaxCutOff();
370 <  
371 <  checkCutOffs();
368 >      if (integrableObject->isRigidBody()) {
369 >          rb = static_cast<RigidBody*>(integrableObject);
370 >          std::vector<Atom*> atoms = rb->getAtoms();
371 >          std::set<int> rigidAtoms;
372 >          for (int i = 0; i < atoms.size(); ++i) {
373 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
374 >          }
375 >          for (int i = 0; i < atoms.size(); ++i) {
376 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
377 >          }      
378 >      } else {
379 >        std::set<int> oneAtomSet;
380 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
381 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
382 >      }
383 >    }  
384  
385 < }
385 >    
386 >    
387 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
388 >      a = bond->getAtomA()->getGlobalIndex();
389 >      b = bond->getAtomB()->getGlobalIndex();        
390 >      exclude_.addPair(a, b);
391 >    }
392  
393 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
394 +      a = bend->getAtomA()->getGlobalIndex();
395 +      b = bend->getAtomB()->getGlobalIndex();        
396 +      c = bend->getAtomC()->getGlobalIndex();
397 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
398 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
399 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
400  
401 < double SimInfo::calcMaxCutOff(){
401 >      exclude_.addPairs(rigidSetA, rigidSetB);
402 >      exclude_.addPairs(rigidSetA, rigidSetC);
403 >      exclude_.addPairs(rigidSetB, rigidSetC);
404 >      
405 >      //exclude_.addPair(a, b);
406 >      //exclude_.addPair(a, c);
407 >      //exclude_.addPair(b, c);        
408 >    }
409  
410 <  double ri[3], rj[3], rk[3];
411 <  double rij[3], rjk[3], rki[3];
412 <  double minDist;
410 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
411 >      a = torsion->getAtomA()->getGlobalIndex();
412 >      b = torsion->getAtomB()->getGlobalIndex();        
413 >      c = torsion->getAtomC()->getGlobalIndex();        
414 >      d = torsion->getAtomD()->getGlobalIndex();        
415 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
416 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
417 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
418 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
419  
420 <  ri[0] = Hmat[0][0];
421 <  ri[1] = Hmat[1][0];
422 <  ri[2] = Hmat[2][0];
420 >      exclude_.addPairs(rigidSetA, rigidSetB);
421 >      exclude_.addPairs(rigidSetA, rigidSetC);
422 >      exclude_.addPairs(rigidSetA, rigidSetD);
423 >      exclude_.addPairs(rigidSetB, rigidSetC);
424 >      exclude_.addPairs(rigidSetB, rigidSetD);
425 >      exclude_.addPairs(rigidSetC, rigidSetD);
426  
427 <  rj[0] = Hmat[0][1];
428 <  rj[1] = Hmat[1][1];
429 <  rj[2] = Hmat[2][1];
427 >      /*
428 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
429 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
430 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
431 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
432 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
433 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
434 >        
435 >      
436 >      exclude_.addPair(a, b);
437 >      exclude_.addPair(a, c);
438 >      exclude_.addPair(a, d);
439 >      exclude_.addPair(b, c);
440 >      exclude_.addPair(b, d);
441 >      exclude_.addPair(c, d);        
442 >      */
443 >    }
444  
445 <  rk[0] = Hmat[0][2];
446 <  rk[1] = Hmat[1][2];
447 <  rk[2] = Hmat[2][2];
448 <    
449 <  crossProduct3(ri, rj, rij);
450 <  distXY = dotProduct3(rk,rij) / norm3(rij);
445 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
446 >      std::vector<Atom*> atoms = rb->getAtoms();
447 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
448 >        for (int j = i + 1; j < atoms.size(); ++j) {
449 >          a = atoms[i]->getGlobalIndex();
450 >          b = atoms[j]->getGlobalIndex();
451 >          exclude_.addPair(a, b);
452 >        }
453 >      }
454 >    }        
455  
456 <  crossProduct3(rj,rk, rjk);
281 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
456 >  }
457  
458 <  crossProduct3(rk,ri, rki);
459 <  distZX = dotProduct3(rj,rki) / norm3(rki);
458 >  void SimInfo::removeExcludePairs(Molecule* mol) {
459 >    std::vector<Bond*>::iterator bondIter;
460 >    std::vector<Bend*>::iterator bendIter;
461 >    std::vector<Torsion*>::iterator torsionIter;
462 >    Bond* bond;
463 >    Bend* bend;
464 >    Torsion* torsion;
465 >    int a;
466 >    int b;
467 >    int c;
468 >    int d;
469  
470 <  minDist = min(min(distXY, distYZ), distZX);
287 <  return minDist/2;
288 <  
289 < }
470 >    std::map<int, std::set<int> > atomGroups;
471  
472 < void SimInfo::wrapVector( double thePos[3] ){
472 >    Molecule::RigidBodyIterator rbIter;
473 >    RigidBody* rb;
474 >    Molecule::IntegrableObjectIterator ii;
475 >    StuntDouble* integrableObject;
476 >    
477 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
478 >           integrableObject = mol->nextIntegrableObject(ii)) {
479  
480 <  int i;
481 <  double scaled[3];
480 >      if (integrableObject->isRigidBody()) {
481 >          rb = static_cast<RigidBody*>(integrableObject);
482 >          std::vector<Atom*> atoms = rb->getAtoms();
483 >          std::set<int> rigidAtoms;
484 >          for (int i = 0; i < atoms.size(); ++i) {
485 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
486 >          }
487 >          for (int i = 0; i < atoms.size(); ++i) {
488 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
489 >          }      
490 >      } else {
491 >        std::set<int> oneAtomSet;
492 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
493 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
494 >      }
495 >    }  
496  
296  if( !orthoRhombic ){
297    // calc the scaled coordinates.
298  
299
300    matVecMul3(HmatInv, thePos, scaled);
497      
498 <    for(i=0; i<3; i++)
499 <      scaled[i] -= roundMe(scaled[i]);
500 <    
501 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
502 <    
307 <    matVecMul3(Hmat, scaled, thePos);
498 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
499 >      a = bond->getAtomA()->getGlobalIndex();
500 >      b = bond->getAtomB()->getGlobalIndex();        
501 >      exclude_.removePair(a, b);
502 >    }
503  
504 <  }
505 <  else{
506 <    // calc the scaled coordinates.
507 <    
313 <    for(i=0; i<3; i++)
314 <      scaled[i] = thePos[i]*HmatInv[i][i];
315 <    
316 <    // wrap the scaled coordinates
317 <    
318 <    for(i=0; i<3; i++)
319 <      scaled[i] -= roundMe(scaled[i]);
320 <    
321 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
322 <    
323 <    for(i=0; i<3; i++)
324 <      thePos[i] = scaled[i]*Hmat[i][i];
325 <  }
326 <    
327 < }
504 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
505 >      a = bend->getAtomA()->getGlobalIndex();
506 >      b = bend->getAtomB()->getGlobalIndex();        
507 >      c = bend->getAtomC()->getGlobalIndex();
508  
509 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
510 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
511 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
512  
513 < int SimInfo::getNDF(){
514 <  int ndf_local;
515 <
516 <  ndf_local = 0;
517 <  
518 <  for(int i = 0; i < integrableObjects.size(); i++){
519 <    ndf_local += 3;
337 <    if (integrableObjects[i]->isDirectional()) {
338 <      if (integrableObjects[i]->isLinear())
339 <        ndf_local += 2;
340 <      else
341 <        ndf_local += 3;
513 >      exclude_.removePairs(rigidSetA, rigidSetB);
514 >      exclude_.removePairs(rigidSetA, rigidSetC);
515 >      exclude_.removePairs(rigidSetB, rigidSetC);
516 >      
517 >      //exclude_.removePair(a, b);
518 >      //exclude_.removePair(a, c);
519 >      //exclude_.removePair(b, c);        
520      }
343  }
521  
522 <  // n_constraints is local, so subtract them on each processor:
522 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
523 >      a = torsion->getAtomA()->getGlobalIndex();
524 >      b = torsion->getAtomB()->getGlobalIndex();        
525 >      c = torsion->getAtomC()->getGlobalIndex();        
526 >      d = torsion->getAtomD()->getGlobalIndex();        
527  
528 <  ndf_local -= n_constraints;
528 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
529 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
530 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
531 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
532  
533 < #ifdef IS_MPI
534 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
535 < #else
536 <  ndf = ndf_local;
537 < #endif
533 >      exclude_.removePairs(rigidSetA, rigidSetB);
534 >      exclude_.removePairs(rigidSetA, rigidSetC);
535 >      exclude_.removePairs(rigidSetA, rigidSetD);
536 >      exclude_.removePairs(rigidSetB, rigidSetC);
537 >      exclude_.removePairs(rigidSetB, rigidSetD);
538 >      exclude_.removePairs(rigidSetC, rigidSetD);
539  
540 <  // nZconstraints is global, as are the 3 COM translations for the
541 <  // entire system:
540 >      /*
541 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
542 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
543 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
544 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
545 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
546 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
547  
548 <  ndf = ndf - 3 - nZconstraints;
548 >      
549 >      exclude_.removePair(a, b);
550 >      exclude_.removePair(a, c);
551 >      exclude_.removePair(a, d);
552 >      exclude_.removePair(b, c);
553 >      exclude_.removePair(b, d);
554 >      exclude_.removePair(c, d);        
555 >      */
556 >    }
557  
558 <  return ndf;
559 < }
558 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
559 >      std::vector<Atom*> atoms = rb->getAtoms();
560 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
561 >        for (int j = i + 1; j < atoms.size(); ++j) {
562 >          a = atoms[i]->getGlobalIndex();
563 >          b = atoms[j]->getGlobalIndex();
564 >          exclude_.removePair(a, b);
565 >        }
566 >      }
567 >    }        
568  
569 < int SimInfo::getNDFraw() {
364 <  int ndfRaw_local;
569 >  }
570  
366  // Raw degrees of freedom that we have to set
367  ndfRaw_local = 0;
571  
572 <  for(int i = 0; i < integrableObjects.size(); i++){
573 <    ndfRaw_local += 3;
371 <    if (integrableObjects[i]->isDirectional()) {
372 <       if (integrableObjects[i]->isLinear())
373 <        ndfRaw_local += 2;
374 <      else
375 <        ndfRaw_local += 3;
376 <    }
377 <  }
378 <    
379 < #ifdef IS_MPI
380 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
381 < #else
382 <  ndfRaw = ndfRaw_local;
383 < #endif
572 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
573 >    int curStampId;
574  
575 <  return ndfRaw;
576 < }
575 >    //index from 0
576 >    curStampId = moleculeStamps_.size();
577  
578 < int SimInfo::getNDFtranslational() {
579 <  int ndfTrans_local;
578 >    moleculeStamps_.push_back(molStamp);
579 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
580 >  }
581  
582 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
582 >  void SimInfo::update() {
583  
584 +    setupSimType();
585  
586   #ifdef IS_MPI
587 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
396 < #else
397 <  ndfTrans = ndfTrans_local;
587 >    setupFortranParallel();
588   #endif
589  
590 <  ndfTrans = ndfTrans - 3 - nZconstraints;
590 >    setupFortranSim();
591  
592 <  return ndfTrans;
593 < }
592 >    //setup fortran force field
593 >    /** @deprecate */    
594 >    int isError = 0;
595 >    
596 >    setupElectrostaticSummationMethod( isError );
597 >    setupSwitchingFunction();
598  
599 < int SimInfo::getTotIntegrableObjects() {
600 <  int nObjs_local;
601 <  int nObjs;
599 >    if(isError){
600 >      sprintf( painCave.errMsg,
601 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
602 >      painCave.isFatal = 1;
603 >      simError();
604 >    }
605 >  
606 >    
607 >    setupCutoff();
608  
609 <  nObjs_local =  integrableObjects.size();
609 >    calcNdf();
610 >    calcNdfRaw();
611 >    calcNdfTrans();
612  
613 +    fortranInitialized_ = true;
614 +  }
615  
616 < #ifdef IS_MPI
617 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
618 < #else
619 <  nObjs = nObjs_local;
620 < #endif
616 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
617 >    SimInfo::MoleculeIterator mi;
618 >    Molecule* mol;
619 >    Molecule::AtomIterator ai;
620 >    Atom* atom;
621 >    std::set<AtomType*> atomTypes;
622  
623 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
624  
625 <  return nObjs;
626 < }
625 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
626 >        atomTypes.insert(atom->getAtomType());
627 >      }
628 >        
629 >    }
630  
631 < void SimInfo::refreshSim(){
631 >    return atomTypes;        
632 >  }
633  
634 <  simtype fInfo;
635 <  int isError;
636 <  int n_global;
637 <  int* excl;
634 >  void SimInfo::setupSimType() {
635 >    std::set<AtomType*>::iterator i;
636 >    std::set<AtomType*> atomTypes;
637 >    atomTypes = getUniqueAtomTypes();
638 >    
639 >    int useLennardJones = 0;
640 >    int useElectrostatic = 0;
641 >    int useEAM = 0;
642 >    int useSC = 0;
643 >    int useCharge = 0;
644 >    int useDirectional = 0;
645 >    int useDipole = 0;
646 >    int useGayBerne = 0;
647 >    int useSticky = 0;
648 >    int useStickyPower = 0;
649 >    int useShape = 0;
650 >    int useFLARB = 0; //it is not in AtomType yet
651 >    int useDirectionalAtom = 0;    
652 >    int useElectrostatics = 0;
653 >    //usePBC and useRF are from simParams
654 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
655 >    int useRF;
656 >    int useSF;
657 >    std::string myMethod;
658  
659 <  fInfo.dielect = 0.0;
659 >    // set the useRF logical
660 >    useRF = 0;
661 >    useSF = 0;
662  
663 <  if( useDipoles ){
664 <    if( useReactionField )fInfo.dielect = dielectric;
665 <  }
663 >
664 >    if (simParams_->haveElectrostaticSummationMethod()) {
665 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
666 >      toUpper(myMethod);
667 >      if (myMethod == "REACTION_FIELD") {
668 >        useRF=1;
669 >      } else {
670 >        if (myMethod == "SHIFTED_FORCE") {
671 >          useSF = 1;
672 >        }
673 >      }
674 >    }
675 >
676 >    //loop over all of the atom types
677 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
678 >      useLennardJones |= (*i)->isLennardJones();
679 >      useElectrostatic |= (*i)->isElectrostatic();
680 >      useEAM |= (*i)->isEAM();
681 >      useSC |= (*i)->isSC();
682 >      useCharge |= (*i)->isCharge();
683 >      useDirectional |= (*i)->isDirectional();
684 >      useDipole |= (*i)->isDipole();
685 >      useGayBerne |= (*i)->isGayBerne();
686 >      useSticky |= (*i)->isSticky();
687 >      useStickyPower |= (*i)->isStickyPower();
688 >      useShape |= (*i)->isShape();
689 >    }
690  
691 <  fInfo.SIM_uses_PBC = usePBC;
692 <  //fInfo.SIM_uses_LJ = 0;
693 <  fInfo.SIM_uses_LJ = useLJ;
438 <  fInfo.SIM_uses_sticky = useSticky;
439 <  //fInfo.SIM_uses_sticky = 0;
440 <  fInfo.SIM_uses_charges = useCharges;
441 <  fInfo.SIM_uses_dipoles = useDipoles;
442 <  //fInfo.SIM_uses_dipoles = 0;
443 <  fInfo.SIM_uses_RF = useReactionField;
444 <  //fInfo.SIM_uses_RF = 0;
445 <  fInfo.SIM_uses_GB = useGB;
446 <  fInfo.SIM_uses_EAM = useEAM;
691 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
692 >      useDirectionalAtom = 1;
693 >    }
694  
695 <  n_exclude = excludes->getSize();
696 <  excl = excludes->getFortranArray();
697 <  
451 < #ifdef IS_MPI
452 <  n_global = mpiSim->getNAtomsGlobal();
453 < #else
454 <  n_global = n_atoms;
455 < #endif
456 <  
457 <  isError = 0;
458 <  
459 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460 <  //it may not be a good idea to pass the address of first element in vector
461 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
695 >    if (useCharge || useDipole) {
696 >      useElectrostatics = 1;
697 >    }
698  
699 <  if( isError ){
699 > #ifdef IS_MPI    
700 >    int temp;
701 >
702 >    temp = usePBC;
703 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
704 >
705 >    temp = useDirectionalAtom;
706 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
707 >
708 >    temp = useLennardJones;
709 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
710 >
711 >    temp = useElectrostatics;
712 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
713 >
714 >    temp = useCharge;
715 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
716 >
717 >    temp = useDipole;
718 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
719 >
720 >    temp = useSticky;
721 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
722 >
723 >    temp = useStickyPower;
724 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
725      
726 <    sprintf( painCave.errMsg,
727 <             "There was an error setting the simulation information in fortran.\n" );
728 <    painCave.isFatal = 1;
729 <    painCave.severity = OOPSE_ERROR;
730 <    simError();
726 >    temp = useGayBerne;
727 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
728 >
729 >    temp = useEAM;
730 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
731 >
732 >    temp = useSC;
733 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
734 >    
735 >    temp = useShape;
736 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
737 >
738 >    temp = useFLARB;
739 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
740 >
741 >    temp = useRF;
742 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
743 >
744 >    temp = useSF;
745 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
746 >
747 > #endif
748 >
749 >    fInfo_.SIM_uses_PBC = usePBC;    
750 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
751 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
752 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
753 >    fInfo_.SIM_uses_Charges = useCharge;
754 >    fInfo_.SIM_uses_Dipoles = useDipole;
755 >    fInfo_.SIM_uses_Sticky = useSticky;
756 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
757 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
758 >    fInfo_.SIM_uses_EAM = useEAM;
759 >    fInfo_.SIM_uses_SC = useSC;
760 >    fInfo_.SIM_uses_Shapes = useShape;
761 >    fInfo_.SIM_uses_FLARB = useFLARB;
762 >    fInfo_.SIM_uses_RF = useRF;
763 >    fInfo_.SIM_uses_SF = useSF;
764 >
765 >    if( myMethod == "REACTION_FIELD") {
766 >      
767 >      if (simParams_->haveDielectric()) {
768 >        fInfo_.dielect = simParams_->getDielectric();
769 >      } else {
770 >        sprintf(painCave.errMsg,
771 >                "SimSetup Error: No Dielectric constant was set.\n"
772 >                "\tYou are trying to use Reaction Field without"
773 >                "\tsetting a dielectric constant!\n");
774 >        painCave.isFatal = 1;
775 >        simError();
776 >      }      
777 >    }
778 >
779    }
475  
476 #ifdef IS_MPI
477  sprintf( checkPointMsg,
478           "succesfully sent the simulation information to fortran.\n");
479  MPIcheckPoint();
480 #endif // is_mpi
481  
482  this->ndf = this->getNDF();
483  this->ndfRaw = this->getNDFraw();
484  this->ndfTrans = this->getNDFtranslational();
485 }
780  
781 < void SimInfo::setDefaultRcut( double theRcut ){
782 <  
783 <  haveRcut = 1;
784 <  rCut = theRcut;
785 <  rList = rCut + 1.0;
786 <  
787 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
494 < }
781 >  void SimInfo::setupFortranSim() {
782 >    int isError;
783 >    int nExclude;
784 >    std::vector<int> fortranGlobalGroupMembership;
785 >    
786 >    nExclude = exclude_.getSize();
787 >    isError = 0;
788  
789 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
789 >    //globalGroupMembership_ is filled by SimCreator    
790 >    for (int i = 0; i < nGlobalAtoms_; i++) {
791 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
792 >    }
793  
794 <  rSw = theRsw;
795 <  setDefaultRcut( theRcut );
796 < }
794 >    //calculate mass ratio of cutoff group
795 >    std::vector<double> mfact;
796 >    SimInfo::MoleculeIterator mi;
797 >    Molecule* mol;
798 >    Molecule::CutoffGroupIterator ci;
799 >    CutoffGroup* cg;
800 >    Molecule::AtomIterator ai;
801 >    Atom* atom;
802 >    double totalMass;
803  
804 +    //to avoid memory reallocation, reserve enough space for mfact
805 +    mfact.reserve(getNCutoffGroups());
806 +    
807 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
808 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
809  
810 < void SimInfo::checkCutOffs( void ){
811 <  
812 <  if( boxIsInit ){
810 >        totalMass = cg->getMass();
811 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
812 >          // Check for massless groups - set mfact to 1 if true
813 >          if (totalMass != 0)
814 >            mfact.push_back(atom->getMass()/totalMass);
815 >          else
816 >            mfact.push_back( 1.0 );
817 >        }
818 >
819 >      }      
820 >    }
821 >
822 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
823 >    std::vector<int> identArray;
824 >
825 >    //to avoid memory reallocation, reserve enough space identArray
826 >    identArray.reserve(getNAtoms());
827      
828 <    //we need to check cutOffs against the box
828 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
829 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
830 >        identArray.push_back(atom->getIdent());
831 >      }
832 >    }    
833 >
834 >    //fill molMembershipArray
835 >    //molMembershipArray is filled by SimCreator    
836 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
837 >    for (int i = 0; i < nGlobalAtoms_; i++) {
838 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
839 >    }
840      
841 <    if( rCut > maxCutoff ){
841 >    //setup fortran simulation
842 >    int nGlobalExcludes = 0;
843 >    int* globalExcludes = NULL;
844 >    int* excludeList = exclude_.getExcludeList();
845 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
846 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
847 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
848 >
849 >    if( isError ){
850 >
851        sprintf( painCave.errMsg,
852 <               "cutoffRadius is too large for the current periodic box.\n"
512 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
513 <               "\tThis is larger than half of at least one of the\n"
514 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515 <               "\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n"
518 <               "\t[ %G %G %G ]\n",
519 <               rCut, currentTime,
520 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523 <      painCave.severity = OOPSE_ERROR;
852 >               "There was an error setting the simulation information in fortran.\n" );
853        painCave.isFatal = 1;
854 +      painCave.severity = OOPSE_ERROR;
855        simError();
856 <    }    
857 <  } else {
858 <    // initialize this stuff before using it, OK?
859 <    sprintf( painCave.errMsg,
860 <             "Trying to check cutoffs without a box.\n"
861 <             "\tOOPSE should have better programmers than that.\n" );
862 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
856 >    }
857 >
858 > #ifdef IS_MPI
859 >    sprintf( checkPointMsg,
860 >             "succesfully sent the simulation information to fortran.\n");
861 >    MPIcheckPoint();
862 > #endif // is_mpi
863    }
536  
537 }
864  
539 void SimInfo::addProperty(GenericData* prop){
865  
866 <  map<string, GenericData*>::iterator result;
867 <  result = properties.find(prop->getID());
543 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
866 > #ifdef IS_MPI
867 >  void SimInfo::setupFortranParallel() {
868      
869 <    delete (*result).second;
870 <    (*result).second = prop;
871 <      
872 <  }
873 <  else{
869 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
870 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
871 >    std::vector<int> localToGlobalCutoffGroupIndex;
872 >    SimInfo::MoleculeIterator mi;
873 >    Molecule::AtomIterator ai;
874 >    Molecule::CutoffGroupIterator ci;
875 >    Molecule* mol;
876 >    Atom* atom;
877 >    CutoffGroup* cg;
878 >    mpiSimData parallelData;
879 >    int isError;
880  
881 <    properties[prop->getID()] = prop;
881 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
882  
883 <  }
884 <    
885 < }
883 >      //local index(index in DataStorge) of atom is important
884 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
885 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
886 >      }
887  
888 < GenericData* SimInfo::getProperty(const string& propName){
889 <
890 <  map<string, GenericData*>::iterator result;
891 <  
892 <  //string lowerCaseName = ();
893 <  
567 <  result = properties.find(propName);
568 <  
569 <  if(result != properties.end())
570 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
888 >      //local index of cutoff group is trivial, it only depends on the order of travesing
889 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
890 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
891 >      }        
892 >        
893 >    }
894  
895 +    //fill up mpiSimData struct
896 +    parallelData.nMolGlobal = getNGlobalMolecules();
897 +    parallelData.nMolLocal = getNMolecules();
898 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
899 +    parallelData.nAtomsLocal = getNAtoms();
900 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
901 +    parallelData.nGroupsLocal = getNCutoffGroups();
902 +    parallelData.myNode = worldRank;
903 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
904  
905 < void SimInfo::getFortranGroupArrays(SimInfo* info,
906 <                                    vector<int>& FglobalGroupMembership,
907 <                                    vector<double>& mfact){
908 <  
580 <  Molecule* myMols;
581 <  Atom** myAtoms;
582 <  int numAtom;
583 <  double mtot;
584 <  int numMol;
585 <  int numCutoffGroups;
586 <  CutoffGroup* myCutoffGroup;
587 <  vector<CutoffGroup*>::iterator iterCutoff;
588 <  Atom* cutoffAtom;
589 <  vector<Atom*>::iterator iterAtom;
590 <  int atomIndex;
591 <  double totalMass;
592 <  
593 <  mfact.clear();
594 <  FglobalGroupMembership.clear();
595 <  
905 >    //pass mpiSimData struct and index arrays to fortran
906 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
907 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
908 >                    &localToGlobalCutoffGroupIndex[0], &isError);
909  
910 <  // Fix the silly fortran indexing problem
911 < #ifdef IS_MPI
912 <  numAtom = mpiSim->getNAtomsGlobal();
913 < #else
914 <  numAtom = n_atoms;
910 >    if (isError) {
911 >      sprintf(painCave.errMsg,
912 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
913 >      painCave.isFatal = 1;
914 >      simError();
915 >    }
916 >
917 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
918 >    MPIcheckPoint();
919 >
920 >
921 >  }
922 >
923   #endif
603  for (int i = 0; i < numAtom; i++)
604    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605  
924  
925 <  myMols = info->molecules;
926 <  numMol = info->n_mol;
927 <  for(int i  = 0; i < numMol; i++){
928 <    numCutoffGroups = myMols[i].getNCutoffGroups();
929 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
930 <        myCutoffGroup != NULL;
931 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
925 >  void SimInfo::setupCutoff() {          
926 >    
927 >    // Check the cutoff policy
928 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
929 >    if (simParams_->haveCutoffPolicy()) {
930 >      std::string myPolicy = simParams_->getCutoffPolicy();
931 >      toUpper(myPolicy);
932 >      if (myPolicy == "MIX") {
933 >        cp = MIX_CUTOFF_POLICY;
934 >      } else {
935 >        if (myPolicy == "MAX") {
936 >          cp = MAX_CUTOFF_POLICY;
937 >        } else {
938 >          if (myPolicy == "TRADITIONAL") {            
939 >            cp = TRADITIONAL_CUTOFF_POLICY;
940 >          } else {
941 >            // throw error        
942 >            sprintf( painCave.errMsg,
943 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
944 >            painCave.isFatal = 1;
945 >            simError();
946 >          }    
947 >        }          
948 >      }
949 >    }          
950 >    notifyFortranCutoffPolicy(&cp);
951  
952 <      totalMass = myCutoffGroup->getMass();
953 <      
954 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
955 <          cutoffAtom != NULL;
956 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
957 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
958 <      }  
952 >    // Check the Skin Thickness for neighborlists
953 >    double skin;
954 >    if (simParams_->haveSkinThickness()) {
955 >      skin = simParams_->getSkinThickness();
956 >      notifyFortranSkinThickness(&skin);
957 >    }            
958 >        
959 >    // Check if the cutoff was set explicitly:
960 >    if (simParams_->haveCutoffRadius()) {
961 >      rcut_ = simParams_->getCutoffRadius();
962 >      if (simParams_->haveSwitchingRadius()) {
963 >        rsw_  = simParams_->getSwitchingRadius();
964 >      } else {
965 >        rsw_ = rcut_;
966 >      }
967 >      notifyFortranCutoffs(&rcut_, &rsw_);
968 >      
969 >    } else {
970 >      
971 >      // For electrostatic atoms, we'll assume a large safe value:
972 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
973 >        sprintf(painCave.errMsg,
974 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
975 >                "\tOOPSE will use a default value of 15.0 angstroms"
976 >                "\tfor the cutoffRadius.\n");
977 >        painCave.isFatal = 0;
978 >        simError();
979 >        rcut_ = 15.0;
980 >      
981 >        if (simParams_->haveElectrostaticSummationMethod()) {
982 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
983 >          toUpper(myMethod);
984 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
985 >            if (simParams_->haveSwitchingRadius()){
986 >              sprintf(painCave.errMsg,
987 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
988 >                      "\teven though the electrostaticSummationMethod was\n"
989 >                      "\tset to %s\n", myMethod.c_str());
990 >              painCave.isFatal = 1;
991 >              simError();            
992 >            }
993 >          }
994 >        }
995 >      
996 >        if (simParams_->haveSwitchingRadius()){
997 >          rsw_ = simParams_->getSwitchingRadius();
998 >        } else {        
999 >          sprintf(painCave.errMsg,
1000 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1001 >                  "\tOOPSE will use a default value of\n"
1002 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1003 >          painCave.isFatal = 0;
1004 >          simError();
1005 >          rsw_ = 0.85 * rcut_;
1006 >        }
1007 >        notifyFortranCutoffs(&rcut_, &rsw_);
1008 >      } else {
1009 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1010 >        // We'll punt and let fortran figure out the cutoffs later.
1011 >        
1012 >        notifyFortranYouAreOnYourOwn();
1013 >
1014 >      }
1015      }
1016    }
1017  
1018 < }
1018 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1019 >    
1020 >    int errorOut;
1021 >    int esm =  NONE;
1022 >    int sm = UNDAMPED;
1023 >    double alphaVal;
1024 >    double dielectric;
1025 >
1026 >    errorOut = isError;
1027 >    alphaVal = simParams_->getDampingAlpha();
1028 >    dielectric = simParams_->getDielectric();
1029 >
1030 >    if (simParams_->haveElectrostaticSummationMethod()) {
1031 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1032 >      toUpper(myMethod);
1033 >      if (myMethod == "NONE") {
1034 >        esm = NONE;
1035 >      } else {
1036 >        if (myMethod == "SWITCHING_FUNCTION") {
1037 >          esm = SWITCHING_FUNCTION;
1038 >        } else {
1039 >          if (myMethod == "SHIFTED_POTENTIAL") {
1040 >            esm = SHIFTED_POTENTIAL;
1041 >          } else {
1042 >            if (myMethod == "SHIFTED_FORCE") {            
1043 >              esm = SHIFTED_FORCE;
1044 >            } else {
1045 >              if (myMethod == "REACTION_FIELD") {            
1046 >                esm = REACTION_FIELD;
1047 >              } else {
1048 >                // throw error        
1049 >                sprintf( painCave.errMsg,
1050 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1051 >                         "\t(Input file specified %s .)\n"
1052 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1053 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1054 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1055 >                painCave.isFatal = 1;
1056 >                simError();
1057 >              }    
1058 >            }          
1059 >          }
1060 >        }
1061 >      }
1062 >    }
1063 >    
1064 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1065 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1066 >      toUpper(myScreen);
1067 >      if (myScreen == "UNDAMPED") {
1068 >        sm = UNDAMPED;
1069 >      } else {
1070 >        if (myScreen == "DAMPED") {
1071 >          sm = DAMPED;
1072 >          if (!simParams_->haveDampingAlpha()) {
1073 >            //throw error
1074 >            sprintf( painCave.errMsg,
1075 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1076 >                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1077 >            painCave.isFatal = 0;
1078 >            simError();
1079 >          }
1080 >        } else {
1081 >          // throw error        
1082 >          sprintf( painCave.errMsg,
1083 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1084 >                   "\t(Input file specified %s .)\n"
1085 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1086 >                   "or \"damped\".\n", myScreen.c_str() );
1087 >          painCave.isFatal = 1;
1088 >          simError();
1089 >        }
1090 >      }
1091 >    }
1092 >    
1093 >    // let's pass some summation method variables to fortran
1094 >    setElectrostaticSummationMethod( &esm );
1095 >    notifyFortranElectrostaticMethod( &esm );
1096 >    setScreeningMethod( &sm );
1097 >    setDampingAlpha( &alphaVal );
1098 >    setReactionFieldDielectric( &dielectric );
1099 >    initFortranFF( &errorOut );
1100 >  }
1101 >
1102 >  void SimInfo::setupSwitchingFunction() {    
1103 >    int ft = CUBIC;
1104 >
1105 >    if (simParams_->haveSwitchingFunctionType()) {
1106 >      std::string funcType = simParams_->getSwitchingFunctionType();
1107 >      toUpper(funcType);
1108 >      if (funcType == "CUBIC") {
1109 >        ft = CUBIC;
1110 >      } else {
1111 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1112 >          ft = FIFTH_ORDER_POLY;
1113 >        } else {
1114 >          // throw error        
1115 >          sprintf( painCave.errMsg,
1116 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1117 >          painCave.isFatal = 1;
1118 >          simError();
1119 >        }          
1120 >      }
1121 >    }
1122 >
1123 >    // send switching function notification to switcheroo
1124 >    setFunctionType(&ft);
1125 >
1126 >  }
1127 >
1128 >  void SimInfo::addProperty(GenericData* genData) {
1129 >    properties_.addProperty(genData);  
1130 >  }
1131 >
1132 >  void SimInfo::removeProperty(const std::string& propName) {
1133 >    properties_.removeProperty(propName);  
1134 >  }
1135 >
1136 >  void SimInfo::clearProperties() {
1137 >    properties_.clearProperties();
1138 >  }
1139 >
1140 >  std::vector<std::string> SimInfo::getPropertyNames() {
1141 >    return properties_.getPropertyNames();  
1142 >  }
1143 >      
1144 >  std::vector<GenericData*> SimInfo::getProperties() {
1145 >    return properties_.getProperties();
1146 >  }
1147 >
1148 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1149 >    return properties_.getPropertyByName(propName);
1150 >  }
1151 >
1152 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1153 >    if (sman_ == sman) {
1154 >      return;
1155 >    }    
1156 >    delete sman_;
1157 >    sman_ = sman;
1158 >
1159 >    Molecule* mol;
1160 >    RigidBody* rb;
1161 >    Atom* atom;
1162 >    SimInfo::MoleculeIterator mi;
1163 >    Molecule::RigidBodyIterator rbIter;
1164 >    Molecule::AtomIterator atomIter;;
1165 >
1166 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1167 >        
1168 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1169 >        atom->setSnapshotManager(sman_);
1170 >      }
1171 >        
1172 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1173 >        rb->setSnapshotManager(sman_);
1174 >      }
1175 >    }    
1176 >    
1177 >  }
1178 >
1179 >  Vector3d SimInfo::getComVel(){
1180 >    SimInfo::MoleculeIterator i;
1181 >    Molecule* mol;
1182 >
1183 >    Vector3d comVel(0.0);
1184 >    double totalMass = 0.0;
1185 >    
1186 >
1187 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 >      double mass = mol->getMass();
1189 >      totalMass += mass;
1190 >      comVel += mass * mol->getComVel();
1191 >    }  
1192 >
1193 > #ifdef IS_MPI
1194 >    double tmpMass = totalMass;
1195 >    Vector3d tmpComVel(comVel);    
1196 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1197 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1198 > #endif
1199 >
1200 >    comVel /= totalMass;
1201 >
1202 >    return comVel;
1203 >  }
1204 >
1205 >  Vector3d SimInfo::getCom(){
1206 >    SimInfo::MoleculeIterator i;
1207 >    Molecule* mol;
1208 >
1209 >    Vector3d com(0.0);
1210 >    double totalMass = 0.0;
1211 >    
1212 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1213 >      double mass = mol->getMass();
1214 >      totalMass += mass;
1215 >      com += mass * mol->getCom();
1216 >    }  
1217 >
1218 > #ifdef IS_MPI
1219 >    double tmpMass = totalMass;
1220 >    Vector3d tmpCom(com);    
1221 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1222 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1223 > #endif
1224 >
1225 >    com /= totalMass;
1226 >
1227 >    return com;
1228 >
1229 >  }        
1230 >
1231 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1232 >
1233 >    return o;
1234 >  }
1235 >  
1236 >  
1237 >   /*
1238 >   Returns center of mass and center of mass velocity in one function call.
1239 >   */
1240 >  
1241 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1242 >      SimInfo::MoleculeIterator i;
1243 >      Molecule* mol;
1244 >      
1245 >    
1246 >      double totalMass = 0.0;
1247 >    
1248 >
1249 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1250 >         double mass = mol->getMass();
1251 >         totalMass += mass;
1252 >         com += mass * mol->getCom();
1253 >         comVel += mass * mol->getComVel();          
1254 >      }  
1255 >      
1256 > #ifdef IS_MPI
1257 >      double tmpMass = totalMass;
1258 >      Vector3d tmpCom(com);  
1259 >      Vector3d tmpComVel(comVel);
1260 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1261 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1262 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1263 > #endif
1264 >      
1265 >      com /= totalMass;
1266 >      comVel /= totalMass;
1267 >   }        
1268 >  
1269 >   /*
1270 >   Return intertia tensor for entire system and angular momentum Vector.
1271 >
1272 >
1273 >       [  Ixx -Ixy  -Ixz ]
1274 >  J =| -Iyx  Iyy  -Iyz |
1275 >       [ -Izx -Iyz   Izz ]
1276 >    */
1277 >
1278 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1279 >      
1280 >
1281 >      double xx = 0.0;
1282 >      double yy = 0.0;
1283 >      double zz = 0.0;
1284 >      double xy = 0.0;
1285 >      double xz = 0.0;
1286 >      double yz = 0.0;
1287 >      Vector3d com(0.0);
1288 >      Vector3d comVel(0.0);
1289 >      
1290 >      getComAll(com, comVel);
1291 >      
1292 >      SimInfo::MoleculeIterator i;
1293 >      Molecule* mol;
1294 >      
1295 >      Vector3d thisq(0.0);
1296 >      Vector3d thisv(0.0);
1297 >
1298 >      double thisMass = 0.0;
1299 >    
1300 >      
1301 >      
1302 >  
1303 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1304 >        
1305 >         thisq = mol->getCom()-com;
1306 >         thisv = mol->getComVel()-comVel;
1307 >         thisMass = mol->getMass();
1308 >         // Compute moment of intertia coefficients.
1309 >         xx += thisq[0]*thisq[0]*thisMass;
1310 >         yy += thisq[1]*thisq[1]*thisMass;
1311 >         zz += thisq[2]*thisq[2]*thisMass;
1312 >        
1313 >         // compute products of intertia
1314 >         xy += thisq[0]*thisq[1]*thisMass;
1315 >         xz += thisq[0]*thisq[2]*thisMass;
1316 >         yz += thisq[1]*thisq[2]*thisMass;
1317 >            
1318 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1319 >            
1320 >      }  
1321 >      
1322 >      
1323 >      inertiaTensor(0,0) = yy + zz;
1324 >      inertiaTensor(0,1) = -xy;
1325 >      inertiaTensor(0,2) = -xz;
1326 >      inertiaTensor(1,0) = -xy;
1327 >      inertiaTensor(1,1) = xx + zz;
1328 >      inertiaTensor(1,2) = -yz;
1329 >      inertiaTensor(2,0) = -xz;
1330 >      inertiaTensor(2,1) = -yz;
1331 >      inertiaTensor(2,2) = xx + yy;
1332 >      
1333 > #ifdef IS_MPI
1334 >      Mat3x3d tmpI(inertiaTensor);
1335 >      Vector3d tmpAngMom;
1336 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1337 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1338 > #endif
1339 >              
1340 >      return;
1341 >   }
1342 >
1343 >   //Returns the angular momentum of the system
1344 >   Vector3d SimInfo::getAngularMomentum(){
1345 >      
1346 >      Vector3d com(0.0);
1347 >      Vector3d comVel(0.0);
1348 >      Vector3d angularMomentum(0.0);
1349 >      
1350 >      getComAll(com,comVel);
1351 >      
1352 >      SimInfo::MoleculeIterator i;
1353 >      Molecule* mol;
1354 >      
1355 >      Vector3d thisr(0.0);
1356 >      Vector3d thisp(0.0);
1357 >      
1358 >      double thisMass;
1359 >      
1360 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1361 >        thisMass = mol->getMass();
1362 >        thisr = mol->getCom()-com;
1363 >        thisp = (mol->getComVel()-comVel)*thisMass;
1364 >        
1365 >        angularMomentum += cross( thisr, thisp );
1366 >        
1367 >      }  
1368 >      
1369 > #ifdef IS_MPI
1370 >      Vector3d tmpAngMom;
1371 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1372 > #endif
1373 >      
1374 >      return angularMomentum;
1375 >   }
1376 >  
1377 >  
1378 > }//end namespace oopse
1379 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines