ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1490 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 2419 by chrisfen, Tue Nov 8 13:32:06 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51  
52 < #include "SimInfo.hpp"
53 < #define __C
54 < #include "fSimulation.h"
55 < #include "simError.h"
52 > #include "brains/SimInfo.hpp"
53 > #include "math/Vector3.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "UseTheForce/fCutoffPolicy.h"
56 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58 > #include "UseTheForce/doForces_interface.h"
59 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
60 > #include "UseTheForce/notifyCutoffs_interface.h"
61 > #include "utils/MemoryUtils.hpp"
62 > #include "utils/simError.h"
63 > #include "selection/SelectionManager.hpp"
64  
13 #include "fortranWrappers.hpp"
14
15 #include "MatVec3.h"
16
65   #ifdef IS_MPI
66 < #include "mpiSimulation.hpp"
67 < #endif
66 > #include "UseTheForce/mpiComponentPlan.h"
67 > #include "UseTheForce/DarkSide/simParallel_interface.h"
68 > #endif
69  
70 < inline double roundMe( double x ){
22 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23 < }
24 <          
25 < inline double min( double a, double b ){
26 <  return (a < b ) ? a : b;
27 < }
70 > namespace oopse {
71  
72 < SimInfo* currentInfo;
72 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
73 >                   ForceField* ff, Globals* simParams) :
74 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
75 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
76 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
79 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
80 >    sman_(NULL), fortranInitialized_(false) {
81  
82 < SimInfo::SimInfo(){
82 >            
83 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
84 >      MoleculeStamp* molStamp;
85 >      int nMolWithSameStamp;
86 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
88 >      CutoffGroupStamp* cgStamp;    
89 >      RigidBodyStamp* rbStamp;
90 >      int nRigidAtoms = 0;
91 >    
92 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
93 >        molStamp = i->first;
94 >        nMolWithSameStamp = i->second;
95 >        
96 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
97  
98 <  n_constraints = 0;
99 <  nZconstraints = 0;
35 <  n_oriented = 0;
36 <  n_dipoles = 0;
37 <  ndf = 0;
38 <  ndfRaw = 0;
39 <  nZconstraints = 0;
40 <  the_integrator = NULL;
41 <  setTemp = 0;
42 <  thermalTime = 0.0;
43 <  currentTime = 0.0;
44 <  rCut = 0.0;
45 <  rSw = 0.0;
98 >        //calculate atoms in molecules
99 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100  
47  haveRcut = 0;
48  haveRsw = 0;
49  boxIsInit = 0;
50  
51  resetTime = 1e99;
101  
102 <  orthoRhombic = 0;
103 <  orthoTolerance = 1E-6;
104 <  useInitXSstate = true;
102 >        //calculate atoms in cutoff groups
103 >        int nAtomsInGroups = 0;
104 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
105 >        
106 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
107 >          cgStamp = molStamp->getCutoffGroup(j);
108 >          nAtomsInGroups += cgStamp->getNMembers();
109 >        }
110  
111 <  usePBC = 0;
58 <  useLJ = 0;
59 <  useSticky = 0;
60 <  useCharges = 0;
61 <  useDipoles = 0;
62 <  useReactionField = 0;
63 <  useGB = 0;
64 <  useEAM = 0;
65 <  useSolidThermInt = 0;
66 <  useLiquidThermInt = 0;
111 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112  
113 <  haveCutoffGroups = false;
113 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
114  
115 <  excludes = Exclude::Instance();
115 >        //calculate atoms in rigid bodies
116 >        int nAtomsInRigidBodies = 0;
117 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
118 >        
119 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
120 >          rbStamp = molStamp->getRigidBody(j);
121 >          nAtomsInRigidBodies += rbStamp->getNMembers();
122 >        }
123  
124 <  myConfiguration = new SimState();
124 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
125 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
126 >        
127 >      }
128  
129 <  has_minimizer = false;
130 <  the_minimizer =NULL;
129 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
130 >      //group therefore the total number of cutoff groups in the system is
131 >      //equal to the total number of atoms minus number of atoms belong to
132 >      //cutoff group defined in meta-data file plus the number of cutoff
133 >      //groups defined in meta-data file
134 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135  
136 <  ngroup = 0;
136 >      //every free atom (atom does not belong to rigid bodies) is an
137 >      //integrable object therefore the total number of integrable objects
138 >      //in the system is equal to the total number of atoms minus number of
139 >      //atoms belong to rigid body defined in meta-data file plus the number
140 >      //of rigid bodies defined in meta-data file
141 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >                                                + nGlobalRigidBodies_;
143 >  
144 >      nGlobalMols_ = molStampIds_.size();
145  
146 <  wrapMeSimInfo( this );
147 < }
146 > #ifdef IS_MPI    
147 >      molToProcMap_.resize(nGlobalMols_);
148 > #endif
149  
150 +    }
151  
152 < SimInfo::~SimInfo(){
152 >  SimInfo::~SimInfo() {
153 >    std::map<int, Molecule*>::iterator i;
154 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
155 >      delete i->second;
156 >    }
157 >    molecules_.clear();
158 >      
159 >    delete stamps_;
160 >    delete sman_;
161 >    delete simParams_;
162 >    delete forceField_;
163 >  }
164  
165 <  delete myConfiguration;
165 >  int SimInfo::getNGlobalConstraints() {
166 >    int nGlobalConstraints;
167 > #ifdef IS_MPI
168 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
169 >                  MPI_COMM_WORLD);    
170 > #else
171 >    nGlobalConstraints =  nConstraints_;
172 > #endif
173 >    return nGlobalConstraints;
174 >  }
175  
176 <  map<string, GenericData*>::iterator i;
177 <  
89 <  for(i = properties.begin(); i != properties.end(); i++)
90 <    delete (*i).second;
176 >  bool SimInfo::addMolecule(Molecule* mol) {
177 >    MoleculeIterator i;
178  
179 < }
179 >    i = molecules_.find(mol->getGlobalIndex());
180 >    if (i == molecules_.end() ) {
181  
182 < void SimInfo::setBox(double newBox[3]) {
183 <  
184 <  int i, j;
185 <  double tempMat[3][3];
182 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
183 >        
184 >      nAtoms_ += mol->getNAtoms();
185 >      nBonds_ += mol->getNBonds();
186 >      nBends_ += mol->getNBends();
187 >      nTorsions_ += mol->getNTorsions();
188 >      nRigidBodies_ += mol->getNRigidBodies();
189 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
190 >      nCutoffGroups_ += mol->getNCutoffGroups();
191 >      nConstraints_ += mol->getNConstraintPairs();
192  
193 <  for(i=0; i<3; i++)
194 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
195 <
196 <  tempMat[0][0] = newBox[0];
197 <  tempMat[1][1] = newBox[1];
104 <  tempMat[2][2] = newBox[2];
105 <
106 <  setBoxM( tempMat );
107 <
108 < }
109 <
110 < void SimInfo::setBoxM( double theBox[3][3] ){
111 <  
112 <  int i, j;
113 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
114 <                         // ordering in the array is as follows:
115 <                         // [ 0 3 6 ]
116 <                         // [ 1 4 7 ]
117 <                         // [ 2 5 8 ]
118 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
119 <
120 <  if( !boxIsInit ) boxIsInit = 1;
121 <
122 <  for(i=0; i < 3; i++)
123 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
124 <  
125 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
193 >      addExcludePairs(mol);
194 >        
195 >      return true;
196 >    } else {
197 >      return false;
198      }
199    }
200  
201 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
202 <
203 < }
138 <
201 >  bool SimInfo::removeMolecule(Molecule* mol) {
202 >    MoleculeIterator i;
203 >    i = molecules_.find(mol->getGlobalIndex());
204  
205 < void SimInfo::getBoxM (double theBox[3][3]) {
205 >    if (i != molecules_.end() ) {
206  
207 <  int i, j;
208 <  for(i=0; i<3; i++)
209 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
210 < }
207 >      assert(mol == i->second);
208 >        
209 >      nAtoms_ -= mol->getNAtoms();
210 >      nBonds_ -= mol->getNBonds();
211 >      nBends_ -= mol->getNBends();
212 >      nTorsions_ -= mol->getNTorsions();
213 >      nRigidBodies_ -= mol->getNRigidBodies();
214 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
215 >      nCutoffGroups_ -= mol->getNCutoffGroups();
216 >      nConstraints_ -= mol->getNConstraintPairs();
217  
218 +      removeExcludePairs(mol);
219 +      molecules_.erase(mol->getGlobalIndex());
220  
221 < void SimInfo::scaleBox(double scale) {
222 <  double theBox[3][3];
223 <  int i, j;
221 >      delete mol;
222 >        
223 >      return true;
224 >    } else {
225 >      return false;
226 >    }
227  
152  // cerr << "Scaling box by " << scale << "\n";
228  
229 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
229 >  }    
230  
231 <  setBoxM(theBox);
231 >        
232 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
233 >    i = molecules_.begin();
234 >    return i == molecules_.end() ? NULL : i->second;
235 >  }    
236  
237 < }
237 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
238 >    ++i;
239 >    return i == molecules_.end() ? NULL : i->second;    
240 >  }
241  
161 void SimInfo::calcHmatInv( void ) {
162  
163  int oldOrtho;
164  int i,j;
165  double smallDiag;
166  double tol;
167  double sanity[3][3];
242  
243 <  invertMat3( Hmat, HmatInv );
243 >  void SimInfo::calcNdf() {
244 >    int ndf_local;
245 >    MoleculeIterator i;
246 >    std::vector<StuntDouble*>::iterator j;
247 >    Molecule* mol;
248 >    StuntDouble* integrableObject;
249  
250 <  // check to see if Hmat is orthorhombic
251 <  
252 <  oldOrtho = orthoRhombic;
250 >    ndf_local = 0;
251 >    
252 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
253 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
254 >           integrableObject = mol->nextIntegrableObject(j)) {
255  
256 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
256 >        ndf_local += 3;
257  
258 <  orthoRhombic = 1;
259 <  
260 <  for (i = 0; i < 3; i++ ) {
261 <    for (j = 0 ; j < 3; j++) {
262 <      if (i != j) {
263 <        if (orthoRhombic) {
264 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
265 <        }        
266 <      }
267 <    }
190 <  }
191 <
192 <  if( oldOrtho != orthoRhombic ){
258 >        if (integrableObject->isDirectional()) {
259 >          if (integrableObject->isLinear()) {
260 >            ndf_local += 2;
261 >          } else {
262 >            ndf_local += 3;
263 >          }
264 >        }
265 >            
266 >      }//end for (integrableObject)
267 >    }// end for (mol)
268      
269 <    if( orthoRhombic ) {
270 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
269 >    // n_constraints is local, so subtract them on each processor
270 >    ndf_local -= nConstraints_;
271  
272 < void SimInfo::calcBoxL( void ){
272 > #ifdef IS_MPI
273 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
274 > #else
275 >    ndf_ = ndf_local;
276 > #endif
277  
278 <  double dx, dy, dz, dsq;
278 >    // nZconstraints_ is global, as are the 3 COM translations for the
279 >    // entire system:
280 >    ndf_ = ndf_ - 3 - nZconstraint_;
281  
282 <  // boxVol = Determinant of Hmat
282 >  }
283  
284 <  boxVol = matDet3( Hmat );
284 >  void SimInfo::calcNdfRaw() {
285 >    int ndfRaw_local;
286  
287 <  // boxLx
288 <  
289 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
290 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
287 >    MoleculeIterator i;
288 >    std::vector<StuntDouble*>::iterator j;
289 >    Molecule* mol;
290 >    StuntDouble* integrableObject;
291  
292 <  // boxLy
293 <  
294 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
295 <  dsq = dx*dx + dy*dy + dz*dz;
296 <  boxL[1] = sqrt( dsq );
297 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
292 >    // Raw degrees of freedom that we have to set
293 >    ndfRaw_local = 0;
294 >    
295 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
296 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
297 >           integrableObject = mol->nextIntegrableObject(j)) {
298  
299 <
243 <  // boxLz
244 <  
245 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
246 <  dsq = dx*dx + dy*dy + dz*dz;
247 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
299 >        ndfRaw_local += 3;
300  
301 <  //calculate the max cutoff
302 <  maxCutoff =  calcMaxCutOff();
303 <  
304 <  checkCutOffs();
301 >        if (integrableObject->isDirectional()) {
302 >          if (integrableObject->isLinear()) {
303 >            ndfRaw_local += 2;
304 >          } else {
305 >            ndfRaw_local += 3;
306 >          }
307 >        }
308 >            
309 >      }
310 >    }
311 >    
312 > #ifdef IS_MPI
313 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
314 > #else
315 >    ndfRaw_ = ndfRaw_local;
316 > #endif
317 >  }
318  
319 < }
319 >  void SimInfo::calcNdfTrans() {
320 >    int ndfTrans_local;
321  
322 +    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
323  
258 double SimInfo::calcMaxCutOff(){
324  
325 <  double ri[3], rj[3], rk[3];
326 <  double rij[3], rjk[3], rki[3];
327 <  double minDist;
325 > #ifdef IS_MPI
326 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
327 > #else
328 >    ndfTrans_ = ndfTrans_local;
329 > #endif
330  
331 <  ri[0] = Hmat[0][0];
332 <  ri[1] = Hmat[1][0];
333 <  ri[2] = Hmat[2][0];
331 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
332 >
333 >  }
334  
335 <  rj[0] = Hmat[0][1];
336 <  rj[1] = Hmat[1][1];
337 <  rj[2] = Hmat[2][1];
338 <
339 <  rk[0] = Hmat[0][2];
340 <  rk[1] = Hmat[1][2];
341 <  rk[2] = Hmat[2][2];
335 >  void SimInfo::addExcludePairs(Molecule* mol) {
336 >    std::vector<Bond*>::iterator bondIter;
337 >    std::vector<Bend*>::iterator bendIter;
338 >    std::vector<Torsion*>::iterator torsionIter;
339 >    Bond* bond;
340 >    Bend* bend;
341 >    Torsion* torsion;
342 >    int a;
343 >    int b;
344 >    int c;
345 >    int d;
346      
347 <  crossProduct3(ri, rj, rij);
348 <  distXY = dotProduct3(rk,rij) / norm3(rij);
347 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
348 >      a = bond->getAtomA()->getGlobalIndex();
349 >      b = bond->getAtomB()->getGlobalIndex();        
350 >      exclude_.addPair(a, b);
351 >    }
352  
353 <  crossProduct3(rj,rk, rjk);
354 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
353 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
354 >      a = bend->getAtomA()->getGlobalIndex();
355 >      b = bend->getAtomB()->getGlobalIndex();        
356 >      c = bend->getAtomC()->getGlobalIndex();
357  
358 <  crossProduct3(rk,ri, rki);
359 <  distZX = dotProduct3(rj,rki) / norm3(rki);
358 >      exclude_.addPair(a, b);
359 >      exclude_.addPair(a, c);
360 >      exclude_.addPair(b, c);        
361 >    }
362  
363 <  minDist = min(min(distXY, distYZ), distZX);
364 <  return minDist/2;
365 <  
366 < }
363 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
364 >      a = torsion->getAtomA()->getGlobalIndex();
365 >      b = torsion->getAtomB()->getGlobalIndex();        
366 >      c = torsion->getAtomC()->getGlobalIndex();        
367 >      d = torsion->getAtomD()->getGlobalIndex();        
368  
369 < void SimInfo::wrapVector( double thePos[3] ){
369 >      exclude_.addPair(a, b);
370 >      exclude_.addPair(a, c);
371 >      exclude_.addPair(a, d);
372 >      exclude_.addPair(b, c);
373 >      exclude_.addPair(b, d);
374 >      exclude_.addPair(c, d);        
375 >    }
376  
377 <  int i;
378 <  double scaled[3];
377 >    Molecule::RigidBodyIterator rbIter;
378 >    RigidBody* rb;
379 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
380 >      std::vector<Atom*> atoms = rb->getAtoms();
381 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
382 >        for (int j = i + 1; j < atoms.size(); ++j) {
383 >          a = atoms[i]->getGlobalIndex();
384 >          b = atoms[j]->getGlobalIndex();
385 >          exclude_.addPair(a, b);
386 >        }
387 >      }
388 >    }        
389  
390 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
297 <  
390 >  }
391  
392 <    matVecMul3(HmatInv, thePos, scaled);
392 >  void SimInfo::removeExcludePairs(Molecule* mol) {
393 >    std::vector<Bond*>::iterator bondIter;
394 >    std::vector<Bend*>::iterator bendIter;
395 >    std::vector<Torsion*>::iterator torsionIter;
396 >    Bond* bond;
397 >    Bend* bend;
398 >    Torsion* torsion;
399 >    int a;
400 >    int b;
401 >    int c;
402 >    int d;
403      
404 <    for(i=0; i<3; i++)
405 <      scaled[i] -= roundMe(scaled[i]);
406 <    
407 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
408 <    
306 <    matVecMul3(Hmat, scaled, thePos);
404 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
405 >      a = bond->getAtomA()->getGlobalIndex();
406 >      b = bond->getAtomB()->getGlobalIndex();        
407 >      exclude_.removePair(a, b);
408 >    }
409  
410 <  }
411 <  else{
412 <    // calc the scaled coordinates.
413 <    
312 <    for(i=0; i<3; i++)
313 <      scaled[i] = thePos[i]*HmatInv[i][i];
314 <    
315 <    // wrap the scaled coordinates
316 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      thePos[i] = scaled[i]*Hmat[i][i];
324 <  }
325 <    
326 < }
410 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
411 >      a = bend->getAtomA()->getGlobalIndex();
412 >      b = bend->getAtomB()->getGlobalIndex();        
413 >      c = bend->getAtomC()->getGlobalIndex();
414  
415 +      exclude_.removePair(a, b);
416 +      exclude_.removePair(a, c);
417 +      exclude_.removePair(b, c);        
418 +    }
419  
420 < int SimInfo::getNDF(){
421 <  int ndf_local;
420 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
421 >      a = torsion->getAtomA()->getGlobalIndex();
422 >      b = torsion->getAtomB()->getGlobalIndex();        
423 >      c = torsion->getAtomC()->getGlobalIndex();        
424 >      d = torsion->getAtomD()->getGlobalIndex();        
425  
426 <  ndf_local = 0;
427 <  
428 <  for(int i = 0; i < integrableObjects.size(); i++){
429 <    ndf_local += 3;
430 <    if (integrableObjects[i]->isDirectional()) {
431 <      if (integrableObjects[i]->isLinear())
338 <        ndf_local += 2;
339 <      else
340 <        ndf_local += 3;
426 >      exclude_.removePair(a, b);
427 >      exclude_.removePair(a, c);
428 >      exclude_.removePair(a, d);
429 >      exclude_.removePair(b, c);
430 >      exclude_.removePair(b, d);
431 >      exclude_.removePair(c, d);        
432      }
433 +
434 +    Molecule::RigidBodyIterator rbIter;
435 +    RigidBody* rb;
436 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
437 +      std::vector<Atom*> atoms = rb->getAtoms();
438 +      for (int i = 0; i < atoms.size() -1 ; ++i) {
439 +        for (int j = i + 1; j < atoms.size(); ++j) {
440 +          a = atoms[i]->getGlobalIndex();
441 +          b = atoms[j]->getGlobalIndex();
442 +          exclude_.removePair(a, b);
443 +        }
444 +      }
445 +    }        
446 +
447    }
448  
344  // n_constraints is local, so subtract them on each processor:
449  
450 <  ndf_local -= n_constraints;
450 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
451 >    int curStampId;
452  
453 +    //index from 0
454 +    curStampId = moleculeStamps_.size();
455 +
456 +    moleculeStamps_.push_back(molStamp);
457 +    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
458 +  }
459 +
460 +  void SimInfo::update() {
461 +
462 +    setupSimType();
463 +
464   #ifdef IS_MPI
465 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 < #else
351 <  ndf = ndf_local;
465 >    setupFortranParallel();
466   #endif
467  
468 <  // nZconstraints is global, as are the 3 COM translations for the
355 <  // entire system:
468 >    setupFortranSim();
469  
470 <  ndf = ndf - 3 - nZconstraints;
470 >    //setup fortran force field
471 >    /** @deprecate */    
472 >    int isError = 0;
473 >    
474 >    setupElectrostaticSummationMethod( isError );
475  
476 <  return ndf;
477 < }
476 >    if(isError){
477 >      sprintf( painCave.errMsg,
478 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
479 >      painCave.isFatal = 1;
480 >      simError();
481 >    }
482 >  
483 >    
484 >    setupCutoff();
485  
486 < int SimInfo::getNDFraw() {
487 <  int ndfRaw_local;
486 >    calcNdf();
487 >    calcNdfRaw();
488 >    calcNdfTrans();
489  
490 <  // Raw degrees of freedom that we have to set
491 <  ndfRaw_local = 0;
490 >    fortranInitialized_ = true;
491 >  }
492  
493 <  for(int i = 0; i < integrableObjects.size(); i++){
494 <    ndfRaw_local += 3;
495 <    if (integrableObjects[i]->isDirectional()) {
496 <       if (integrableObjects[i]->isLinear())
497 <        ndfRaw_local += 2;
498 <      else
499 <        ndfRaw_local += 3;
493 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
494 >    SimInfo::MoleculeIterator mi;
495 >    Molecule* mol;
496 >    Molecule::AtomIterator ai;
497 >    Atom* atom;
498 >    std::set<AtomType*> atomTypes;
499 >
500 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
501 >
502 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
503 >        atomTypes.insert(atom->getAtomType());
504 >      }
505 >        
506      }
507 +
508 +    return atomTypes;        
509    }
510 +
511 +  void SimInfo::setupSimType() {
512 +    std::set<AtomType*>::iterator i;
513 +    std::set<AtomType*> atomTypes;
514 +    atomTypes = getUniqueAtomTypes();
515      
516 < #ifdef IS_MPI
517 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
518 < #else
519 <  ndfRaw = ndfRaw_local;
520 < #endif
516 >    int useLennardJones = 0;
517 >    int useElectrostatic = 0;
518 >    int useEAM = 0;
519 >    int useCharge = 0;
520 >    int useDirectional = 0;
521 >    int useDipole = 0;
522 >    int useGayBerne = 0;
523 >    int useSticky = 0;
524 >    int useStickyPower = 0;
525 >    int useShape = 0;
526 >    int useFLARB = 0; //it is not in AtomType yet
527 >    int useDirectionalAtom = 0;    
528 >    int useElectrostatics = 0;
529 >    //usePBC and useRF are from simParams
530 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
531 >    int useRF;
532 >    int useSF;
533 >    std::string myMethod;
534  
535 <  return ndfRaw;
536 < }
535 >    // set the useRF logical
536 >    useRF = 0;
537 >    useSF = 0;
538  
387 int SimInfo::getNDFtranslational() {
388  int ndfTrans_local;
539  
540 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
540 >    if (simParams_->haveElectrostaticSummationMethod()) {
541 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
542 >      toUpper(myMethod);
543 >      if (myMethod == "REACTION_FIELD") {
544 >        useRF=1;
545 >      } else {
546 >        if (myMethod == "SHIFTED_FORCE") {
547 >          useSF = 1;
548 >        }
549 >      }
550 >    }
551  
552 +    //loop over all of the atom types
553 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
554 +      useLennardJones |= (*i)->isLennardJones();
555 +      useElectrostatic |= (*i)->isElectrostatic();
556 +      useEAM |= (*i)->isEAM();
557 +      useCharge |= (*i)->isCharge();
558 +      useDirectional |= (*i)->isDirectional();
559 +      useDipole |= (*i)->isDipole();
560 +      useGayBerne |= (*i)->isGayBerne();
561 +      useSticky |= (*i)->isSticky();
562 +      useStickyPower |= (*i)->isStickyPower();
563 +      useShape |= (*i)->isShape();
564 +    }
565  
566 < #ifdef IS_MPI
567 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
568 < #else
396 <  ndfTrans = ndfTrans_local;
397 < #endif
566 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
567 >      useDirectionalAtom = 1;
568 >    }
569  
570 <  ndfTrans = ndfTrans - 3 - nZconstraints;
570 >    if (useCharge || useDipole) {
571 >      useElectrostatics = 1;
572 >    }
573  
574 <  return ndfTrans;
575 < }
574 > #ifdef IS_MPI    
575 >    int temp;
576  
577 < int SimInfo::getTotIntegrableObjects() {
578 <  int nObjs_local;
406 <  int nObjs;
577 >    temp = usePBC;
578 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
579  
580 <  nObjs_local =  integrableObjects.size();
580 >    temp = useDirectionalAtom;
581 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
582  
583 +    temp = useLennardJones;
584 +    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
585  
586 < #ifdef IS_MPI
587 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
413 < #else
414 <  nObjs = nObjs_local;
415 < #endif
586 >    temp = useElectrostatics;
587 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
588  
589 +    temp = useCharge;
590 +    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
591  
592 <  return nObjs;
593 < }
592 >    temp = useDipole;
593 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
594  
595 < void SimInfo::refreshSim(){
595 >    temp = useSticky;
596 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
597  
598 <  simtype fInfo;
599 <  int isError;
600 <  int n_global;
601 <  int* excl;
602 <
428 <  fInfo.dielect = 0.0;
598 >    temp = useStickyPower;
599 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
600 >    
601 >    temp = useGayBerne;
602 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
603  
604 <  if( useDipoles ){
605 <    if( useReactionField )fInfo.dielect = dielectric;
432 <  }
604 >    temp = useEAM;
605 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
606  
607 <  fInfo.SIM_uses_PBC = usePBC;
608 <  //fInfo.SIM_uses_LJ = 0;
436 <  fInfo.SIM_uses_LJ = useLJ;
437 <  fInfo.SIM_uses_sticky = useSticky;
438 <  //fInfo.SIM_uses_sticky = 0;
439 <  fInfo.SIM_uses_charges = useCharges;
440 <  fInfo.SIM_uses_dipoles = useDipoles;
441 <  //fInfo.SIM_uses_dipoles = 0;
442 <  fInfo.SIM_uses_RF = useReactionField;
443 <  //fInfo.SIM_uses_RF = 0;
444 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
607 >    temp = useShape;
608 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
609  
610 <  n_exclude = excludes->getSize();
611 <  excl = excludes->getFortranArray();
612 <  
613 < #ifdef IS_MPI
614 <  n_global = mpiSim->getNAtomsGlobal();
615 < #else
616 <  n_global = n_atoms;
610 >    temp = useFLARB;
611 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
612 >
613 >    temp = useRF;
614 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
615 >
616 >    temp = useSF;
617 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
618 >
619   #endif
455  
456  isError = 0;
457  
458  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459  //it may not be a good idea to pass the address of first element in vector
460  //since c++ standard does not require vector to be stored continuously in meomory
461  //Most of the compilers will organize the memory of vector continuously
462  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
620  
621 <  if( isError ){
622 <    
623 <    sprintf( painCave.errMsg,
624 <             "There was an error setting the simulation information in fortran.\n" );
625 <    painCave.isFatal = 1;
626 <    painCave.severity = OOPSE_ERROR;
627 <    simError();
621 >    fInfo_.SIM_uses_PBC = usePBC;    
622 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
623 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
624 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
625 >    fInfo_.SIM_uses_Charges = useCharge;
626 >    fInfo_.SIM_uses_Dipoles = useDipole;
627 >    fInfo_.SIM_uses_Sticky = useSticky;
628 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
629 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
630 >    fInfo_.SIM_uses_EAM = useEAM;
631 >    fInfo_.SIM_uses_Shapes = useShape;
632 >    fInfo_.SIM_uses_FLARB = useFLARB;
633 >    fInfo_.SIM_uses_RF = useRF;
634 >    fInfo_.SIM_uses_SF = useSF;
635 >
636 >    if( myMethod == "REACTION_FIELD") {
637 >      
638 >      if (simParams_->haveDielectric()) {
639 >        fInfo_.dielect = simParams_->getDielectric();
640 >      } else {
641 >        sprintf(painCave.errMsg,
642 >                "SimSetup Error: No Dielectric constant was set.\n"
643 >                "\tYou are trying to use Reaction Field without"
644 >                "\tsetting a dielectric constant!\n");
645 >        painCave.isFatal = 1;
646 >        simError();
647 >      }      
648 >    }
649 >
650    }
474  
475 #ifdef IS_MPI
476  sprintf( checkPointMsg,
477           "succesfully sent the simulation information to fortran.\n");
478  MPIcheckPoint();
479 #endif // is_mpi
480  
481  this->ndf = this->getNDF();
482  this->ndfRaw = this->getNDFraw();
483  this->ndfTrans = this->getNDFtranslational();
484 }
651  
652 < void SimInfo::setDefaultRcut( double theRcut ){
653 <  
654 <  haveRcut = 1;
655 <  rCut = theRcut;
656 <  rList = rCut + 1.0;
657 <  
658 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
652 >  void SimInfo::setupFortranSim() {
653 >    int isError;
654 >    int nExclude;
655 >    std::vector<int> fortranGlobalGroupMembership;
656 >    
657 >    nExclude = exclude_.getSize();
658 >    isError = 0;
659  
660 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
660 >    //globalGroupMembership_ is filled by SimCreator    
661 >    for (int i = 0; i < nGlobalAtoms_; i++) {
662 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
663 >    }
664  
665 <  rSw = theRsw;
666 <  setDefaultRcut( theRcut );
667 < }
665 >    //calculate mass ratio of cutoff group
666 >    std::vector<double> mfact;
667 >    SimInfo::MoleculeIterator mi;
668 >    Molecule* mol;
669 >    Molecule::CutoffGroupIterator ci;
670 >    CutoffGroup* cg;
671 >    Molecule::AtomIterator ai;
672 >    Atom* atom;
673 >    double totalMass;
674  
675 +    //to avoid memory reallocation, reserve enough space for mfact
676 +    mfact.reserve(getNCutoffGroups());
677 +    
678 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
679 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
680  
681 < void SimInfo::checkCutOffs( void ){
682 <  
683 <  if( boxIsInit ){
681 >        totalMass = cg->getMass();
682 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
683 >          // Check for massless groups - set mfact to 1 if true
684 >          if (totalMass != 0)
685 >            mfact.push_back(atom->getMass()/totalMass);
686 >          else
687 >            mfact.push_back( 1.0 );
688 >        }
689 >
690 >      }      
691 >    }
692 >
693 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
694 >    std::vector<int> identArray;
695 >
696 >    //to avoid memory reallocation, reserve enough space identArray
697 >    identArray.reserve(getNAtoms());
698      
699 <    //we need to check cutOffs against the box
699 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
700 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
701 >        identArray.push_back(atom->getIdent());
702 >      }
703 >    }    
704 >
705 >    //fill molMembershipArray
706 >    //molMembershipArray is filled by SimCreator    
707 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
708 >    for (int i = 0; i < nGlobalAtoms_; i++) {
709 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
710 >    }
711      
712 <    if( rCut > maxCutoff ){
712 >    //setup fortran simulation
713 >    int nGlobalExcludes = 0;
714 >    int* globalExcludes = NULL;
715 >    int* excludeList = exclude_.getExcludeList();
716 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
717 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
718 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
719 >
720 >    if( isError ){
721 >
722        sprintf( painCave.errMsg,
723 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
723 >               "There was an error setting the simulation information in fortran.\n" );
724        painCave.isFatal = 1;
725 +      painCave.severity = OOPSE_ERROR;
726        simError();
727 <    }    
728 <  } else {
729 <    // initialize this stuff before using it, OK?
730 <    sprintf( painCave.errMsg,
731 <             "Trying to check cutoffs without a box.\n"
732 <             "\tOOPSE should have better programmers than that.\n" );
733 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
727 >    }
728 >
729 > #ifdef IS_MPI
730 >    sprintf( checkPointMsg,
731 >             "succesfully sent the simulation information to fortran.\n");
732 >    MPIcheckPoint();
733 > #endif // is_mpi
734    }
535  
536 }
735  
538 void SimInfo::addProperty(GenericData* prop){
736  
737 <  map<string, GenericData*>::iterator result;
738 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
737 > #ifdef IS_MPI
738 >  void SimInfo::setupFortranParallel() {
739      
740 <    delete (*result).second;
741 <    (*result).second = prop;
742 <      
743 <  }
744 <  else{
740 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
741 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
742 >    std::vector<int> localToGlobalCutoffGroupIndex;
743 >    SimInfo::MoleculeIterator mi;
744 >    Molecule::AtomIterator ai;
745 >    Molecule::CutoffGroupIterator ci;
746 >    Molecule* mol;
747 >    Atom* atom;
748 >    CutoffGroup* cg;
749 >    mpiSimData parallelData;
750 >    int isError;
751  
752 <    properties[prop->getID()] = prop;
752 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
753  
754 +      //local index(index in DataStorge) of atom is important
755 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
756 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
757 +      }
758 +
759 +      //local index of cutoff group is trivial, it only depends on the order of travesing
760 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
761 +        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
762 +      }        
763 +        
764 +    }
765 +
766 +    //fill up mpiSimData struct
767 +    parallelData.nMolGlobal = getNGlobalMolecules();
768 +    parallelData.nMolLocal = getNMolecules();
769 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
770 +    parallelData.nAtomsLocal = getNAtoms();
771 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
772 +    parallelData.nGroupsLocal = getNCutoffGroups();
773 +    parallelData.myNode = worldRank;
774 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
775 +
776 +    //pass mpiSimData struct and index arrays to fortran
777 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
778 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
779 +                    &localToGlobalCutoffGroupIndex[0], &isError);
780 +
781 +    if (isError) {
782 +      sprintf(painCave.errMsg,
783 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
784 +      painCave.isFatal = 1;
785 +      simError();
786 +    }
787 +
788 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
789 +    MPIcheckPoint();
790 +
791 +
792    }
557    
558 }
793  
794 < GenericData* SimInfo::getProperty(const string& propName){
561 <
562 <  map<string, GenericData*>::iterator result;
563 <  
564 <  //string lowerCaseName = ();
565 <  
566 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
794 > #endif
795  
796 +  double SimInfo::calcMaxCutoffRadius() {
797  
575 void SimInfo::getFortranGroupArrays(SimInfo* info,
576                                    vector<int>& FglobalGroupMembership,
577                                    vector<double>& mfact){
578  
579  Molecule* myMols;
580  Atom** myAtoms;
581  int numAtom;
582  double mtot;
583  int numMol;
584  int numCutoffGroups;
585  CutoffGroup* myCutoffGroup;
586  vector<CutoffGroup*>::iterator iterCutoff;
587  Atom* cutoffAtom;
588  vector<Atom*>::iterator iterAtom;
589  int atomIndex;
590  double totalMass;
591  
592  mfact.clear();
593  FglobalGroupMembership.clear();
594  
798  
799 <  // Fix the silly fortran indexing problem
799 >    std::set<AtomType*> atomTypes;
800 >    std::set<AtomType*>::iterator i;
801 >    std::vector<double> cutoffRadius;
802 >
803 >    //get the unique atom types
804 >    atomTypes = getUniqueAtomTypes();
805 >
806 >    //query the max cutoff radius among these atom types
807 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
808 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
809 >    }
810 >
811 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
812   #ifdef IS_MPI
813 <  numAtom = mpiSim->getNAtomsGlobal();
599 < #else
600 <  numAtom = n_atoms;
813 >    //pick the max cutoff radius among the processors
814   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
815  
816 <  myMols = info->molecules;
817 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
816 >    return maxCutoffRadius;
817 >  }
818  
819 <      totalMass = myCutoffGroup->getMass();
820 <      
821 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
822 <          cutoffAtom != NULL;
823 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
824 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
825 <      }  
819 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
820 >    
821 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
822 >        
823 >      if (!simParams_->haveCutoffRadius()){
824 >        sprintf(painCave.errMsg,
825 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
826 >                "\tOOPSE will use a default value of 15.0 angstroms"
827 >                "\tfor the cutoffRadius.\n");
828 >        painCave.isFatal = 0;
829 >        simError();
830 >        rcut = 15.0;
831 >      } else{
832 >        rcut = simParams_->getCutoffRadius();
833 >      }
834 >
835 >      if (!simParams_->haveSwitchingRadius()){
836 >        sprintf(painCave.errMsg,
837 >                "SimCreator Warning: No value was set for switchingRadius.\n"
838 >                "\tOOPSE will use a default value of\n"
839 >                "\t0.85 * cutoffRadius for the switchingRadius\n");
840 >        painCave.isFatal = 0;
841 >        simError();
842 >        rsw = 0.85 * rcut;
843 >      } else{
844 >        rsw = simParams_->getSwitchingRadius();
845 >      }
846 >
847 >    } else {
848 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
849 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
850 >        
851 >      if (simParams_->haveCutoffRadius()) {
852 >        rcut = simParams_->getCutoffRadius();
853 >      } else {
854 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
855 >        rcut = calcMaxCutoffRadius();
856 >      }
857 >
858 >      if (simParams_->haveSwitchingRadius()) {
859 >        rsw  = simParams_->getSwitchingRadius();
860 >      } else {
861 >        rsw = rcut;
862 >      }
863 >    
864      }
865    }
866  
867 < }
867 >  void SimInfo::setupCutoff() {    
868 >    getCutoff(rcut_, rsw_);    
869 >    double rnblist = rcut_ + 1; // skin of neighbor list
870 >
871 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
872 >    
873 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
874 >    if (simParams_->haveCutoffPolicy()) {
875 >      std::string myPolicy = simParams_->getCutoffPolicy();
876 >      toUpper(myPolicy);
877 >      if (myPolicy == "MIX") {
878 >        cp = MIX_CUTOFF_POLICY;
879 >      } else {
880 >        if (myPolicy == "MAX") {
881 >          cp = MAX_CUTOFF_POLICY;
882 >        } else {
883 >          if (myPolicy == "TRADITIONAL") {            
884 >            cp = TRADITIONAL_CUTOFF_POLICY;
885 >          } else {
886 >            // throw error        
887 >            sprintf( painCave.errMsg,
888 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
889 >            painCave.isFatal = 1;
890 >            simError();
891 >          }    
892 >        }          
893 >      }
894 >    }
895 >
896 >
897 >    if (simParams_->haveSkinThickness()) {
898 >      double skinThickness = simParams_->getSkinThickness();
899 >    }
900 >
901 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
902 >    // also send cutoff notification to electrostatics
903 >    setElectrostaticCutoffRadius(&rcut_, &rsw_);
904 >  }
905 >
906 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
907 >    
908 >    int errorOut;
909 >    int esm =  NONE;
910 >    int sm = UNDAMPED;
911 >    double alphaVal;
912 >    double dielectric;
913 >
914 >    errorOut = isError;
915 >    alphaVal = simParams_->getDampingAlpha();
916 >    dielectric = simParams_->getDielectric();
917 >
918 >    if (simParams_->haveElectrostaticSummationMethod()) {
919 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
920 >      toUpper(myMethod);
921 >      if (myMethod == "NONE") {
922 >        esm = NONE;
923 >      } else {
924 >        if (myMethod == "SWITCHING_FUNCTION") {
925 >          esm = SWITCHING_FUNCTION;
926 >        } else {
927 >          if (myMethod == "SHIFTED_POTENTIAL") {
928 >            esm = SHIFTED_POTENTIAL;
929 >          } else {
930 >            if (myMethod == "SHIFTED_FORCE") {            
931 >              esm = SHIFTED_FORCE;
932 >            } else {
933 >              if (myMethod == "REACTION_FIELD") {            
934 >                esm = REACTION_FIELD;
935 >              } else {
936 >                // throw error        
937 >                sprintf( painCave.errMsg,
938 >                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
939 >                painCave.isFatal = 1;
940 >                simError();
941 >              }    
942 >            }          
943 >          }
944 >        }
945 >      }
946 >    }
947 >    
948 >    if (simParams_->haveElectrostaticScreeningMethod()) {
949 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
950 >      toUpper(myScreen);
951 >      if (myScreen == "UNDAMPED") {
952 >        sm = UNDAMPED;
953 >      } else {
954 >        if (myScreen == "DAMPED") {
955 >          sm = DAMPED;
956 >          if (!simParams_->haveDampingAlpha()) {
957 >            //throw error
958 >            sprintf( painCave.errMsg,
959 >                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
960 >            painCave.isFatal = 0;
961 >            simError();
962 >          }
963 >        } else {
964 >          // throw error        
965 >          sprintf( painCave.errMsg,
966 >                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
967 >          painCave.isFatal = 1;
968 >          simError();
969 >        }
970 >      }
971 >    }
972 >    
973 >    // let's pass some summation method variables to fortran
974 >    setElectrostaticSummationMethod( &esm );
975 >    setScreeningMethod( &sm );
976 >    setDampingAlpha( &alphaVal );
977 >    setReactionFieldDielectric( &dielectric );
978 >    initFortranFF( &esm, &errorOut );
979 >  }
980 >
981 >  void SimInfo::addProperty(GenericData* genData) {
982 >    properties_.addProperty(genData);  
983 >  }
984 >
985 >  void SimInfo::removeProperty(const std::string& propName) {
986 >    properties_.removeProperty(propName);  
987 >  }
988 >
989 >  void SimInfo::clearProperties() {
990 >    properties_.clearProperties();
991 >  }
992 >
993 >  std::vector<std::string> SimInfo::getPropertyNames() {
994 >    return properties_.getPropertyNames();  
995 >  }
996 >      
997 >  std::vector<GenericData*> SimInfo::getProperties() {
998 >    return properties_.getProperties();
999 >  }
1000 >
1001 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1002 >    return properties_.getPropertyByName(propName);
1003 >  }
1004 >
1005 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1006 >    if (sman_ == sman) {
1007 >      return;
1008 >    }    
1009 >    delete sman_;
1010 >    sman_ = sman;
1011 >
1012 >    Molecule* mol;
1013 >    RigidBody* rb;
1014 >    Atom* atom;
1015 >    SimInfo::MoleculeIterator mi;
1016 >    Molecule::RigidBodyIterator rbIter;
1017 >    Molecule::AtomIterator atomIter;;
1018 >
1019 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1020 >        
1021 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1022 >        atom->setSnapshotManager(sman_);
1023 >      }
1024 >        
1025 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1026 >        rb->setSnapshotManager(sman_);
1027 >      }
1028 >    }    
1029 >    
1030 >  }
1031 >
1032 >  Vector3d SimInfo::getComVel(){
1033 >    SimInfo::MoleculeIterator i;
1034 >    Molecule* mol;
1035 >
1036 >    Vector3d comVel(0.0);
1037 >    double totalMass = 0.0;
1038 >    
1039 >
1040 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1041 >      double mass = mol->getMass();
1042 >      totalMass += mass;
1043 >      comVel += mass * mol->getComVel();
1044 >    }  
1045 >
1046 > #ifdef IS_MPI
1047 >    double tmpMass = totalMass;
1048 >    Vector3d tmpComVel(comVel);    
1049 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1050 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1051 > #endif
1052 >
1053 >    comVel /= totalMass;
1054 >
1055 >    return comVel;
1056 >  }
1057 >
1058 >  Vector3d SimInfo::getCom(){
1059 >    SimInfo::MoleculeIterator i;
1060 >    Molecule* mol;
1061 >
1062 >    Vector3d com(0.0);
1063 >    double totalMass = 0.0;
1064 >    
1065 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1066 >      double mass = mol->getMass();
1067 >      totalMass += mass;
1068 >      com += mass * mol->getCom();
1069 >    }  
1070 >
1071 > #ifdef IS_MPI
1072 >    double tmpMass = totalMass;
1073 >    Vector3d tmpCom(com);    
1074 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1075 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1076 > #endif
1077 >
1078 >    com /= totalMass;
1079 >
1080 >    return com;
1081 >
1082 >  }        
1083 >
1084 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1085 >
1086 >    return o;
1087 >  }
1088 >  
1089 >  
1090 >   /*
1091 >   Returns center of mass and center of mass velocity in one function call.
1092 >   */
1093 >  
1094 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1095 >      SimInfo::MoleculeIterator i;
1096 >      Molecule* mol;
1097 >      
1098 >    
1099 >      double totalMass = 0.0;
1100 >    
1101 >
1102 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1103 >         double mass = mol->getMass();
1104 >         totalMass += mass;
1105 >         com += mass * mol->getCom();
1106 >         comVel += mass * mol->getComVel();          
1107 >      }  
1108 >      
1109 > #ifdef IS_MPI
1110 >      double tmpMass = totalMass;
1111 >      Vector3d tmpCom(com);  
1112 >      Vector3d tmpComVel(comVel);
1113 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1114 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1115 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1116 > #endif
1117 >      
1118 >      com /= totalMass;
1119 >      comVel /= totalMass;
1120 >   }        
1121 >  
1122 >   /*
1123 >   Return intertia tensor for entire system and angular momentum Vector.
1124 >
1125 >
1126 >       [  Ixx -Ixy  -Ixz ]
1127 >  J =| -Iyx  Iyy  -Iyz |
1128 >       [ -Izx -Iyz   Izz ]
1129 >    */
1130 >
1131 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1132 >      
1133 >
1134 >      double xx = 0.0;
1135 >      double yy = 0.0;
1136 >      double zz = 0.0;
1137 >      double xy = 0.0;
1138 >      double xz = 0.0;
1139 >      double yz = 0.0;
1140 >      Vector3d com(0.0);
1141 >      Vector3d comVel(0.0);
1142 >      
1143 >      getComAll(com, comVel);
1144 >      
1145 >      SimInfo::MoleculeIterator i;
1146 >      Molecule* mol;
1147 >      
1148 >      Vector3d thisq(0.0);
1149 >      Vector3d thisv(0.0);
1150 >
1151 >      double thisMass = 0.0;
1152 >    
1153 >      
1154 >      
1155 >  
1156 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1157 >        
1158 >         thisq = mol->getCom()-com;
1159 >         thisv = mol->getComVel()-comVel;
1160 >         thisMass = mol->getMass();
1161 >         // Compute moment of intertia coefficients.
1162 >         xx += thisq[0]*thisq[0]*thisMass;
1163 >         yy += thisq[1]*thisq[1]*thisMass;
1164 >         zz += thisq[2]*thisq[2]*thisMass;
1165 >        
1166 >         // compute products of intertia
1167 >         xy += thisq[0]*thisq[1]*thisMass;
1168 >         xz += thisq[0]*thisq[2]*thisMass;
1169 >         yz += thisq[1]*thisq[2]*thisMass;
1170 >            
1171 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1172 >            
1173 >      }  
1174 >      
1175 >      
1176 >      inertiaTensor(0,0) = yy + zz;
1177 >      inertiaTensor(0,1) = -xy;
1178 >      inertiaTensor(0,2) = -xz;
1179 >      inertiaTensor(1,0) = -xy;
1180 >      inertiaTensor(1,1) = xx + zz;
1181 >      inertiaTensor(1,2) = -yz;
1182 >      inertiaTensor(2,0) = -xz;
1183 >      inertiaTensor(2,1) = -yz;
1184 >      inertiaTensor(2,2) = xx + yy;
1185 >      
1186 > #ifdef IS_MPI
1187 >      Mat3x3d tmpI(inertiaTensor);
1188 >      Vector3d tmpAngMom;
1189 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1190 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1191 > #endif
1192 >              
1193 >      return;
1194 >   }
1195 >
1196 >   //Returns the angular momentum of the system
1197 >   Vector3d SimInfo::getAngularMomentum(){
1198 >      
1199 >      Vector3d com(0.0);
1200 >      Vector3d comVel(0.0);
1201 >      Vector3d angularMomentum(0.0);
1202 >      
1203 >      getComAll(com,comVel);
1204 >      
1205 >      SimInfo::MoleculeIterator i;
1206 >      Molecule* mol;
1207 >      
1208 >      Vector3d thisr(0.0);
1209 >      Vector3d thisp(0.0);
1210 >      
1211 >      double thisMass;
1212 >      
1213 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1214 >        thisMass = mol->getMass();
1215 >        thisr = mol->getCom()-com;
1216 >        thisp = (mol->getComVel()-comVel)*thisMass;
1217 >        
1218 >        angularMomentum += cross( thisr, thisp );
1219 >        
1220 >      }  
1221 >      
1222 > #ifdef IS_MPI
1223 >      Vector3d tmpAngMom;
1224 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1225 > #endif
1226 >      
1227 >      return angularMomentum;
1228 >   }
1229 >  
1230 >  
1231 > }//end namespace oopse
1232 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines