ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1617 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
Revision 2187 by tim, Wed Apr 13 18:41:17 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51  
52   #include "brains/SimInfo.hpp"
53 < #define __C
54 < #include "brains/fSimulation.h"
55 < #include "utils/simError.h"
12 < #include "UseTheForce/DarkSide/simulation_interface.h"
53 > #include "math/Vector3.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "UseTheForce/doForces_interface.h"
56   #include "UseTheForce/notifyCutoffs_interface.h"
57 + #include "utils/MemoryUtils.hpp"
58 + #include "utils/simError.h"
59 + #include "selection/SelectionManager.hpp"
60  
61 < //#include "UseTheForce/fortranWrappers.hpp"
61 > #ifdef IS_MPI
62 > #include "UseTheForce/mpiComponentPlan.h"
63 > #include "UseTheForce/DarkSide/simParallel_interface.h"
64 > #endif
65  
66 < #include "math/MatVec3.h"
66 > namespace oopse {
67  
68 < #ifdef IS_MPI
69 < #include "brains/mpiSimulation.hpp"
70 < #endif
68 > SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69 >                                ForceField* ff, Globals* simParams) :
70 >                                stamps_(stamps), forceField_(ff), simParams_(simParams),
71 >                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72 >                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73 >                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74 >                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
75 >                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
76 >                                sman_(NULL), fortranInitialized_(false) {
77  
78 < inline double roundMe( double x ){
79 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
80 < }
81 <          
82 < inline double min( double a, double b ){
83 <  return (a < b ) ? a : b;
84 < }
78 >            
79 >    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 >    MoleculeStamp* molStamp;
81 >    int nMolWithSameStamp;
82 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 >    int nGroups = 0;          //total cutoff groups defined in meta-data file
84 >    CutoffGroupStamp* cgStamp;    
85 >    RigidBodyStamp* rbStamp;
86 >    int nRigidAtoms = 0;
87 >    
88 >    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 >        molStamp = i->first;
90 >        nMolWithSameStamp = i->second;
91 >        
92 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
93  
94 < SimInfo* currentInfo;
94 >        //calculate atoms in molecules
95 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
96  
33 SimInfo::SimInfo(){
97  
98 <  n_constraints = 0;
99 <  nZconstraints = 0;
100 <  n_oriented = 0;
101 <  n_dipoles = 0;
102 <  ndf = 0;
103 <  ndfRaw = 0;
104 <  nZconstraints = 0;
105 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
98 >        //calculate atoms in cutoff groups
99 >        int nAtomsInGroups = 0;
100 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101 >        
102 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 >            cgStamp = molStamp->getCutoffGroup(j);
104 >            nAtomsInGroups += cgStamp->getNMembers();
105 >        }
106  
107 <  haveRcut = 0;
108 <  haveRsw = 0;
51 <  boxIsInit = 0;
52 <  
53 <  resetTime = 1e99;
107 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
109  
110 <  orthoRhombic = 0;
111 <  orthoTolerance = 1E-6;
112 <  useInitXSstate = true;
110 >        //calculate atoms in rigid bodies
111 >        int nAtomsInRigidBodies = 0;
112 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113 >        
114 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
115 >            rbStamp = molStamp->getRigidBody(j);
116 >            nAtomsInRigidBodies += rbStamp->getNMembers();
117 >        }
118  
119 <  usePBC = 0;
120 <  useLJ = 0;
121 <  useSticky = 0;
122 <  useCharges = 0;
63 <  useDipoles = 0;
64 <  useReactionField = 0;
65 <  useGB = 0;
66 <  useEAM = 0;
67 <  useSolidThermInt = 0;
68 <  useLiquidThermInt = 0;
119 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
121 >        
122 >    }
123  
124 <  haveCutoffGroups = false;
124 >    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125 >    //therefore the total number of cutoff groups in the system is equal to
126 >    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127 >    //file plus the number of cutoff groups defined in meta-data file
128 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129  
130 <  excludes = Exclude::Instance();
130 >    //every free atom (atom does not belong to rigid bodies) is an integrable object
131 >    //therefore the total number of  integrable objects in the system is equal to
132 >    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
133 >    //file plus the number of  rigid bodies defined in meta-data file
134 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135  
136 <  myConfiguration = new SimState();
136 >    nGlobalMols_ = molStampIds_.size();
137  
138 <  has_minimizer = false;
139 <  the_minimizer =NULL;
138 > #ifdef IS_MPI    
139 >    molToProcMap_.resize(nGlobalMols_);
140 > #endif
141  
142 <  ngroup = 0;
142 > }
143  
144 + SimInfo::~SimInfo() {
145 +    std::map<int, Molecule*>::iterator i;
146 +    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147 +        delete i->second;
148 +    }
149 +    molecules_.clear();
150 +      
151 +    delete stamps_;
152 +    delete sman_;
153 +    delete simParams_;
154 +    delete forceField_;
155   }
156  
157 + int SimInfo::getNGlobalConstraints() {
158 +    int nGlobalConstraints;
159 + #ifdef IS_MPI
160 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161 +                  MPI_COMM_WORLD);    
162 + #else
163 +    nGlobalConstraints =  nConstraints_;
164 + #endif
165 +    return nGlobalConstraints;
166 + }
167  
168 < SimInfo::~SimInfo(){
168 > bool SimInfo::addMolecule(Molecule* mol) {
169 >    MoleculeIterator i;
170  
171 <  delete myConfiguration;
171 >    i = molecules_.find(mol->getGlobalIndex());
172 >    if (i == molecules_.end() ) {
173  
174 <  map<string, GenericData*>::iterator i;
175 <  
176 <  for(i = properties.begin(); i != properties.end(); i++)
177 <    delete (*i).second;
174 >        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 >        
176 >        nAtoms_ += mol->getNAtoms();
177 >        nBonds_ += mol->getNBonds();
178 >        nBends_ += mol->getNBends();
179 >        nTorsions_ += mol->getNTorsions();
180 >        nRigidBodies_ += mol->getNRigidBodies();
181 >        nIntegrableObjects_ += mol->getNIntegrableObjects();
182 >        nCutoffGroups_ += mol->getNCutoffGroups();
183 >        nConstraints_ += mol->getNConstraintPairs();
184  
185 +        addExcludePairs(mol);
186 +        
187 +        return true;
188 +    } else {
189 +        return false;
190 +    }
191   }
192  
193 < void SimInfo::setBox(double newBox[3]) {
194 <  
195 <  int i, j;
98 <  double tempMat[3][3];
193 > bool SimInfo::removeMolecule(Molecule* mol) {
194 >    MoleculeIterator i;
195 >    i = molecules_.find(mol->getGlobalIndex());
196  
197 <  for(i=0; i<3; i++)
101 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
197 >    if (i != molecules_.end() ) {
198  
199 <  tempMat[0][0] = newBox[0];
200 <  tempMat[1][1] = newBox[1];
201 <  tempMat[2][2] = newBox[2];
199 >        assert(mol == i->second);
200 >        
201 >        nAtoms_ -= mol->getNAtoms();
202 >        nBonds_ -= mol->getNBonds();
203 >        nBends_ -= mol->getNBends();
204 >        nTorsions_ -= mol->getNTorsions();
205 >        nRigidBodies_ -= mol->getNRigidBodies();
206 >        nIntegrableObjects_ -= mol->getNIntegrableObjects();
207 >        nCutoffGroups_ -= mol->getNCutoffGroups();
208 >        nConstraints_ -= mol->getNConstraintPairs();
209  
210 <  setBoxM( tempMat );
210 >        removeExcludePairs(mol);
211 >        molecules_.erase(mol->getGlobalIndex());
212  
213 < }
213 >        delete mol;
214 >        
215 >        return true;
216 >    } else {
217 >        return false;
218 >    }
219  
111 void SimInfo::setBoxM( double theBox[3][3] ){
112  
113  int i, j;
114  double FortranHmat[9]; // to preserve compatibility with Fortran the
115                         // ordering in the array is as follows:
116                         // [ 0 3 6 ]
117                         // [ 1 4 7 ]
118                         // [ 2 5 8 ]
119  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
220  
221 <  if( !boxIsInit ) boxIsInit = 1;
221 > }    
222  
223 <  for(i=0; i < 3; i++)
224 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
225 <  
226 <  calcBoxL();
227 <  calcHmatInv();
223 >        
224 > Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 >    i = molecules_.begin();
226 >    return i == molecules_.end() ? NULL : i->second;
227 > }    
228  
229 <  for(i=0; i < 3; i++) {
230 <    for (j=0; j < 3; j++) {
231 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
133 <    }
134 <  }
135 <
136 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
137 <
229 > Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 >    ++i;
231 >    return i == molecules_.end() ? NULL : i->second;    
232   }
139
233  
141 void SimInfo::getBoxM (double theBox[3][3]) {
234  
235 <  int i, j;
236 <  for(i=0; i<3; i++)
237 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
238 < }
235 > void SimInfo::calcNdf() {
236 >    int ndf_local;
237 >    MoleculeIterator i;
238 >    std::vector<StuntDouble*>::iterator j;
239 >    Molecule* mol;
240 >    StuntDouble* integrableObject;
241  
242 +    ndf_local = 0;
243 +    
244 +    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 +        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 +               integrableObject = mol->nextIntegrableObject(j)) {
247  
248 < void SimInfo::scaleBox(double scale) {
150 <  double theBox[3][3];
151 <  int i, j;
248 >            ndf_local += 3;
249  
250 <  // cerr << "Scaling box by " << scale << "\n";
250 >            if (integrableObject->isDirectional()) {
251 >                if (integrableObject->isLinear()) {
252 >                    ndf_local += 2;
253 >                } else {
254 >                    ndf_local += 3;
255 >                }
256 >            }
257 >            
258 >        }//end for (integrableObject)
259 >    }// end for (mol)
260 >    
261 >    // n_constraints is local, so subtract them on each processor
262 >    ndf_local -= nConstraints_;
263  
264 <  for(i=0; i<3; i++)
265 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
264 > #ifdef IS_MPI
265 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266 > #else
267 >    ndf_ = ndf_local;
268 > #endif
269  
270 <  setBoxM(theBox);
270 >    // nZconstraints_ is global, as are the 3 COM translations for the
271 >    // entire system:
272 >    ndf_ = ndf_ - 3 - nZconstraint_;
273  
274   }
275  
276 < void SimInfo::calcHmatInv( void ) {
277 <  
164 <  int oldOrtho;
165 <  int i,j;
166 <  double smallDiag;
167 <  double tol;
168 <  double sanity[3][3];
276 > void SimInfo::calcNdfRaw() {
277 >    int ndfRaw_local;
278  
279 <  invertMat3( Hmat, HmatInv );
279 >    MoleculeIterator i;
280 >    std::vector<StuntDouble*>::iterator j;
281 >    Molecule* mol;
282 >    StuntDouble* integrableObject;
283  
284 <  // check to see if Hmat is orthorhombic
285 <  
286 <  oldOrtho = orthoRhombic;
284 >    // Raw degrees of freedom that we have to set
285 >    ndfRaw_local = 0;
286 >    
287 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
288 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
289 >               integrableObject = mol->nextIntegrableObject(j)) {
290  
291 <  smallDiag = fabs(Hmat[0][0]);
292 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
293 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
294 <  tol = smallDiag * orthoTolerance;
295 <
296 <  orthoRhombic = 1;
297 <  
298 <  for (i = 0; i < 3; i++ ) {
299 <    for (j = 0 ; j < 3; j++) {
300 <      if (i != j) {
301 <        if (orthoRhombic) {
187 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
188 <        }        
189 <      }
291 >            ndfRaw_local += 3;
292 >
293 >            if (integrableObject->isDirectional()) {
294 >                if (integrableObject->isLinear()) {
295 >                    ndfRaw_local += 2;
296 >                } else {
297 >                    ndfRaw_local += 3;
298 >                }
299 >            }
300 >            
301 >        }
302      }
191  }
192
193  if( oldOrtho != orthoRhombic ){
303      
304 <    if( orthoRhombic ) {
305 <      sprintf( painCave.errMsg,
306 <               "OOPSE is switching from the default Non-Orthorhombic\n"
307 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
308 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
218 <  }
304 > #ifdef IS_MPI
305 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
306 > #else
307 >    ndfRaw_ = ndfRaw_local;
308 > #endif
309   }
310  
311 < void SimInfo::calcBoxL( void ){
311 > void SimInfo::calcNdfTrans() {
312 >    int ndfTrans_local;
313  
314 <  double dx, dy, dz, dsq;
314 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
315  
225  // boxVol = Determinant of Hmat
316  
317 <  boxVol = matDet3( Hmat );
317 > #ifdef IS_MPI
318 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
319 > #else
320 >    ndfTrans_ = ndfTrans_local;
321 > #endif
322  
323 <  // boxLx
324 <  
325 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
232 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
323 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
324 >
325 > }
326  
327 <  // boxLy
328 <  
329 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
330 <  dsq = dx*dx + dy*dy + dz*dz;
331 <  boxL[1] = sqrt( dsq );
332 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
327 > void SimInfo::addExcludePairs(Molecule* mol) {
328 >    std::vector<Bond*>::iterator bondIter;
329 >    std::vector<Bend*>::iterator bendIter;
330 >    std::vector<Torsion*>::iterator torsionIter;
331 >    Bond* bond;
332 >    Bend* bend;
333 >    Torsion* torsion;
334 >    int a;
335 >    int b;
336 >    int c;
337 >    int d;
338 >    
339 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340 >        a = bond->getAtomA()->getGlobalIndex();
341 >        b = bond->getAtomB()->getGlobalIndex();        
342 >        exclude_.addPair(a, b);
343 >    }
344  
345 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
346 +        a = bend->getAtomA()->getGlobalIndex();
347 +        b = bend->getAtomB()->getGlobalIndex();        
348 +        c = bend->getAtomC()->getGlobalIndex();
349  
350 <  // boxLz
351 <  
352 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
353 <  dsq = dx*dx + dy*dy + dz*dz;
248 <  boxL[2] = sqrt( dsq );
249 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
350 >        exclude_.addPair(a, b);
351 >        exclude_.addPair(a, c);
352 >        exclude_.addPair(b, c);        
353 >    }
354  
355 <  //calculate the max cutoff
356 <  maxCutoff =  calcMaxCutOff();
357 <  
358 <  checkCutOffs();
355 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
356 >        a = torsion->getAtomA()->getGlobalIndex();
357 >        b = torsion->getAtomB()->getGlobalIndex();        
358 >        c = torsion->getAtomC()->getGlobalIndex();        
359 >        d = torsion->getAtomD()->getGlobalIndex();        
360  
361 +        exclude_.addPair(a, b);
362 +        exclude_.addPair(a, c);
363 +        exclude_.addPair(a, d);
364 +        exclude_.addPair(b, c);
365 +        exclude_.addPair(b, d);
366 +        exclude_.addPair(c, d);        
367 +    }
368 +
369 +    Molecule::RigidBodyIterator rbIter;
370 +    RigidBody* rb;
371 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
372 +        std::vector<Atom*> atoms = rb->getAtoms();
373 +        for (int i = 0; i < atoms.size() -1 ; ++i) {
374 +            for (int j = i + 1; j < atoms.size(); ++j) {
375 +                a = atoms[i]->getGlobalIndex();
376 +                b = atoms[j]->getGlobalIndex();
377 +                exclude_.addPair(a, b);
378 +            }
379 +        }
380 +    }        
381 +
382   }
383  
384 + void SimInfo::removeExcludePairs(Molecule* mol) {
385 +    std::vector<Bond*>::iterator bondIter;
386 +    std::vector<Bend*>::iterator bendIter;
387 +    std::vector<Torsion*>::iterator torsionIter;
388 +    Bond* bond;
389 +    Bend* bend;
390 +    Torsion* torsion;
391 +    int a;
392 +    int b;
393 +    int c;
394 +    int d;
395 +    
396 +    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
397 +        a = bond->getAtomA()->getGlobalIndex();
398 +        b = bond->getAtomB()->getGlobalIndex();        
399 +        exclude_.removePair(a, b);
400 +    }
401  
402 < double SimInfo::calcMaxCutOff(){
402 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
403 >        a = bend->getAtomA()->getGlobalIndex();
404 >        b = bend->getAtomB()->getGlobalIndex();        
405 >        c = bend->getAtomC()->getGlobalIndex();
406  
407 <  double ri[3], rj[3], rk[3];
408 <  double rij[3], rjk[3], rki[3];
409 <  double minDist;
407 >        exclude_.removePair(a, b);
408 >        exclude_.removePair(a, c);
409 >        exclude_.removePair(b, c);        
410 >    }
411  
412 <  ri[0] = Hmat[0][0];
413 <  ri[1] = Hmat[1][0];
414 <  ri[2] = Hmat[2][0];
412 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
413 >        a = torsion->getAtomA()->getGlobalIndex();
414 >        b = torsion->getAtomB()->getGlobalIndex();        
415 >        c = torsion->getAtomC()->getGlobalIndex();        
416 >        d = torsion->getAtomD()->getGlobalIndex();        
417  
418 <  rj[0] = Hmat[0][1];
419 <  rj[1] = Hmat[1][1];
420 <  rj[2] = Hmat[2][1];
418 >        exclude_.removePair(a, b);
419 >        exclude_.removePair(a, c);
420 >        exclude_.removePair(a, d);
421 >        exclude_.removePair(b, c);
422 >        exclude_.removePair(b, d);
423 >        exclude_.removePair(c, d);        
424 >    }
425  
426 <  rk[0] = Hmat[0][2];
427 <  rk[1] = Hmat[1][2];
428 <  rk[2] = Hmat[2][2];
429 <    
430 <  crossProduct3(ri, rj, rij);
431 <  distXY = dotProduct3(rk,rij) / norm3(rij);
426 >    Molecule::RigidBodyIterator rbIter;
427 >    RigidBody* rb;
428 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
429 >        std::vector<Atom*> atoms = rb->getAtoms();
430 >        for (int i = 0; i < atoms.size() -1 ; ++i) {
431 >            for (int j = i + 1; j < atoms.size(); ++j) {
432 >                a = atoms[i]->getGlobalIndex();
433 >                b = atoms[j]->getGlobalIndex();
434 >                exclude_.removePair(a, b);
435 >            }
436 >        }
437 >    }        
438  
439 <  crossProduct3(rj,rk, rjk);
281 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
439 > }
440  
283  crossProduct3(rk,ri, rki);
284  distZX = dotProduct3(rj,rki) / norm3(rki);
441  
442 <  minDist = min(min(distXY, distYZ), distZX);
443 <  return minDist/2;
444 <  
442 > void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
443 >    int curStampId;
444 >
445 >    //index from 0
446 >    curStampId = moleculeStamps_.size();
447 >
448 >    moleculeStamps_.push_back(molStamp);
449 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
450   }
451  
452 < void SimInfo::wrapVector( double thePos[3] ){
452 > void SimInfo::update() {
453  
454 <  int i;
294 <  double scaled[3];
454 >    setupSimType();
455  
456 <  if( !orthoRhombic ){
457 <    // calc the scaled coordinates.
458 <  
456 > #ifdef IS_MPI
457 >    setupFortranParallel();
458 > #endif
459  
460 <    matVecMul3(HmatInv, thePos, scaled);
301 <    
302 <    for(i=0; i<3; i++)
303 <      scaled[i] -= roundMe(scaled[i]);
304 <    
305 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
306 <    
307 <    matVecMul3(Hmat, scaled, thePos);
460 >    setupFortranSim();
461  
462 <  }
463 <  else{
464 <    // calc the scaled coordinates.
462 >    //setup fortran force field
463 >    /** @deprecate */    
464 >    int isError = 0;
465 >    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
466 >    if(isError){
467 >        sprintf( painCave.errMsg,
468 >         "ForceField error: There was an error initializing the forceField in fortran.\n" );
469 >        painCave.isFatal = 1;
470 >        simError();
471 >    }
472 >  
473      
474 <    for(i=0; i<3; i++)
475 <      scaled[i] = thePos[i]*HmatInv[i][i];
476 <    
477 <    // wrap the scaled coordinates
478 <    
479 <    for(i=0; i<3; i++)
480 <      scaled[i] -= roundMe(scaled[i]);
320 <    
321 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
322 <    
323 <    for(i=0; i<3; i++)
324 <      thePos[i] = scaled[i]*Hmat[i][i];
325 <  }
326 <    
474 >    setupCutoff();
475 >
476 >    calcNdf();
477 >    calcNdfRaw();
478 >    calcNdfTrans();
479 >
480 >    fortranInitialized_ = true;
481   }
482  
483 + std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
484 +    SimInfo::MoleculeIterator mi;
485 +    Molecule* mol;
486 +    Molecule::AtomIterator ai;
487 +    Atom* atom;
488 +    std::set<AtomType*> atomTypes;
489  
490 < int SimInfo::getNDF(){
331 <  int ndf_local;
490 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
491  
492 <  ndf_local = 0;
493 <  
494 <  for(int i = 0; i < integrableObjects.size(); i++){
495 <    ndf_local += 3;
337 <    if (integrableObjects[i]->isDirectional()) {
338 <      if (integrableObjects[i]->isLinear())
339 <        ndf_local += 2;
340 <      else
341 <        ndf_local += 3;
492 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
493 >            atomTypes.insert(atom->getAtomType());
494 >        }
495 >        
496      }
343  }
497  
498 <  // n_constraints is local, so subtract them on each processor:
498 >    return atomTypes;        
499 > }
500  
501 <  ndf_local -= n_constraints;
501 > void SimInfo::setupSimType() {
502 >    std::set<AtomType*>::iterator i;
503 >    std::set<AtomType*> atomTypes;
504 >    atomTypes = getUniqueAtomTypes();
505 >    
506 >    int useLennardJones = 0;
507 >    int useElectrostatic = 0;
508 >    int useEAM = 0;
509 >    int useCharge = 0;
510 >    int useDirectional = 0;
511 >    int useDipole = 0;
512 >    int useGayBerne = 0;
513 >    int useSticky = 0;
514 >    int useShape = 0;
515 >    int useFLARB = 0; //it is not in AtomType yet
516 >    int useDirectionalAtom = 0;    
517 >    int useElectrostatics = 0;
518 >    //usePBC and useRF are from simParams
519 >    int usePBC = simParams_->getPBC();
520 >    int useRF = simParams_->getUseRF();
521  
522 < #ifdef IS_MPI
523 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
524 < #else
525 <  ndf = ndf_local;
522 >    //loop over all of the atom types
523 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
524 >        useLennardJones |= (*i)->isLennardJones();
525 >        useElectrostatic |= (*i)->isElectrostatic();
526 >        useEAM |= (*i)->isEAM();
527 >        useCharge |= (*i)->isCharge();
528 >        useDirectional |= (*i)->isDirectional();
529 >        useDipole |= (*i)->isDipole();
530 >        useGayBerne |= (*i)->isGayBerne();
531 >        useSticky |= (*i)->isSticky();
532 >        useShape |= (*i)->isShape();
533 >    }
534 >
535 >    if (useSticky || useDipole || useGayBerne || useShape) {
536 >        useDirectionalAtom = 1;
537 >    }
538 >
539 >    if (useCharge || useDipole) {
540 >        useElectrostatics = 1;
541 >    }
542 >
543 > #ifdef IS_MPI    
544 >    int temp;
545 >
546 >    temp = usePBC;
547 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
548 >
549 >    temp = useDirectionalAtom;
550 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
551 >
552 >    temp = useLennardJones;
553 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
554 >
555 >    temp = useElectrostatics;
556 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
557 >
558 >    temp = useCharge;
559 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
560 >
561 >    temp = useDipole;
562 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
563 >
564 >    temp = useSticky;
565 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
566 >
567 >    temp = useGayBerne;
568 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
569 >
570 >    temp = useEAM;
571 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
572 >
573 >    temp = useShape;
574 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
575 >
576 >    temp = useFLARB;
577 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
578 >
579 >    temp = useRF;
580 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
581 >    
582   #endif
583  
584 <  // nZconstraints is global, as are the 3 COM translations for the
585 <  // entire system:
584 >    fInfo_.SIM_uses_PBC = usePBC;    
585 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
586 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
587 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
588 >    fInfo_.SIM_uses_Charges = useCharge;
589 >    fInfo_.SIM_uses_Dipoles = useDipole;
590 >    fInfo_.SIM_uses_Sticky = useSticky;
591 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
592 >    fInfo_.SIM_uses_EAM = useEAM;
593 >    fInfo_.SIM_uses_Shapes = useShape;
594 >    fInfo_.SIM_uses_FLARB = useFLARB;
595 >    fInfo_.SIM_uses_RF = useRF;
596  
597 <  ndf = ndf - 3 - nZconstraints;
597 >    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
598  
599 <  return ndf;
599 >        if (simParams_->haveDielectric()) {
600 >            fInfo_.dielect = simParams_->getDielectric();
601 >        } else {
602 >            sprintf(painCave.errMsg,
603 >                    "SimSetup Error: No Dielectric constant was set.\n"
604 >                    "\tYou are trying to use Reaction Field without"
605 >                    "\tsetting a dielectric constant!\n");
606 >            painCave.isFatal = 1;
607 >            simError();
608 >        }
609 >        
610 >    } else {
611 >        fInfo_.dielect = 0.0;
612 >    }
613 >
614   }
615  
616 < int SimInfo::getNDFraw() {
617 <  int ndfRaw_local;
616 > void SimInfo::setupFortranSim() {
617 >    int isError;
618 >    int nExclude;
619 >    std::vector<int> fortranGlobalGroupMembership;
620 >    
621 >    nExclude = exclude_.getSize();
622 >    isError = 0;
623  
624 <  // Raw degrees of freedom that we have to set
625 <  ndfRaw_local = 0;
624 >    //globalGroupMembership_ is filled by SimCreator    
625 >    for (int i = 0; i < nGlobalAtoms_; i++) {
626 >        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
627 >    }
628  
629 <  for(int i = 0; i < integrableObjects.size(); i++){
630 <    ndfRaw_local += 3;
631 <    if (integrableObjects[i]->isDirectional()) {
632 <       if (integrableObjects[i]->isLinear())
633 <        ndfRaw_local += 2;
634 <      else
635 <        ndfRaw_local += 3;
629 >    //calculate mass ratio of cutoff group
630 >    std::vector<double> mfact;
631 >    SimInfo::MoleculeIterator mi;
632 >    Molecule* mol;
633 >    Molecule::CutoffGroupIterator ci;
634 >    CutoffGroup* cg;
635 >    Molecule::AtomIterator ai;
636 >    Atom* atom;
637 >    double totalMass;
638 >
639 >    //to avoid memory reallocation, reserve enough space for mfact
640 >    mfact.reserve(getNCutoffGroups());
641 >    
642 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
643 >        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
644 >
645 >            totalMass = cg->getMass();
646 >            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
647 >                        mfact.push_back(atom->getMass()/totalMass);
648 >            }
649 >
650 >        }      
651      }
652 <  }
652 >
653 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
654 >    std::vector<int> identArray;
655 >
656 >    //to avoid memory reallocation, reserve enough space identArray
657 >    identArray.reserve(getNAtoms());
658      
659 < #ifdef IS_MPI
660 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
661 < #else
662 <  ndfRaw = ndfRaw_local;
663 < #endif
659 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
660 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
661 >            identArray.push_back(atom->getIdent());
662 >        }
663 >    }    
664  
665 <  return ndfRaw;
666 < }
665 >    //fill molMembershipArray
666 >    //molMembershipArray is filled by SimCreator    
667 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
668 >    for (int i = 0; i < nGlobalAtoms_; i++) {
669 >        molMembershipArray[i] = globalMolMembership_[i] + 1;
670 >    }
671 >    
672 >    //setup fortran simulation
673 >    int nGlobalExcludes = 0;
674 >    int* globalExcludes = NULL;
675 >    int* excludeList = exclude_.getExcludeList();
676 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
677 >                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
678 >                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
679  
680 < int SimInfo::getNDFtranslational() {
389 <  int ndfTrans_local;
680 >    if( isError ){
681  
682 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
682 >        sprintf( painCave.errMsg,
683 >                 "There was an error setting the simulation information in fortran.\n" );
684 >        painCave.isFatal = 1;
685 >        painCave.severity = OOPSE_ERROR;
686 >        simError();
687 >    }
688  
689 + #ifdef IS_MPI
690 +    sprintf( checkPointMsg,
691 +       "succesfully sent the simulation information to fortran.\n");
692 +    MPIcheckPoint();
693 + #endif // is_mpi
694 + }
695  
696 +
697   #ifdef IS_MPI
698 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
699 < #else
700 <  ndfTrans = ndfTrans_local;
701 < #endif
698 > void SimInfo::setupFortranParallel() {
699 >    
700 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
701 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
702 >    std::vector<int> localToGlobalCutoffGroupIndex;
703 >    SimInfo::MoleculeIterator mi;
704 >    Molecule::AtomIterator ai;
705 >    Molecule::CutoffGroupIterator ci;
706 >    Molecule* mol;
707 >    Atom* atom;
708 >    CutoffGroup* cg;
709 >    mpiSimData parallelData;
710 >    int isError;
711  
712 <  ndfTrans = ndfTrans - 3 - nZconstraints;
712 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
713  
714 <  return ndfTrans;
715 < }
714 >        //local index(index in DataStorge) of atom is important
715 >        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
716 >            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
717 >        }
718  
719 < int SimInfo::getTotIntegrableObjects() {
720 <  int nObjs_local;
721 <  int nObjs;
719 >        //local index of cutoff group is trivial, it only depends on the order of travesing
720 >        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
721 >            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
722 >        }        
723 >        
724 >    }
725  
726 <  nObjs_local =  integrableObjects.size();
726 >    //fill up mpiSimData struct
727 >    parallelData.nMolGlobal = getNGlobalMolecules();
728 >    parallelData.nMolLocal = getNMolecules();
729 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
730 >    parallelData.nAtomsLocal = getNAtoms();
731 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
732 >    parallelData.nGroupsLocal = getNCutoffGroups();
733 >    parallelData.myNode = worldRank;
734 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
735  
736 +    //pass mpiSimData struct and index arrays to fortran
737 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
738 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
739 +                    &localToGlobalCutoffGroupIndex[0], &isError);
740  
741 < #ifdef IS_MPI
742 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
743 < #else
744 <  nObjs = nObjs_local;
745 < #endif
741 >    if (isError) {
742 >        sprintf(painCave.errMsg,
743 >                "mpiRefresh errror: fortran didn't like something we gave it.\n");
744 >        painCave.isFatal = 1;
745 >        simError();
746 >    }
747  
748 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
749 +    MPIcheckPoint();
750  
751 <  return nObjs;
751 >
752   }
753  
754 < void SimInfo::refreshSim(){
754 > #endif
755  
756 <  simtype fInfo;
425 <  int isError;
426 <  int n_global;
427 <  int* excl;
756 > double SimInfo::calcMaxCutoffRadius() {
757  
429  fInfo.dielect = 0.0;
758  
759 <  if( useDipoles ){
760 <    if( useReactionField )fInfo.dielect = dielectric;
761 <  }
759 >    std::set<AtomType*> atomTypes;
760 >    std::set<AtomType*>::iterator i;
761 >    std::vector<double> cutoffRadius;
762  
763 <  fInfo.SIM_uses_PBC = usePBC;
764 <  //fInfo.SIM_uses_LJ = 0;
437 <  fInfo.SIM_uses_LJ = useLJ;
438 <  fInfo.SIM_uses_sticky = useSticky;
439 <  //fInfo.SIM_uses_sticky = 0;
440 <  fInfo.SIM_uses_charges = useCharges;
441 <  fInfo.SIM_uses_dipoles = useDipoles;
442 <  //fInfo.SIM_uses_dipoles = 0;
443 <  fInfo.SIM_uses_RF = useReactionField;
444 <  //fInfo.SIM_uses_RF = 0;
445 <  fInfo.SIM_uses_GB = useGB;
446 <  fInfo.SIM_uses_EAM = useEAM;
763 >    //get the unique atom types
764 >    atomTypes = getUniqueAtomTypes();
765  
766 <  n_exclude = excludes->getSize();
767 <  excl = excludes->getFortranArray();
768 <  
766 >    //query the max cutoff radius among these atom types
767 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
768 >        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
769 >    }
770 >
771 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
772   #ifdef IS_MPI
773 <  n_global = mpiSim->getNAtomsGlobal();
453 < #else
454 <  n_global = n_atoms;
773 >    //pick the max cutoff radius among the processors
774   #endif
775 <  
776 <  isError = 0;
777 <  
459 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460 <  //it may not be a good idea to pass the address of first element in vector
461 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
775 >
776 >    return maxCutoffRadius;
777 > }
778  
779 <  if( isError ){
779 > void SimInfo::getCutoff(double& rcut, double& rsw) {
780      
781 <    sprintf( painCave.errMsg,
782 <             "There was an error setting the simulation information in fortran.\n" );
783 <    painCave.isFatal = 1;
784 <    painCave.severity = OOPSE_ERROR;
785 <    simError();
786 <  }
787 <  
788 < #ifdef IS_MPI
789 <  sprintf( checkPointMsg,
790 <           "succesfully sent the simulation information to fortran.\n");
791 <  MPIcheckPoint();
792 < #endif // is_mpi
793 <  
482 <  this->ndf = this->getNDF();
483 <  this->ndfRaw = this->getNDFraw();
484 <  this->ndfTrans = this->getNDFtranslational();
485 < }
781 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
782 >        
783 >        if (!simParams_->haveRcut()){
784 >            sprintf(painCave.errMsg,
785 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
786 >                "\tOOPSE will use a default value of 15.0 angstroms"
787 >                "\tfor the cutoffRadius.\n");
788 >            painCave.isFatal = 0;
789 >            simError();
790 >            rcut = 15.0;
791 >        } else{
792 >            rcut = simParams_->getRcut();
793 >        }
794  
795 < void SimInfo::setDefaultRcut( double theRcut ){
796 <  
797 <  haveRcut = 1;
798 <  rCut = theRcut;
799 <  rList = rCut + 1.0;
800 <  
801 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
795 >        if (!simParams_->haveRsw()){
796 >            sprintf(painCave.errMsg,
797 >                "SimCreator Warning: No value was set for switchingRadius.\n"
798 >                "\tOOPSE will use a default value of\n"
799 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
800 >            painCave.isFatal = 0;
801 >            simError();
802 >            rsw = 0.95 * rcut;
803 >        } else{
804 >            rsw = simParams_->getRsw();
805 >        }
806 >
807 >    } else {
808 >        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
809 >        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
810 >        
811 >        if (simParams_->haveRcut()) {
812 >            rcut = simParams_->getRcut();
813 >        } else {
814 >            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
815 >            rcut = calcMaxCutoffRadius();
816 >        }
817 >
818 >        if (simParams_->haveRsw()) {
819 >            rsw  = simParams_->getRsw();
820 >        } else {
821 >            rsw = rcut;
822 >        }
823 >    
824 >    }
825   }
826  
827 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
827 > void SimInfo::setupCutoff() {
828 >    getCutoff(rcut_, rsw_);    
829 >    double rnblist = rcut_ + 1; // skin of neighbor list
830  
831 <  rSw = theRsw;
832 <  setDefaultRcut( theRcut );
831 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
832 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
833   }
834  
835 + void SimInfo::addProperty(GenericData* genData) {
836 +    properties_.addProperty(genData);  
837 + }
838  
839 < void SimInfo::checkCutOffs( void ){
840 <  
505 <  if( boxIsInit ){
506 <    
507 <    //we need to check cutOffs against the box
508 <    
509 <    if( rCut > maxCutoff ){
510 <      sprintf( painCave.errMsg,
511 <               "cutoffRadius is too large for the current periodic box.\n"
512 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
513 <               "\tThis is larger than half of at least one of the\n"
514 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515 <               "\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n"
518 <               "\t[ %G %G %G ]\n",
519 <               rCut, currentTime,
520 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523 <      painCave.severity = OOPSE_ERROR;
524 <      painCave.isFatal = 1;
525 <      simError();
526 <    }    
527 <  } else {
528 <    // initialize this stuff before using it, OK?
529 <    sprintf( painCave.errMsg,
530 <             "Trying to check cutoffs without a box.\n"
531 <             "\tOOPSE should have better programmers than that.\n" );
532 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
535 <  }
536 <  
839 > void SimInfo::removeProperty(const std::string& propName) {
840 >    properties_.removeProperty(propName);  
841   }
842  
843 < void SimInfo::addProperty(GenericData* prop){
843 > void SimInfo::clearProperties() {
844 >    properties_.clearProperties();
845 > }
846  
847 <  map<string, GenericData*>::iterator result;
848 <  result = properties.find(prop->getID());
849 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
548 <    
549 <    delete (*result).second;
550 <    (*result).second = prop;
847 > std::vector<std::string> SimInfo::getPropertyNames() {
848 >    return properties_.getPropertyNames();  
849 > }
850        
851 <  }
852 <  else{
851 > std::vector<GenericData*> SimInfo::getProperties() {
852 >    return properties_.getProperties();
853 > }
854  
855 <    properties[prop->getID()] = prop;
855 > GenericData* SimInfo::getPropertyByName(const std::string& propName) {
856 >    return properties_.getPropertyByName(propName);
857 > }
858  
859 <  }
859 > void SimInfo::setSnapshotManager(SnapshotManager* sman) {
860 >    if (sman_ == sman) {
861 >        return;
862 >    }    
863 >    delete sman_;
864 >    sman_ = sman;
865 >
866 >    Molecule* mol;
867 >    RigidBody* rb;
868 >    Atom* atom;
869 >    SimInfo::MoleculeIterator mi;
870 >    Molecule::RigidBodyIterator rbIter;
871 >    Molecule::AtomIterator atomIter;;
872 >
873 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
874 >        
875 >        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
876 >            atom->setSnapshotManager(sman_);
877 >        }
878 >        
879 >        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
880 >            rb->setSnapshotManager(sman_);
881 >        }
882 >    }    
883      
884   }
885  
886 < GenericData* SimInfo::getProperty(const string& propName){
886 > Vector3d SimInfo::getComVel(){
887 >    SimInfo::MoleculeIterator i;
888 >    Molecule* mol;
889 >
890 >    Vector3d comVel(0.0);
891 >    double totalMass = 0.0;
892 >    
893  
894 <  map<string, GenericData*>::iterator result;
895 <  
896 <  //string lowerCaseName = ();
897 <  
898 <  result = properties.find(propName);
899 <  
900 <  if(result != properties.end())
901 <    return (*result).second;  
902 <  else  
903 <    return NULL;  
894 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
895 >        double mass = mol->getMass();
896 >        totalMass += mass;
897 >        comVel += mass * mol->getComVel();
898 >    }  
899 >
900 > #ifdef IS_MPI
901 >    double tmpMass = totalMass;
902 >    Vector3d tmpComVel(comVel);    
903 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
904 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
905 > #endif
906 >
907 >    comVel /= totalMass;
908 >
909 >    return comVel;
910   }
911  
912 + Vector3d SimInfo::getCom(){
913 +    SimInfo::MoleculeIterator i;
914 +    Molecule* mol;
915  
916 < void SimInfo::getFortranGroupArrays(SimInfo* info,
917 <                                    vector<int>& FglobalGroupMembership,
918 <                                    vector<double>& mfact){
919 <  
920 <  Molecule* myMols;
921 <  Atom** myAtoms;
922 <  int numAtom;
923 <  double mtot;
584 <  int numMol;
585 <  int numCutoffGroups;
586 <  CutoffGroup* myCutoffGroup;
587 <  vector<CutoffGroup*>::iterator iterCutoff;
588 <  Atom* cutoffAtom;
589 <  vector<Atom*>::iterator iterAtom;
590 <  int atomIndex;
591 <  double totalMass;
592 <  
593 <  mfact.clear();
594 <  FglobalGroupMembership.clear();
595 <  
916 >    Vector3d com(0.0);
917 >    double totalMass = 0.0;
918 >    
919 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
920 >        double mass = mol->getMass();
921 >        totalMass += mass;
922 >        com += mass * mol->getCom();
923 >    }  
924  
597  // Fix the silly fortran indexing problem
925   #ifdef IS_MPI
926 <  numAtom = mpiSim->getNAtomsGlobal();
927 < #else
928 <  numAtom = n_atoms;
926 >    double tmpMass = totalMass;
927 >    Vector3d tmpCom(com);    
928 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
929 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
930   #endif
603  for (int i = 0; i < numAtom; i++)
604    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605  
931  
932 <  myMols = info->molecules;
608 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
932 >    com /= totalMass;
933  
934 <      totalMass = myCutoffGroup->getMass();
616 <      
617 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
618 <          cutoffAtom != NULL;
619 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
620 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
621 <      }  
622 <    }
623 <  }
934 >    return com;
935  
936 + }        
937 +
938 + std::ostream& operator <<(std::ostream& o, SimInfo& info) {
939 +
940 +    return o;
941   }
942 +
943 + }//end namespace oopse
944 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines