ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1492 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
Revision 2533 by chuckv, Fri Dec 30 23:15:59 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "UseTheForce/fCutoffPolicy.h"
57 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 > #include "UseTheForce/doForces_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 > #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65 + #include "selection/SelectionManager.hpp"
66 + #include "io/ForceFieldOptions.hpp"
67 + #include "UseTheForce/ForceField.hpp"
68  
13 #include "UseTheForce/fortranWrappers.hpp"
14
15 #include "math/MatVec3.h"
16
69   #ifdef IS_MPI
70 < #include "brains/mpiSimulation.hpp"
71 < #endif
70 > #include "UseTheForce/mpiComponentPlan.h"
71 > #include "UseTheForce/DarkSide/simParallel_interface.h"
72 > #endif
73  
74 < inline double roundMe( double x ){
75 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
76 < }
77 <          
78 < inline double min( double a, double b ){
79 <  return (a < b ) ? a : b;
80 < }
74 > namespace oopse {
75 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 >    std::map<int, std::set<int> >::iterator i = container.find(index);
77 >    std::set<int> result;
78 >    if (i != container.end()) {
79 >        result = i->second;
80 >    }
81  
82 < SimInfo* currentInfo;
83 <
31 < SimInfo::SimInfo(){
32 <
33 <  n_constraints = 0;
34 <  nZconstraints = 0;
35 <  n_oriented = 0;
36 <  n_dipoles = 0;
37 <  ndf = 0;
38 <  ndfRaw = 0;
39 <  nZconstraints = 0;
40 <  the_integrator = NULL;
41 <  setTemp = 0;
42 <  thermalTime = 0.0;
43 <  currentTime = 0.0;
44 <  rCut = 0.0;
45 <  rSw = 0.0;
46 <
47 <  haveRcut = 0;
48 <  haveRsw = 0;
49 <  boxIsInit = 0;
82 >    return result;
83 >  }
84    
85 <  resetTime = 1e99;
85 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 >    forceField_(ff), simParams_(simParams),
87 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
91 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
92 >    sman_(NULL), fortranInitialized_(false) {
93  
94 <  orthoRhombic = 0;
95 <  orthoTolerance = 1E-6;
96 <  useInitXSstate = true;
94 >      MoleculeStamp* molStamp;
95 >      int nMolWithSameStamp;
96 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
98 >      CutoffGroupStamp* cgStamp;    
99 >      RigidBodyStamp* rbStamp;
100 >      int nRigidAtoms = 0;
101 >      std::vector<Component*> components = simParams->getComponents();
102 >      
103 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 >        molStamp = (*i)->getMoleculeStamp();
105 >        nMolWithSameStamp = (*i)->getNMol();
106 >        
107 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
108  
109 <  usePBC = 0;
110 <  useLJ = 0;
59 <  useSticky = 0;
60 <  useCharges = 0;
61 <  useDipoles = 0;
62 <  useReactionField = 0;
63 <  useGB = 0;
64 <  useEAM = 0;
65 <  useSolidThermInt = 0;
66 <  useLiquidThermInt = 0;
109 >        //calculate atoms in molecules
110 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111  
112 <  haveCutoffGroups = false;
112 >        //calculate atoms in cutoff groups
113 >        int nAtomsInGroups = 0;
114 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115 >        
116 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 >          cgStamp = molStamp->getCutoffGroupStamp(j);
118 >          nAtomsInGroups += cgStamp->getNMembers();
119 >        }
120  
121 <  excludes = Exclude::Instance();
121 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122  
123 <  myConfiguration = new SimState();
123 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124  
125 <  has_minimizer = false;
126 <  the_minimizer =NULL;
125 >        //calculate atoms in rigid bodies
126 >        int nAtomsInRigidBodies = 0;
127 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 >        
129 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
130 >          rbStamp = molStamp->getRigidBodyStamp(j);
131 >          nAtomsInRigidBodies += rbStamp->getNMembers();
132 >        }
133  
134 <  ngroup = 0;
134 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136 >        
137 >      }
138  
139 <  wrapMeSimInfo( this );
140 < }
139 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
140 >      //group therefore the total number of cutoff groups in the system is
141 >      //equal to the total number of atoms minus number of atoms belong to
142 >      //cutoff group defined in meta-data file plus the number of cutoff
143 >      //groups defined in meta-data file
144 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145  
146 +      //every free atom (atom does not belong to rigid bodies) is an
147 +      //integrable object therefore the total number of integrable objects
148 +      //in the system is equal to the total number of atoms minus number of
149 +      //atoms belong to rigid body defined in meta-data file plus the number
150 +      //of rigid bodies defined in meta-data file
151 +      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152 +                                                + nGlobalRigidBodies_;
153 +  
154 +      nGlobalMols_ = molStampIds_.size();
155  
156 < SimInfo::~SimInfo(){
156 > #ifdef IS_MPI    
157 >      molToProcMap_.resize(nGlobalMols_);
158 > #endif
159  
160 <  delete myConfiguration;
160 >    }
161  
162 <  map<string, GenericData*>::iterator i;
163 <  
164 <  for(i = properties.begin(); i != properties.end(); i++)
165 <    delete (*i).second;
162 >  SimInfo::~SimInfo() {
163 >    std::map<int, Molecule*>::iterator i;
164 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 >      delete i->second;
166 >    }
167 >    molecules_.clear();
168 >      
169 >    delete sman_;
170 >    delete simParams_;
171 >    delete forceField_;
172 >  }
173  
174 < }
174 >  int SimInfo::getNGlobalConstraints() {
175 >    int nGlobalConstraints;
176 > #ifdef IS_MPI
177 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178 >                  MPI_COMM_WORLD);    
179 > #else
180 >    nGlobalConstraints =  nConstraints_;
181 > #endif
182 >    return nGlobalConstraints;
183 >  }
184  
185 < void SimInfo::setBox(double newBox[3]) {
186 <  
96 <  int i, j;
97 <  double tempMat[3][3];
185 >  bool SimInfo::addMolecule(Molecule* mol) {
186 >    MoleculeIterator i;
187  
188 <  for(i=0; i<3; i++)
189 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
188 >    i = molecules_.find(mol->getGlobalIndex());
189 >    if (i == molecules_.end() ) {
190  
191 <  tempMat[0][0] = newBox[0];
192 <  tempMat[1][1] = newBox[1];
193 <  tempMat[2][2] = newBox[2];
191 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192 >        
193 >      nAtoms_ += mol->getNAtoms();
194 >      nBonds_ += mol->getNBonds();
195 >      nBends_ += mol->getNBends();
196 >      nTorsions_ += mol->getNTorsions();
197 >      nRigidBodies_ += mol->getNRigidBodies();
198 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
199 >      nCutoffGroups_ += mol->getNCutoffGroups();
200 >      nConstraints_ += mol->getNConstraintPairs();
201  
202 <  setBoxM( tempMat );
202 >      addExcludePairs(mol);
203 >        
204 >      return true;
205 >    } else {
206 >      return false;
207 >    }
208 >  }
209  
210 < }
210 >  bool SimInfo::removeMolecule(Molecule* mol) {
211 >    MoleculeIterator i;
212 >    i = molecules_.find(mol->getGlobalIndex());
213  
214 < void SimInfo::setBoxM( double theBox[3][3] ){
111 <  
112 <  int i, j;
113 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
114 <                         // ordering in the array is as follows:
115 <                         // [ 0 3 6 ]
116 <                         // [ 1 4 7 ]
117 <                         // [ 2 5 8 ]
118 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
214 >    if (i != molecules_.end() ) {
215  
216 <  if( !boxIsInit ) boxIsInit = 1;
216 >      assert(mol == i->second);
217 >        
218 >      nAtoms_ -= mol->getNAtoms();
219 >      nBonds_ -= mol->getNBonds();
220 >      nBends_ -= mol->getNBends();
221 >      nTorsions_ -= mol->getNTorsions();
222 >      nRigidBodies_ -= mol->getNRigidBodies();
223 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 >      nCutoffGroups_ -= mol->getNCutoffGroups();
225 >      nConstraints_ -= mol->getNConstraintPairs();
226  
227 <  for(i=0; i < 3; i++)
228 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
124 <  
125 <  calcBoxL();
126 <  calcHmatInv();
227 >      removeExcludePairs(mol);
228 >      molecules_.erase(mol->getGlobalIndex());
229  
230 <  for(i=0; i < 3; i++) {
231 <    for (j=0; j < 3; j++) {
232 <      FortranHmat[3*j + i] = Hmat[i][j];
233 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
230 >      delete mol;
231 >        
232 >      return true;
233 >    } else {
234 >      return false;
235      }
133  }
236  
135  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
136
137 }
138
237  
238 < void SimInfo::getBoxM (double theBox[3][3]) {
238 >  }    
239  
240 <  int i, j;
241 <  for(i=0; i<3; i++)
242 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
243 < }
240 >        
241 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 >    i = molecules_.begin();
243 >    return i == molecules_.end() ? NULL : i->second;
244 >  }    
245  
246 +  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 +    ++i;
248 +    return i == molecules_.end() ? NULL : i->second;    
249 +  }
250  
148 void SimInfo::scaleBox(double scale) {
149  double theBox[3][3];
150  int i, j;
251  
252 <  // cerr << "Scaling box by " << scale << "\n";
252 >  void SimInfo::calcNdf() {
253 >    int ndf_local;
254 >    MoleculeIterator i;
255 >    std::vector<StuntDouble*>::iterator j;
256 >    Molecule* mol;
257 >    StuntDouble* integrableObject;
258  
259 <  for(i=0; i<3; i++)
260 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
259 >    ndf_local = 0;
260 >    
261 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 >           integrableObject = mol->nextIntegrableObject(j)) {
264  
265 <  setBoxM(theBox);
265 >        ndf_local += 3;
266  
267 < }
268 <
269 < void SimInfo::calcHmatInv( void ) {
270 <  
271 <  int oldOrtho;
272 <  int i,j;
273 <  double smallDiag;
274 <  double tol;
167 <  double sanity[3][3];
168 <
169 <  invertMat3( Hmat, HmatInv );
170 <
171 <  // check to see if Hmat is orthorhombic
172 <  
173 <  oldOrtho = orthoRhombic;
174 <
175 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
179 <
180 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
267 >        if (integrableObject->isDirectional()) {
268 >          if (integrableObject->isLinear()) {
269 >            ndf_local += 2;
270 >          } else {
271 >            ndf_local += 3;
272 >          }
273 >        }
274 >            
275        }
276      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
277      
278 <    if( orthoRhombic ) {
279 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
278 >    // n_constraints is local, so subtract them on each processor
279 >    ndf_local -= nConstraints_;
280  
281 < void SimInfo::calcBoxL( void ){
281 > #ifdef IS_MPI
282 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
283 > #else
284 >    ndf_ = ndf_local;
285 > #endif
286  
287 <  double dx, dy, dz, dsq;
287 >    // nZconstraints_ is global, as are the 3 COM translations for the
288 >    // entire system:
289 >    ndf_ = ndf_ - 3 - nZconstraint_;
290  
291 <  // boxVol = Determinant of Hmat
291 >  }
292  
293 <  boxVol = matDet3( Hmat );
293 >  void SimInfo::calcNdfRaw() {
294 >    int ndfRaw_local;
295  
296 <  // boxLx
297 <  
298 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
299 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
296 >    MoleculeIterator i;
297 >    std::vector<StuntDouble*>::iterator j;
298 >    Molecule* mol;
299 >    StuntDouble* integrableObject;
300  
301 <  // boxLy
302 <  
237 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
238 <  dsq = dx*dx + dy*dy + dz*dz;
239 <  boxL[1] = sqrt( dsq );
240 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
241 <
242 <
243 <  // boxLz
244 <  
245 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
246 <  dsq = dx*dx + dy*dy + dz*dz;
247 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
249 <
250 <  //calculate the max cutoff
251 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
254 <
255 < }
256 <
257 <
258 < double SimInfo::calcMaxCutOff(){
259 <
260 <  double ri[3], rj[3], rk[3];
261 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
263 <
264 <  ri[0] = Hmat[0][0];
265 <  ri[1] = Hmat[1][0];
266 <  ri[2] = Hmat[2][0];
267 <
268 <  rj[0] = Hmat[0][1];
269 <  rj[1] = Hmat[1][1];
270 <  rj[2] = Hmat[2][1];
271 <
272 <  rk[0] = Hmat[0][2];
273 <  rk[1] = Hmat[1][2];
274 <  rk[2] = Hmat[2][2];
301 >    // Raw degrees of freedom that we have to set
302 >    ndfRaw_local = 0;
303      
304 <  crossProduct3(ri, rj, rij);
305 <  distXY = dotProduct3(rk,rij) / norm3(rij);
304 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
305 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
306 >           integrableObject = mol->nextIntegrableObject(j)) {
307  
308 <  crossProduct3(rj,rk, rjk);
280 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
308 >        ndfRaw_local += 3;
309  
310 <  crossProduct3(rk,ri, rki);
311 <  distZX = dotProduct3(rj,rki) / norm3(rki);
312 <
313 <  minDist = min(min(distXY, distYZ), distZX);
314 <  return minDist/2;
315 <  
316 < }
317 <
318 < void SimInfo::wrapVector( double thePos[3] ){
319 <
292 <  int i;
293 <  double scaled[3];
294 <
295 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
297 <  
298 <
299 <    matVecMul3(HmatInv, thePos, scaled);
310 >        if (integrableObject->isDirectional()) {
311 >          if (integrableObject->isLinear()) {
312 >            ndfRaw_local += 2;
313 >          } else {
314 >            ndfRaw_local += 3;
315 >          }
316 >        }
317 >            
318 >      }
319 >    }
320      
321 <    for(i=0; i<3; i++)
322 <      scaled[i] -= roundMe(scaled[i]);
323 <    
324 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
325 <    
306 <    matVecMul3(Hmat, scaled, thePos);
307 <
321 > #ifdef IS_MPI
322 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
323 > #else
324 >    ndfRaw_ = ndfRaw_local;
325 > #endif
326    }
309  else{
310    // calc the scaled coordinates.
311    
312    for(i=0; i<3; i++)
313      scaled[i] = thePos[i]*HmatInv[i][i];
314    
315    // wrap the scaled coordinates
316    
317    for(i=0; i<3; i++)
318      scaled[i] -= roundMe(scaled[i]);
319    
320    // calc the wrapped real coordinates from the wrapped scaled coordinates
321    
322    for(i=0; i<3; i++)
323      thePos[i] = scaled[i]*Hmat[i][i];
324  }
325    
326 }
327  
328 +  void SimInfo::calcNdfTrans() {
329 +    int ndfTrans_local;
330  
331 < int SimInfo::getNDF(){
330 <  int ndf_local;
331 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
332  
332  ndf_local = 0;
333  
334  for(int i = 0; i < integrableObjects.size(); i++){
335    ndf_local += 3;
336    if (integrableObjects[i]->isDirectional()) {
337      if (integrableObjects[i]->isLinear())
338        ndf_local += 2;
339      else
340        ndf_local += 3;
341    }
342  }
333  
344  // n_constraints is local, so subtract them on each processor:
345
346  ndf_local -= n_constraints;
347
334   #ifdef IS_MPI
335 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
335 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336   #else
337 <  ndf = ndf_local;
337 >    ndfTrans_ = ndfTrans_local;
338   #endif
339  
340 <  // nZconstraints is global, as are the 3 COM translations for the
341 <  // entire system:
340 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
341 >
342 >  }
343  
344 <  ndf = ndf - 3 - nZconstraints;
344 >  void SimInfo::addExcludePairs(Molecule* mol) {
345 >    std::vector<Bond*>::iterator bondIter;
346 >    std::vector<Bend*>::iterator bendIter;
347 >    std::vector<Torsion*>::iterator torsionIter;
348 >    Bond* bond;
349 >    Bend* bend;
350 >    Torsion* torsion;
351 >    int a;
352 >    int b;
353 >    int c;
354 >    int d;
355  
356 <  return ndf;
360 < }
356 >    std::map<int, std::set<int> > atomGroups;
357  
358 < int SimInfo::getNDFraw() {
359 <  int ndfRaw_local;
358 >    Molecule::RigidBodyIterator rbIter;
359 >    RigidBody* rb;
360 >    Molecule::IntegrableObjectIterator ii;
361 >    StuntDouble* integrableObject;
362 >    
363 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
364 >           integrableObject = mol->nextIntegrableObject(ii)) {
365  
366 <  // Raw degrees of freedom that we have to set
367 <  ndfRaw_local = 0;
366 >      if (integrableObject->isRigidBody()) {
367 >          rb = static_cast<RigidBody*>(integrableObject);
368 >          std::vector<Atom*> atoms = rb->getAtoms();
369 >          std::set<int> rigidAtoms;
370 >          for (int i = 0; i < atoms.size(); ++i) {
371 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
372 >          }
373 >          for (int i = 0; i < atoms.size(); ++i) {
374 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
375 >          }      
376 >      } else {
377 >        std::set<int> oneAtomSet;
378 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
379 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
380 >      }
381 >    }  
382  
368  for(int i = 0; i < integrableObjects.size(); i++){
369    ndfRaw_local += 3;
370    if (integrableObjects[i]->isDirectional()) {
371       if (integrableObjects[i]->isLinear())
372        ndfRaw_local += 2;
373      else
374        ndfRaw_local += 3;
375    }
376  }
383      
384 < #ifdef IS_MPI
385 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
386 < #else
387 <  ndfRaw = ndfRaw_local;
388 < #endif
384 >    
385 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
386 >      a = bond->getAtomA()->getGlobalIndex();
387 >      b = bond->getAtomB()->getGlobalIndex();        
388 >      exclude_.addPair(a, b);
389 >    }
390  
391 <  return ndfRaw;
392 < }
391 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
392 >      a = bend->getAtomA()->getGlobalIndex();
393 >      b = bend->getAtomB()->getGlobalIndex();        
394 >      c = bend->getAtomC()->getGlobalIndex();
395 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
396 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
397 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
398  
399 < int SimInfo::getNDFtranslational() {
400 <  int ndfTrans_local;
399 >      exclude_.addPairs(rigidSetA, rigidSetB);
400 >      exclude_.addPairs(rigidSetA, rigidSetC);
401 >      exclude_.addPairs(rigidSetB, rigidSetC);
402 >      
403 >      //exclude_.addPair(a, b);
404 >      //exclude_.addPair(a, c);
405 >      //exclude_.addPair(b, c);        
406 >    }
407  
408 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
408 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
409 >      a = torsion->getAtomA()->getGlobalIndex();
410 >      b = torsion->getAtomB()->getGlobalIndex();        
411 >      c = torsion->getAtomC()->getGlobalIndex();        
412 >      d = torsion->getAtomD()->getGlobalIndex();        
413 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
414 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
415 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
416 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
417  
418 +      exclude_.addPairs(rigidSetA, rigidSetB);
419 +      exclude_.addPairs(rigidSetA, rigidSetC);
420 +      exclude_.addPairs(rigidSetA, rigidSetD);
421 +      exclude_.addPairs(rigidSetB, rigidSetC);
422 +      exclude_.addPairs(rigidSetB, rigidSetD);
423 +      exclude_.addPairs(rigidSetC, rigidSetD);
424  
425 < #ifdef IS_MPI
426 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
427 < #else
428 <  ndfTrans = ndfTrans_local;
429 < #endif
425 >      /*
426 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
427 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
428 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
429 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
430 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
431 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
432 >        
433 >      
434 >      exclude_.addPair(a, b);
435 >      exclude_.addPair(a, c);
436 >      exclude_.addPair(a, d);
437 >      exclude_.addPair(b, c);
438 >      exclude_.addPair(b, d);
439 >      exclude_.addPair(c, d);        
440 >      */
441 >    }
442  
443 <  ndfTrans = ndfTrans - 3 - nZconstraints;
443 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
444 >      std::vector<Atom*> atoms = rb->getAtoms();
445 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
446 >        for (int j = i + 1; j < atoms.size(); ++j) {
447 >          a = atoms[i]->getGlobalIndex();
448 >          b = atoms[j]->getGlobalIndex();
449 >          exclude_.addPair(a, b);
450 >        }
451 >      }
452 >    }        
453  
454 <  return ndfTrans;
402 < }
454 >  }
455  
456 < int SimInfo::getTotIntegrableObjects() {
457 <  int nObjs_local;
458 <  int nObjs;
459 <
460 <  nObjs_local =  integrableObjects.size();
456 >  void SimInfo::removeExcludePairs(Molecule* mol) {
457 >    std::vector<Bond*>::iterator bondIter;
458 >    std::vector<Bend*>::iterator bendIter;
459 >    std::vector<Torsion*>::iterator torsionIter;
460 >    Bond* bond;
461 >    Bend* bend;
462 >    Torsion* torsion;
463 >    int a;
464 >    int b;
465 >    int c;
466 >    int d;
467  
468 +    std::map<int, std::set<int> > atomGroups;
469  
470 < #ifdef IS_MPI
471 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
472 < #else
473 <  nObjs = nObjs_local;
474 < #endif
470 >    Molecule::RigidBodyIterator rbIter;
471 >    RigidBody* rb;
472 >    Molecule::IntegrableObjectIterator ii;
473 >    StuntDouble* integrableObject;
474 >    
475 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
476 >           integrableObject = mol->nextIntegrableObject(ii)) {
477  
478 +      if (integrableObject->isRigidBody()) {
479 +          rb = static_cast<RigidBody*>(integrableObject);
480 +          std::vector<Atom*> atoms = rb->getAtoms();
481 +          std::set<int> rigidAtoms;
482 +          for (int i = 0; i < atoms.size(); ++i) {
483 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
484 +          }
485 +          for (int i = 0; i < atoms.size(); ++i) {
486 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
487 +          }      
488 +      } else {
489 +        std::set<int> oneAtomSet;
490 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
491 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
492 +      }
493 +    }  
494  
495 <  return nObjs;
496 < }
495 >    
496 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
497 >      a = bond->getAtomA()->getGlobalIndex();
498 >      b = bond->getAtomB()->getGlobalIndex();        
499 >      exclude_.removePair(a, b);
500 >    }
501  
502 < void SimInfo::refreshSim(){
502 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
503 >      a = bend->getAtomA()->getGlobalIndex();
504 >      b = bend->getAtomB()->getGlobalIndex();        
505 >      c = bend->getAtomC()->getGlobalIndex();
506  
507 <  simtype fInfo;
508 <  int isError;
509 <  int n_global;
426 <  int* excl;
507 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
508 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
509 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
510  
511 <  fInfo.dielect = 0.0;
511 >      exclude_.removePairs(rigidSetA, rigidSetB);
512 >      exclude_.removePairs(rigidSetA, rigidSetC);
513 >      exclude_.removePairs(rigidSetB, rigidSetC);
514 >      
515 >      //exclude_.removePair(a, b);
516 >      //exclude_.removePair(a, c);
517 >      //exclude_.removePair(b, c);        
518 >    }
519  
520 <  if( useDipoles ){
521 <    if( useReactionField )fInfo.dielect = dielectric;
520 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
521 >      a = torsion->getAtomA()->getGlobalIndex();
522 >      b = torsion->getAtomB()->getGlobalIndex();        
523 >      c = torsion->getAtomC()->getGlobalIndex();        
524 >      d = torsion->getAtomD()->getGlobalIndex();        
525 >
526 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
527 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
528 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
529 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
530 >
531 >      exclude_.removePairs(rigidSetA, rigidSetB);
532 >      exclude_.removePairs(rigidSetA, rigidSetC);
533 >      exclude_.removePairs(rigidSetA, rigidSetD);
534 >      exclude_.removePairs(rigidSetB, rigidSetC);
535 >      exclude_.removePairs(rigidSetB, rigidSetD);
536 >      exclude_.removePairs(rigidSetC, rigidSetD);
537 >
538 >      /*
539 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
540 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
541 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
542 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
543 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
544 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
545 >
546 >      
547 >      exclude_.removePair(a, b);
548 >      exclude_.removePair(a, c);
549 >      exclude_.removePair(a, d);
550 >      exclude_.removePair(b, c);
551 >      exclude_.removePair(b, d);
552 >      exclude_.removePair(c, d);        
553 >      */
554 >    }
555 >
556 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
557 >      std::vector<Atom*> atoms = rb->getAtoms();
558 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
559 >        for (int j = i + 1; j < atoms.size(); ++j) {
560 >          a = atoms[i]->getGlobalIndex();
561 >          b = atoms[j]->getGlobalIndex();
562 >          exclude_.removePair(a, b);
563 >        }
564 >      }
565 >    }        
566 >
567    }
568  
434  fInfo.SIM_uses_PBC = usePBC;
435  //fInfo.SIM_uses_LJ = 0;
436  fInfo.SIM_uses_LJ = useLJ;
437  fInfo.SIM_uses_sticky = useSticky;
438  //fInfo.SIM_uses_sticky = 0;
439  fInfo.SIM_uses_charges = useCharges;
440  fInfo.SIM_uses_dipoles = useDipoles;
441  //fInfo.SIM_uses_dipoles = 0;
442  fInfo.SIM_uses_RF = useReactionField;
443  //fInfo.SIM_uses_RF = 0;
444  fInfo.SIM_uses_GB = useGB;
445  fInfo.SIM_uses_EAM = useEAM;
569  
570 <  n_exclude = excludes->getSize();
571 <  excl = excludes->getFortranArray();
449 <  
450 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
454 < #endif
455 <  
456 <  isError = 0;
457 <  
458 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
570 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
571 >    int curStampId;
572  
573 <  if( isError ){
574 <    
575 <    sprintf( painCave.errMsg,
576 <             "There was an error setting the simulation information in fortran.\n" );
577 <    painCave.isFatal = 1;
471 <    painCave.severity = OOPSE_ERROR;
472 <    simError();
573 >    //index from 0
574 >    curStampId = moleculeStamps_.size();
575 >
576 >    moleculeStamps_.push_back(molStamp);
577 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
578    }
579 <  
579 >
580 >  void SimInfo::update() {
581 >
582 >    setupSimType();
583 >
584   #ifdef IS_MPI
585 <  sprintf( checkPointMsg,
586 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
585 >    setupFortranParallel();
586 > #endif
587  
588 < void SimInfo::setDefaultRcut( double theRcut ){
487 <  
488 <  haveRcut = 1;
489 <  rCut = theRcut;
490 <  rList = rCut + 1.0;
491 <  
492 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
588 >    setupFortranSim();
589  
590 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
590 >    //setup fortran force field
591 >    /** @deprecate */    
592 >    int isError = 0;
593 >    
594 >    setupElectrostaticSummationMethod( isError );
595 >    setupSwitchingFunction();
596  
597 <  rSw = theRsw;
598 <  setDefaultRcut( theRcut );
599 < }
597 >    if(isError){
598 >      sprintf( painCave.errMsg,
599 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
600 >      painCave.isFatal = 1;
601 >      simError();
602 >    }
603 >  
604 >    
605 >    setupCutoff();
606  
607 +    calcNdf();
608 +    calcNdfRaw();
609 +    calcNdfTrans();
610  
611 < void SimInfo::checkCutOffs( void ){
612 <  
613 <  if( boxIsInit ){
611 >    fortranInitialized_ = true;
612 >  }
613 >
614 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
615 >    SimInfo::MoleculeIterator mi;
616 >    Molecule* mol;
617 >    Molecule::AtomIterator ai;
618 >    Atom* atom;
619 >    std::set<AtomType*> atomTypes;
620 >
621 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
622 >
623 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
624 >        atomTypes.insert(atom->getAtomType());
625 >      }
626 >        
627 >    }
628 >
629 >    return atomTypes;        
630 >  }
631 >
632 >  void SimInfo::setupSimType() {
633 >    std::set<AtomType*>::iterator i;
634 >    std::set<AtomType*> atomTypes;
635 >    atomTypes = getUniqueAtomTypes();
636      
637 <    //we need to check cutOffs against the box
637 >    int useLennardJones = 0;
638 >    int useElectrostatic = 0;
639 >    int useEAM = 0;
640 >    int useSC = 0;
641 >    int useCharge = 0;
642 >    int useDirectional = 0;
643 >    int useDipole = 0;
644 >    int useGayBerne = 0;
645 >    int useSticky = 0;
646 >    int useStickyPower = 0;
647 >    int useShape = 0;
648 >    int useFLARB = 0; //it is not in AtomType yet
649 >    int useDirectionalAtom = 0;    
650 >    int useElectrostatics = 0;
651 >    //usePBC and useRF are from simParams
652 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
653 >    int useRF;
654 >    int useSF;
655 >    std::string myMethod;
656 >
657 >    // set the useRF logical
658 >    useRF = 0;
659 >    useSF = 0;
660 >
661 >
662 >    if (simParams_->haveElectrostaticSummationMethod()) {
663 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
664 >      toUpper(myMethod);
665 >      if (myMethod == "REACTION_FIELD") {
666 >        useRF=1;
667 >      } else {
668 >        if (myMethod == "SHIFTED_FORCE") {
669 >          useSF = 1;
670 >        }
671 >      }
672 >    }
673 >
674 >    //loop over all of the atom types
675 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
676 >      useLennardJones |= (*i)->isLennardJones();
677 >      useElectrostatic |= (*i)->isElectrostatic();
678 >      useEAM |= (*i)->isEAM();
679 >      useSC |= (*i)->isSC();
680 >      useCharge |= (*i)->isCharge();
681 >      useDirectional |= (*i)->isDirectional();
682 >      useDipole |= (*i)->isDipole();
683 >      useGayBerne |= (*i)->isGayBerne();
684 >      useSticky |= (*i)->isSticky();
685 >      useStickyPower |= (*i)->isStickyPower();
686 >      useShape |= (*i)->isShape();
687 >    }
688 >
689 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
690 >      useDirectionalAtom = 1;
691 >    }
692 >
693 >    if (useCharge || useDipole) {
694 >      useElectrostatics = 1;
695 >    }
696 >
697 > #ifdef IS_MPI    
698 >    int temp;
699 >
700 >    temp = usePBC;
701 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
702 >
703 >    temp = useDirectionalAtom;
704 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
705 >
706 >    temp = useLennardJones;
707 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
708 >
709 >    temp = useElectrostatics;
710 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
711 >
712 >    temp = useCharge;
713 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
714 >
715 >    temp = useDipole;
716 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
717 >
718 >    temp = useSticky;
719 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
720 >
721 >    temp = useStickyPower;
722 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
723      
724 <    if( rCut > maxCutoff ){
725 <      sprintf( painCave.errMsg,
510 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
523 <      painCave.isFatal = 1;
524 <      simError();
525 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
534 <  }
535 <  
536 < }
724 >    temp = useGayBerne;
725 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
726  
727 < void SimInfo::addProperty(GenericData* prop){
727 >    temp = useEAM;
728 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
729  
730 <  map<string, GenericData*>::iterator result;
731 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
730 >    temp = useSC;
731 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
732      
733 <    delete (*result).second;
734 <    (*result).second = prop;
733 >    temp = useShape;
734 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
735 >
736 >    temp = useFLARB;
737 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
738 >
739 >    temp = useRF;
740 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
741 >
742 >    temp = useSF;
743 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
744 >
745 > #endif
746 >
747 >    fInfo_.SIM_uses_PBC = usePBC;    
748 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
749 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
750 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
751 >    fInfo_.SIM_uses_Charges = useCharge;
752 >    fInfo_.SIM_uses_Dipoles = useDipole;
753 >    fInfo_.SIM_uses_Sticky = useSticky;
754 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
755 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
756 >    fInfo_.SIM_uses_EAM = useEAM;
757 >    fInfo_.SIM_uses_SC = useSC;
758 >    fInfo_.SIM_uses_Shapes = useShape;
759 >    fInfo_.SIM_uses_FLARB = useFLARB;
760 >    fInfo_.SIM_uses_RF = useRF;
761 >    fInfo_.SIM_uses_SF = useSF;
762 >
763 >    if( myMethod == "REACTION_FIELD") {
764        
765 +      if (simParams_->haveDielectric()) {
766 +        fInfo_.dielect = simParams_->getDielectric();
767 +      } else {
768 +        sprintf(painCave.errMsg,
769 +                "SimSetup Error: No Dielectric constant was set.\n"
770 +                "\tYou are trying to use Reaction Field without"
771 +                "\tsetting a dielectric constant!\n");
772 +        painCave.isFatal = 1;
773 +        simError();
774 +      }      
775 +    }
776 +
777    }
552  else{
778  
779 <    properties[prop->getID()] = prop;
779 >  void SimInfo::setupFortranSim() {
780 >    int isError;
781 >    int nExclude;
782 >    std::vector<int> fortranGlobalGroupMembership;
783 >    
784 >    nExclude = exclude_.getSize();
785 >    isError = 0;
786  
787 <  }
787 >    //globalGroupMembership_ is filled by SimCreator    
788 >    for (int i = 0; i < nGlobalAtoms_; i++) {
789 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
790 >    }
791 >
792 >    //calculate mass ratio of cutoff group
793 >    std::vector<double> mfact;
794 >    SimInfo::MoleculeIterator mi;
795 >    Molecule* mol;
796 >    Molecule::CutoffGroupIterator ci;
797 >    CutoffGroup* cg;
798 >    Molecule::AtomIterator ai;
799 >    Atom* atom;
800 >    double totalMass;
801 >
802 >    //to avoid memory reallocation, reserve enough space for mfact
803 >    mfact.reserve(getNCutoffGroups());
804      
805 < }
805 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
806 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
807  
808 < GenericData* SimInfo::getProperty(const string& propName){
809 <
810 <  map<string, GenericData*>::iterator result;
811 <  
812 <  //string lowerCaseName = ();
813 <  
814 <  result = properties.find(propName);
815 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
808 >        totalMass = cg->getMass();
809 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
810 >          // Check for massless groups - set mfact to 1 if true
811 >          if (totalMass != 0)
812 >            mfact.push_back(atom->getMass()/totalMass);
813 >          else
814 >            mfact.push_back( 1.0 );
815 >        }
816  
817 +      }      
818 +    }
819  
820 < void SimInfo::getFortranGroupArrays(SimInfo* info,
821 <                                    vector<int>& FglobalGroupMembership,
577 <                                    vector<double>& mfact){
578 <  
579 <  Molecule* myMols;
580 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
820 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
821 >    std::vector<int> identArray;
822  
823 <  // Fix the silly fortran indexing problem
823 >    //to avoid memory reallocation, reserve enough space identArray
824 >    identArray.reserve(getNAtoms());
825 >    
826 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
827 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
828 >        identArray.push_back(atom->getIdent());
829 >      }
830 >    }    
831 >
832 >    //fill molMembershipArray
833 >    //molMembershipArray is filled by SimCreator    
834 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
835 >    for (int i = 0; i < nGlobalAtoms_; i++) {
836 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
837 >    }
838 >    
839 >    //setup fortran simulation
840 >    int nGlobalExcludes = 0;
841 >    int* globalExcludes = NULL;
842 >    int* excludeList = exclude_.getExcludeList();
843 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
844 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
845 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
846 >
847 >    if( isError ){
848 >
849 >      sprintf( painCave.errMsg,
850 >               "There was an error setting the simulation information in fortran.\n" );
851 >      painCave.isFatal = 1;
852 >      painCave.severity = OOPSE_ERROR;
853 >      simError();
854 >    }
855 >
856   #ifdef IS_MPI
857 <  numAtom = mpiSim->getNAtomsGlobal();
858 < #else
859 <  numAtom = n_atoms;
857 >    sprintf( checkPointMsg,
858 >             "succesfully sent the simulation information to fortran.\n");
859 >    MPIcheckPoint();
860 > #endif // is_mpi
861 >  }
862 >
863 >
864 > #ifdef IS_MPI
865 >  void SimInfo::setupFortranParallel() {
866 >    
867 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
868 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
869 >    std::vector<int> localToGlobalCutoffGroupIndex;
870 >    SimInfo::MoleculeIterator mi;
871 >    Molecule::AtomIterator ai;
872 >    Molecule::CutoffGroupIterator ci;
873 >    Molecule* mol;
874 >    Atom* atom;
875 >    CutoffGroup* cg;
876 >    mpiSimData parallelData;
877 >    int isError;
878 >
879 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
880 >
881 >      //local index(index in DataStorge) of atom is important
882 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
884 >      }
885 >
886 >      //local index of cutoff group is trivial, it only depends on the order of travesing
887 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
888 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
889 >      }        
890 >        
891 >    }
892 >
893 >    //fill up mpiSimData struct
894 >    parallelData.nMolGlobal = getNGlobalMolecules();
895 >    parallelData.nMolLocal = getNMolecules();
896 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
897 >    parallelData.nAtomsLocal = getNAtoms();
898 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
899 >    parallelData.nGroupsLocal = getNCutoffGroups();
900 >    parallelData.myNode = worldRank;
901 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
902 >
903 >    //pass mpiSimData struct and index arrays to fortran
904 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
905 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
906 >                    &localToGlobalCutoffGroupIndex[0], &isError);
907 >
908 >    if (isError) {
909 >      sprintf(painCave.errMsg,
910 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
911 >      painCave.isFatal = 1;
912 >      simError();
913 >    }
914 >
915 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
916 >    MPIcheckPoint();
917 >
918 >
919 >  }
920 >
921   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
922  
923 <  myMols = info->molecules;
924 <  numMol = info->n_mol;
925 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
923 >  void SimInfo::setupCutoff() {          
924 >    
925 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
926  
927 <      totalMass = myCutoffGroup->getMass();
928 <      
929 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
930 <          cutoffAtom != NULL;
931 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
932 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
933 <      }  
927 >    // Check the cutoff policy
928 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
929 >
930 >    std::string myPolicy;
931 >    if (forceFieldOptions_.haveCutoffPolicy()){
932 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
933 >    }else if (simParams_->haveCutoffPolicy()) {
934 >      myPolicy = simParams_->getCutoffPolicy();
935 >    }
936 >
937 >    if (!myPolicy.empty()){
938 >      toUpper(myPolicy);
939 >      if (myPolicy == "MIX") {
940 >        cp = MIX_CUTOFF_POLICY;
941 >      } else {
942 >        if (myPolicy == "MAX") {
943 >          cp = MAX_CUTOFF_POLICY;
944 >        } else {
945 >          if (myPolicy == "TRADITIONAL") {            
946 >            cp = TRADITIONAL_CUTOFF_POLICY;
947 >          } else {
948 >            // throw error        
949 >            sprintf( painCave.errMsg,
950 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
951 >            painCave.isFatal = 1;
952 >            simError();
953 >          }    
954 >        }          
955 >      }
956 >    }          
957 >    notifyFortranCutoffPolicy(&cp);
958 >
959 >    // Check the Skin Thickness for neighborlists
960 >    double skin;
961 >    if (simParams_->haveSkinThickness()) {
962 >      skin = simParams_->getSkinThickness();
963 >      notifyFortranSkinThickness(&skin);
964 >    }            
965 >        
966 >    // Check if the cutoff was set explicitly:
967 >    if (simParams_->haveCutoffRadius()) {
968 >      rcut_ = simParams_->getCutoffRadius();
969 >      if (simParams_->haveSwitchingRadius()) {
970 >        rsw_  = simParams_->getSwitchingRadius();
971 >      } else {
972 >        rsw_ = rcut_;
973 >      }
974 >      notifyFortranCutoffs(&rcut_, &rsw_);
975 >      
976 >    } else {
977 >      
978 >      // For electrostatic atoms, we'll assume a large safe value:
979 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
980 >        sprintf(painCave.errMsg,
981 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
982 >                "\tOOPSE will use a default value of 15.0 angstroms"
983 >                "\tfor the cutoffRadius.\n");
984 >        painCave.isFatal = 0;
985 >        simError();
986 >        rcut_ = 15.0;
987 >      
988 >        if (simParams_->haveElectrostaticSummationMethod()) {
989 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
990 >          toUpper(myMethod);
991 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
992 >            if (simParams_->haveSwitchingRadius()){
993 >              sprintf(painCave.errMsg,
994 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
995 >                      "\teven though the electrostaticSummationMethod was\n"
996 >                      "\tset to %s\n", myMethod.c_str());
997 >              painCave.isFatal = 1;
998 >              simError();            
999 >            }
1000 >          }
1001 >        }
1002 >      
1003 >        if (simParams_->haveSwitchingRadius()){
1004 >          rsw_ = simParams_->getSwitchingRadius();
1005 >        } else {        
1006 >          sprintf(painCave.errMsg,
1007 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1008 >                  "\tOOPSE will use a default value of\n"
1009 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1010 >          painCave.isFatal = 0;
1011 >          simError();
1012 >          rsw_ = 0.85 * rcut_;
1013 >        }
1014 >        notifyFortranCutoffs(&rcut_, &rsw_);
1015 >      } else {
1016 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1017 >        // We'll punt and let fortran figure out the cutoffs later.
1018 >        
1019 >        notifyFortranYouAreOnYourOwn();
1020 >
1021 >      }
1022      }
1023    }
1024  
1025 < }
1025 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1026 >    
1027 >    int errorOut;
1028 >    int esm =  NONE;
1029 >    int sm = UNDAMPED;
1030 >    double alphaVal;
1031 >    double dielectric;
1032 >
1033 >    errorOut = isError;
1034 >    alphaVal = simParams_->getDampingAlpha();
1035 >    dielectric = simParams_->getDielectric();
1036 >
1037 >    if (simParams_->haveElectrostaticSummationMethod()) {
1038 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1039 >      toUpper(myMethod);
1040 >      if (myMethod == "NONE") {
1041 >        esm = NONE;
1042 >      } else {
1043 >        if (myMethod == "SWITCHING_FUNCTION") {
1044 >          esm = SWITCHING_FUNCTION;
1045 >        } else {
1046 >          if (myMethod == "SHIFTED_POTENTIAL") {
1047 >            esm = SHIFTED_POTENTIAL;
1048 >          } else {
1049 >            if (myMethod == "SHIFTED_FORCE") {            
1050 >              esm = SHIFTED_FORCE;
1051 >            } else {
1052 >              if (myMethod == "REACTION_FIELD") {            
1053 >                esm = REACTION_FIELD;
1054 >              } else {
1055 >                // throw error        
1056 >                sprintf( painCave.errMsg,
1057 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1058 >                         "\t(Input file specified %s .)\n"
1059 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1060 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1061 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1062 >                painCave.isFatal = 1;
1063 >                simError();
1064 >              }    
1065 >            }          
1066 >          }
1067 >        }
1068 >      }
1069 >    }
1070 >    
1071 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1072 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1073 >      toUpper(myScreen);
1074 >      if (myScreen == "UNDAMPED") {
1075 >        sm = UNDAMPED;
1076 >      } else {
1077 >        if (myScreen == "DAMPED") {
1078 >          sm = DAMPED;
1079 >          if (!simParams_->haveDampingAlpha()) {
1080 >            //throw error
1081 >            sprintf( painCave.errMsg,
1082 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1083 >                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1084 >            painCave.isFatal = 0;
1085 >            simError();
1086 >          }
1087 >        } else {
1088 >          // throw error        
1089 >          sprintf( painCave.errMsg,
1090 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1091 >                   "\t(Input file specified %s .)\n"
1092 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1093 >                   "or \"damped\".\n", myScreen.c_str() );
1094 >          painCave.isFatal = 1;
1095 >          simError();
1096 >        }
1097 >      }
1098 >    }
1099 >    
1100 >    // let's pass some summation method variables to fortran
1101 >    setElectrostaticSumMethod( &esm );
1102 >    setFortranElectrostaticMethod( &esm );
1103 >    setScreeningMethod( &sm );
1104 >    setDampingAlpha( &alphaVal );
1105 >    setReactionFieldDielectric( &dielectric );
1106 >    initFortranFF( &errorOut );
1107 >  }
1108 >
1109 >  void SimInfo::setupSwitchingFunction() {    
1110 >    int ft = CUBIC;
1111 >
1112 >    if (simParams_->haveSwitchingFunctionType()) {
1113 >      std::string funcType = simParams_->getSwitchingFunctionType();
1114 >      toUpper(funcType);
1115 >      if (funcType == "CUBIC") {
1116 >        ft = CUBIC;
1117 >      } else {
1118 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1119 >          ft = FIFTH_ORDER_POLY;
1120 >        } else {
1121 >          // throw error        
1122 >          sprintf( painCave.errMsg,
1123 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1124 >          painCave.isFatal = 1;
1125 >          simError();
1126 >        }          
1127 >      }
1128 >    }
1129 >
1130 >    // send switching function notification to switcheroo
1131 >    setFunctionType(&ft);
1132 >
1133 >  }
1134 >
1135 >  void SimInfo::addProperty(GenericData* genData) {
1136 >    properties_.addProperty(genData);  
1137 >  }
1138 >
1139 >  void SimInfo::removeProperty(const std::string& propName) {
1140 >    properties_.removeProperty(propName);  
1141 >  }
1142 >
1143 >  void SimInfo::clearProperties() {
1144 >    properties_.clearProperties();
1145 >  }
1146 >
1147 >  std::vector<std::string> SimInfo::getPropertyNames() {
1148 >    return properties_.getPropertyNames();  
1149 >  }
1150 >      
1151 >  std::vector<GenericData*> SimInfo::getProperties() {
1152 >    return properties_.getProperties();
1153 >  }
1154 >
1155 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1156 >    return properties_.getPropertyByName(propName);
1157 >  }
1158 >
1159 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1160 >    if (sman_ == sman) {
1161 >      return;
1162 >    }    
1163 >    delete sman_;
1164 >    sman_ = sman;
1165 >
1166 >    Molecule* mol;
1167 >    RigidBody* rb;
1168 >    Atom* atom;
1169 >    SimInfo::MoleculeIterator mi;
1170 >    Molecule::RigidBodyIterator rbIter;
1171 >    Molecule::AtomIterator atomIter;;
1172 >
1173 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1174 >        
1175 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1176 >        atom->setSnapshotManager(sman_);
1177 >      }
1178 >        
1179 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1180 >        rb->setSnapshotManager(sman_);
1181 >      }
1182 >    }    
1183 >    
1184 >  }
1185 >
1186 >  Vector3d SimInfo::getComVel(){
1187 >    SimInfo::MoleculeIterator i;
1188 >    Molecule* mol;
1189 >
1190 >    Vector3d comVel(0.0);
1191 >    double totalMass = 0.0;
1192 >    
1193 >
1194 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1195 >      double mass = mol->getMass();
1196 >      totalMass += mass;
1197 >      comVel += mass * mol->getComVel();
1198 >    }  
1199 >
1200 > #ifdef IS_MPI
1201 >    double tmpMass = totalMass;
1202 >    Vector3d tmpComVel(comVel);    
1203 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1204 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1205 > #endif
1206 >
1207 >    comVel /= totalMass;
1208 >
1209 >    return comVel;
1210 >  }
1211 >
1212 >  Vector3d SimInfo::getCom(){
1213 >    SimInfo::MoleculeIterator i;
1214 >    Molecule* mol;
1215 >
1216 >    Vector3d com(0.0);
1217 >    double totalMass = 0.0;
1218 >    
1219 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1220 >      double mass = mol->getMass();
1221 >      totalMass += mass;
1222 >      com += mass * mol->getCom();
1223 >    }  
1224 >
1225 > #ifdef IS_MPI
1226 >    double tmpMass = totalMass;
1227 >    Vector3d tmpCom(com);    
1228 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1229 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1230 > #endif
1231 >
1232 >    com /= totalMass;
1233 >
1234 >    return com;
1235 >
1236 >  }        
1237 >
1238 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1239 >
1240 >    return o;
1241 >  }
1242 >  
1243 >  
1244 >   /*
1245 >   Returns center of mass and center of mass velocity in one function call.
1246 >   */
1247 >  
1248 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1249 >      SimInfo::MoleculeIterator i;
1250 >      Molecule* mol;
1251 >      
1252 >    
1253 >      double totalMass = 0.0;
1254 >    
1255 >
1256 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1257 >         double mass = mol->getMass();
1258 >         totalMass += mass;
1259 >         com += mass * mol->getCom();
1260 >         comVel += mass * mol->getComVel();          
1261 >      }  
1262 >      
1263 > #ifdef IS_MPI
1264 >      double tmpMass = totalMass;
1265 >      Vector3d tmpCom(com);  
1266 >      Vector3d tmpComVel(comVel);
1267 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1268 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1269 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1270 > #endif
1271 >      
1272 >      com /= totalMass;
1273 >      comVel /= totalMass;
1274 >   }        
1275 >  
1276 >   /*
1277 >   Return intertia tensor for entire system and angular momentum Vector.
1278 >
1279 >
1280 >       [  Ixx -Ixy  -Ixz ]
1281 >  J =| -Iyx  Iyy  -Iyz |
1282 >       [ -Izx -Iyz   Izz ]
1283 >    */
1284 >
1285 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1286 >      
1287 >
1288 >      double xx = 0.0;
1289 >      double yy = 0.0;
1290 >      double zz = 0.0;
1291 >      double xy = 0.0;
1292 >      double xz = 0.0;
1293 >      double yz = 0.0;
1294 >      Vector3d com(0.0);
1295 >      Vector3d comVel(0.0);
1296 >      
1297 >      getComAll(com, comVel);
1298 >      
1299 >      SimInfo::MoleculeIterator i;
1300 >      Molecule* mol;
1301 >      
1302 >      Vector3d thisq(0.0);
1303 >      Vector3d thisv(0.0);
1304 >
1305 >      double thisMass = 0.0;
1306 >    
1307 >      
1308 >      
1309 >  
1310 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1311 >        
1312 >         thisq = mol->getCom()-com;
1313 >         thisv = mol->getComVel()-comVel;
1314 >         thisMass = mol->getMass();
1315 >         // Compute moment of intertia coefficients.
1316 >         xx += thisq[0]*thisq[0]*thisMass;
1317 >         yy += thisq[1]*thisq[1]*thisMass;
1318 >         zz += thisq[2]*thisq[2]*thisMass;
1319 >        
1320 >         // compute products of intertia
1321 >         xy += thisq[0]*thisq[1]*thisMass;
1322 >         xz += thisq[0]*thisq[2]*thisMass;
1323 >         yz += thisq[1]*thisq[2]*thisMass;
1324 >            
1325 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1326 >            
1327 >      }  
1328 >      
1329 >      
1330 >      inertiaTensor(0,0) = yy + zz;
1331 >      inertiaTensor(0,1) = -xy;
1332 >      inertiaTensor(0,2) = -xz;
1333 >      inertiaTensor(1,0) = -xy;
1334 >      inertiaTensor(1,1) = xx + zz;
1335 >      inertiaTensor(1,2) = -yz;
1336 >      inertiaTensor(2,0) = -xz;
1337 >      inertiaTensor(2,1) = -yz;
1338 >      inertiaTensor(2,2) = xx + yy;
1339 >      
1340 > #ifdef IS_MPI
1341 >      Mat3x3d tmpI(inertiaTensor);
1342 >      Vector3d tmpAngMom;
1343 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1344 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1345 > #endif
1346 >              
1347 >      return;
1348 >   }
1349 >
1350 >   //Returns the angular momentum of the system
1351 >   Vector3d SimInfo::getAngularMomentum(){
1352 >      
1353 >      Vector3d com(0.0);
1354 >      Vector3d comVel(0.0);
1355 >      Vector3d angularMomentum(0.0);
1356 >      
1357 >      getComAll(com,comVel);
1358 >      
1359 >      SimInfo::MoleculeIterator i;
1360 >      Molecule* mol;
1361 >      
1362 >      Vector3d thisr(0.0);
1363 >      Vector3d thisp(0.0);
1364 >      
1365 >      double thisMass;
1366 >      
1367 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1368 >        thisMass = mol->getMass();
1369 >        thisr = mol->getCom()-com;
1370 >        thisp = (mol->getComVel()-comVel)*thisMass;
1371 >        
1372 >        angularMomentum += cross( thisr, thisp );
1373 >        
1374 >      }  
1375 >      
1376 > #ifdef IS_MPI
1377 >      Vector3d tmpAngMom;
1378 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1379 > #endif
1380 >      
1381 >      return angularMomentum;
1382 >   }
1383 >  
1384 >  
1385 > }//end namespace oopse
1386 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines