ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1617 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
Revision 2404 by chrisfen, Tue Nov 1 19:14:27 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51  
52   #include "brains/SimInfo.hpp"
53 < #define __C
54 < #include "brains/fSimulation.h"
55 < #include "utils/simError.h"
56 < #include "UseTheForce/DarkSide/simulation_interface.h"
53 > #include "math/Vector3.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "UseTheForce/fCutoffPolicy.h"
56 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 > #include "UseTheForce/doForces_interface.h"
58 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
59   #include "UseTheForce/notifyCutoffs_interface.h"
60 + #include "utils/MemoryUtils.hpp"
61 + #include "utils/simError.h"
62 + #include "selection/SelectionManager.hpp"
63  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
64   #ifdef IS_MPI
65 < #include "brains/mpiSimulation.hpp"
66 < #endif
65 > #include "UseTheForce/mpiComponentPlan.h"
66 > #include "UseTheForce/DarkSide/simParallel_interface.h"
67 > #endif
68  
69 < inline double roundMe( double x ){
24 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
25 < }
26 <          
27 < inline double min( double a, double b ){
28 <  return (a < b ) ? a : b;
29 < }
69 > namespace oopse {
70  
71 < SimInfo* currentInfo;
71 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 >                   ForceField* ff, Globals* simParams) :
73 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
78 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
79 >    sman_(NULL), fortranInitialized_(false) {
80  
81 < SimInfo::SimInfo(){
81 >            
82 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 >      MoleculeStamp* molStamp;
84 >      int nMolWithSameStamp;
85 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
87 >      CutoffGroupStamp* cgStamp;    
88 >      RigidBodyStamp* rbStamp;
89 >      int nRigidAtoms = 0;
90 >    
91 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92 >        molStamp = i->first;
93 >        nMolWithSameStamp = i->second;
94 >        
95 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
96  
97 <  n_constraints = 0;
98 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
97 >        //calculate atoms in molecules
98 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99  
49  haveRcut = 0;
50  haveRsw = 0;
51  boxIsInit = 0;
52  
53  resetTime = 1e99;
100  
101 <  orthoRhombic = 0;
102 <  orthoTolerance = 1E-6;
103 <  useInitXSstate = true;
101 >        //calculate atoms in cutoff groups
102 >        int nAtomsInGroups = 0;
103 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >        
105 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >          cgStamp = molStamp->getCutoffGroup(j);
107 >          nAtomsInGroups += cgStamp->getNMembers();
108 >        }
109  
110 <  usePBC = 0;
60 <  useLJ = 0;
61 <  useSticky = 0;
62 <  useCharges = 0;
63 <  useDipoles = 0;
64 <  useReactionField = 0;
65 <  useGB = 0;
66 <  useEAM = 0;
67 <  useSolidThermInt = 0;
68 <  useLiquidThermInt = 0;
110 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111  
112 <  haveCutoffGroups = false;
112 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113  
114 <  excludes = Exclude::Instance();
114 >        //calculate atoms in rigid bodies
115 >        int nAtomsInRigidBodies = 0;
116 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 >        
118 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
119 >          rbStamp = molStamp->getRigidBody(j);
120 >          nAtomsInRigidBodies += rbStamp->getNMembers();
121 >        }
122  
123 <  myConfiguration = new SimState();
123 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 >        
126 >      }
127  
128 <  has_minimizer = false;
129 <  the_minimizer =NULL;
128 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
129 >      //group therefore the total number of cutoff groups in the system is
130 >      //equal to the total number of atoms minus number of atoms belong to
131 >      //cutoff group defined in meta-data file plus the number of cutoff
132 >      //groups defined in meta-data file
133 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134  
135 <  ngroup = 0;
135 >      //every free atom (atom does not belong to rigid bodies) is an
136 >      //integrable object therefore the total number of integrable objects
137 >      //in the system is equal to the total number of atoms minus number of
138 >      //atoms belong to rigid body defined in meta-data file plus the number
139 >      //of rigid bodies defined in meta-data file
140 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 >                                                + nGlobalRigidBodies_;
142 >  
143 >      nGlobalMols_ = molStampIds_.size();
144  
145 < }
145 > #ifdef IS_MPI    
146 >      molToProcMap_.resize(nGlobalMols_);
147 > #endif
148  
149 +    }
150  
151 < SimInfo::~SimInfo(){
151 >  SimInfo::~SimInfo() {
152 >    std::map<int, Molecule*>::iterator i;
153 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
154 >      delete i->second;
155 >    }
156 >    molecules_.clear();
157 >      
158 >    delete stamps_;
159 >    delete sman_;
160 >    delete simParams_;
161 >    delete forceField_;
162 >  }
163  
164 <  delete myConfiguration;
164 >  int SimInfo::getNGlobalConstraints() {
165 >    int nGlobalConstraints;
166 > #ifdef IS_MPI
167 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
168 >                  MPI_COMM_WORLD);    
169 > #else
170 >    nGlobalConstraints =  nConstraints_;
171 > #endif
172 >    return nGlobalConstraints;
173 >  }
174  
175 <  map<string, GenericData*>::iterator i;
176 <  
90 <  for(i = properties.begin(); i != properties.end(); i++)
91 <    delete (*i).second;
175 >  bool SimInfo::addMolecule(Molecule* mol) {
176 >    MoleculeIterator i;
177  
178 < }
178 >    i = molecules_.find(mol->getGlobalIndex());
179 >    if (i == molecules_.end() ) {
180  
181 < void SimInfo::setBox(double newBox[3]) {
182 <  
183 <  int i, j;
184 <  double tempMat[3][3];
181 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
182 >        
183 >      nAtoms_ += mol->getNAtoms();
184 >      nBonds_ += mol->getNBonds();
185 >      nBends_ += mol->getNBends();
186 >      nTorsions_ += mol->getNTorsions();
187 >      nRigidBodies_ += mol->getNRigidBodies();
188 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
189 >      nCutoffGroups_ += mol->getNCutoffGroups();
190 >      nConstraints_ += mol->getNConstraintPairs();
191  
192 <  for(i=0; i<3; i++)
193 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
194 <
195 <  tempMat[0][0] = newBox[0];
196 <  tempMat[1][1] = newBox[1];
105 <  tempMat[2][2] = newBox[2];
106 <
107 <  setBoxM( tempMat );
108 <
109 < }
110 <
111 < void SimInfo::setBoxM( double theBox[3][3] ){
112 <  
113 <  int i, j;
114 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
115 <                         // ordering in the array is as follows:
116 <                         // [ 0 3 6 ]
117 <                         // [ 1 4 7 ]
118 <                         // [ 2 5 8 ]
119 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
120 <
121 <  if( !boxIsInit ) boxIsInit = 1;
122 <
123 <  for(i=0; i < 3; i++)
124 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
125 <  
126 <  calcBoxL();
127 <  calcHmatInv();
128 <
129 <  for(i=0; i < 3; i++) {
130 <    for (j=0; j < 3; j++) {
131 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
192 >      addExcludePairs(mol);
193 >        
194 >      return true;
195 >    } else {
196 >      return false;
197      }
198    }
199  
200 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
201 <
202 < }
139 <
200 >  bool SimInfo::removeMolecule(Molecule* mol) {
201 >    MoleculeIterator i;
202 >    i = molecules_.find(mol->getGlobalIndex());
203  
204 < void SimInfo::getBoxM (double theBox[3][3]) {
204 >    if (i != molecules_.end() ) {
205  
206 <  int i, j;
207 <  for(i=0; i<3; i++)
208 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
209 < }
206 >      assert(mol == i->second);
207 >        
208 >      nAtoms_ -= mol->getNAtoms();
209 >      nBonds_ -= mol->getNBonds();
210 >      nBends_ -= mol->getNBends();
211 >      nTorsions_ -= mol->getNTorsions();
212 >      nRigidBodies_ -= mol->getNRigidBodies();
213 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
214 >      nCutoffGroups_ -= mol->getNCutoffGroups();
215 >      nConstraints_ -= mol->getNConstraintPairs();
216  
217 +      removeExcludePairs(mol);
218 +      molecules_.erase(mol->getGlobalIndex());
219  
220 < void SimInfo::scaleBox(double scale) {
221 <  double theBox[3][3];
222 <  int i, j;
220 >      delete mol;
221 >        
222 >      return true;
223 >    } else {
224 >      return false;
225 >    }
226  
153  // cerr << "Scaling box by " << scale << "\n";
227  
228 <  for(i=0; i<3; i++)
156 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
228 >  }    
229  
230 <  setBoxM(theBox);
230 >        
231 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
232 >    i = molecules_.begin();
233 >    return i == molecules_.end() ? NULL : i->second;
234 >  }    
235  
236 < }
236 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
237 >    ++i;
238 >    return i == molecules_.end() ? NULL : i->second;    
239 >  }
240  
162 void SimInfo::calcHmatInv( void ) {
163  
164  int oldOrtho;
165  int i,j;
166  double smallDiag;
167  double tol;
168  double sanity[3][3];
241  
242 <  invertMat3( Hmat, HmatInv );
242 >  void SimInfo::calcNdf() {
243 >    int ndf_local;
244 >    MoleculeIterator i;
245 >    std::vector<StuntDouble*>::iterator j;
246 >    Molecule* mol;
247 >    StuntDouble* integrableObject;
248  
249 <  // check to see if Hmat is orthorhombic
250 <  
251 <  oldOrtho = orthoRhombic;
249 >    ndf_local = 0;
250 >    
251 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
252 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
253 >           integrableObject = mol->nextIntegrableObject(j)) {
254  
255 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
255 >        ndf_local += 3;
256  
257 <  orthoRhombic = 1;
258 <  
259 <  for (i = 0; i < 3; i++ ) {
260 <    for (j = 0 ; j < 3; j++) {
261 <      if (i != j) {
262 <        if (orthoRhombic) {
263 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
264 <        }        
265 <      }
266 <    }
191 <  }
192 <
193 <  if( oldOrtho != orthoRhombic ){
257 >        if (integrableObject->isDirectional()) {
258 >          if (integrableObject->isLinear()) {
259 >            ndf_local += 2;
260 >          } else {
261 >            ndf_local += 3;
262 >          }
263 >        }
264 >            
265 >      }//end for (integrableObject)
266 >    }// end for (mol)
267      
268 <    if( orthoRhombic ) {
269 <      sprintf( painCave.errMsg,
197 <               "OOPSE is switching from the default Non-Orthorhombic\n"
198 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
199 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
218 <  }
219 < }
268 >    // n_constraints is local, so subtract them on each processor
269 >    ndf_local -= nConstraints_;
270  
271 < void SimInfo::calcBoxL( void ){
271 > #ifdef IS_MPI
272 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 > #else
274 >    ndf_ = ndf_local;
275 > #endif
276  
277 <  double dx, dy, dz, dsq;
277 >    // nZconstraints_ is global, as are the 3 COM translations for the
278 >    // entire system:
279 >    ndf_ = ndf_ - 3 - nZconstraint_;
280  
281 <  // boxVol = Determinant of Hmat
281 >  }
282  
283 <  boxVol = matDet3( Hmat );
283 >  void SimInfo::calcNdfRaw() {
284 >    int ndfRaw_local;
285  
286 <  // boxLx
287 <  
288 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
289 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
286 >    MoleculeIterator i;
287 >    std::vector<StuntDouble*>::iterator j;
288 >    Molecule* mol;
289 >    StuntDouble* integrableObject;
290  
291 <  // boxLy
292 <  
293 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
294 <  dsq = dx*dx + dy*dy + dz*dz;
295 <  boxL[1] = sqrt( dsq );
296 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
291 >    // Raw degrees of freedom that we have to set
292 >    ndfRaw_local = 0;
293 >    
294 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 >           integrableObject = mol->nextIntegrableObject(j)) {
297  
298 +        ndfRaw_local += 3;
299  
300 <  // boxLz
301 <  
302 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
303 <  dsq = dx*dx + dy*dy + dz*dz;
304 <  boxL[2] = sqrt( dsq );
305 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
300 >        if (integrableObject->isDirectional()) {
301 >          if (integrableObject->isLinear()) {
302 >            ndfRaw_local += 2;
303 >          } else {
304 >            ndfRaw_local += 3;
305 >          }
306 >        }
307 >            
308 >      }
309 >    }
310 >    
311 > #ifdef IS_MPI
312 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
313 > #else
314 >    ndfRaw_ = ndfRaw_local;
315 > #endif
316 >  }
317  
318 <  //calculate the max cutoff
319 <  maxCutoff =  calcMaxCutOff();
253 <  
254 <  checkCutOffs();
318 >  void SimInfo::calcNdfTrans() {
319 >    int ndfTrans_local;
320  
321 < }
321 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
322  
323  
324 < double SimInfo::calcMaxCutOff(){
324 > #ifdef IS_MPI
325 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
326 > #else
327 >    ndfTrans_ = ndfTrans_local;
328 > #endif
329  
330 <  double ri[3], rj[3], rk[3];
331 <  double rij[3], rjk[3], rki[3];
332 <  double minDist;
330 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
331 >
332 >  }
333  
334 <  ri[0] = Hmat[0][0];
335 <  ri[1] = Hmat[1][0];
336 <  ri[2] = Hmat[2][0];
337 <
338 <  rj[0] = Hmat[0][1];
339 <  rj[1] = Hmat[1][1];
340 <  rj[2] = Hmat[2][1];
341 <
342 <  rk[0] = Hmat[0][2];
343 <  rk[1] = Hmat[1][2];
344 <  rk[2] = Hmat[2][2];
334 >  void SimInfo::addExcludePairs(Molecule* mol) {
335 >    std::vector<Bond*>::iterator bondIter;
336 >    std::vector<Bend*>::iterator bendIter;
337 >    std::vector<Torsion*>::iterator torsionIter;
338 >    Bond* bond;
339 >    Bend* bend;
340 >    Torsion* torsion;
341 >    int a;
342 >    int b;
343 >    int c;
344 >    int d;
345      
346 <  crossProduct3(ri, rj, rij);
347 <  distXY = dotProduct3(rk,rij) / norm3(rij);
346 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
347 >      a = bond->getAtomA()->getGlobalIndex();
348 >      b = bond->getAtomB()->getGlobalIndex();        
349 >      exclude_.addPair(a, b);
350 >    }
351  
352 <  crossProduct3(rj,rk, rjk);
353 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
352 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
353 >      a = bend->getAtomA()->getGlobalIndex();
354 >      b = bend->getAtomB()->getGlobalIndex();        
355 >      c = bend->getAtomC()->getGlobalIndex();
356  
357 <  crossProduct3(rk,ri, rki);
358 <  distZX = dotProduct3(rj,rki) / norm3(rki);
357 >      exclude_.addPair(a, b);
358 >      exclude_.addPair(a, c);
359 >      exclude_.addPair(b, c);        
360 >    }
361  
362 <  minDist = min(min(distXY, distYZ), distZX);
363 <  return minDist/2;
364 <  
365 < }
362 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
363 >      a = torsion->getAtomA()->getGlobalIndex();
364 >      b = torsion->getAtomB()->getGlobalIndex();        
365 >      c = torsion->getAtomC()->getGlobalIndex();        
366 >      d = torsion->getAtomD()->getGlobalIndex();        
367  
368 < void SimInfo::wrapVector( double thePos[3] ){
368 >      exclude_.addPair(a, b);
369 >      exclude_.addPair(a, c);
370 >      exclude_.addPair(a, d);
371 >      exclude_.addPair(b, c);
372 >      exclude_.addPair(b, d);
373 >      exclude_.addPair(c, d);        
374 >    }
375  
376 <  int i;
377 <  double scaled[3];
376 >    Molecule::RigidBodyIterator rbIter;
377 >    RigidBody* rb;
378 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
379 >      std::vector<Atom*> atoms = rb->getAtoms();
380 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
381 >        for (int j = i + 1; j < atoms.size(); ++j) {
382 >          a = atoms[i]->getGlobalIndex();
383 >          b = atoms[j]->getGlobalIndex();
384 >          exclude_.addPair(a, b);
385 >        }
386 >      }
387 >    }        
388  
389 <  if( !orthoRhombic ){
297 <    // calc the scaled coordinates.
298 <  
389 >  }
390  
391 <    matVecMul3(HmatInv, thePos, scaled);
391 >  void SimInfo::removeExcludePairs(Molecule* mol) {
392 >    std::vector<Bond*>::iterator bondIter;
393 >    std::vector<Bend*>::iterator bendIter;
394 >    std::vector<Torsion*>::iterator torsionIter;
395 >    Bond* bond;
396 >    Bend* bend;
397 >    Torsion* torsion;
398 >    int a;
399 >    int b;
400 >    int c;
401 >    int d;
402      
403 <    for(i=0; i<3; i++)
404 <      scaled[i] -= roundMe(scaled[i]);
405 <    
406 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
407 <    
307 <    matVecMul3(Hmat, scaled, thePos);
403 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
404 >      a = bond->getAtomA()->getGlobalIndex();
405 >      b = bond->getAtomB()->getGlobalIndex();        
406 >      exclude_.removePair(a, b);
407 >    }
408  
409 <  }
410 <  else{
411 <    // calc the scaled coordinates.
412 <    
313 <    for(i=0; i<3; i++)
314 <      scaled[i] = thePos[i]*HmatInv[i][i];
315 <    
316 <    // wrap the scaled coordinates
317 <    
318 <    for(i=0; i<3; i++)
319 <      scaled[i] -= roundMe(scaled[i]);
320 <    
321 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
322 <    
323 <    for(i=0; i<3; i++)
324 <      thePos[i] = scaled[i]*Hmat[i][i];
325 <  }
326 <    
327 < }
409 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
410 >      a = bend->getAtomA()->getGlobalIndex();
411 >      b = bend->getAtomB()->getGlobalIndex();        
412 >      c = bend->getAtomC()->getGlobalIndex();
413  
414 +      exclude_.removePair(a, b);
415 +      exclude_.removePair(a, c);
416 +      exclude_.removePair(b, c);        
417 +    }
418  
419 < int SimInfo::getNDF(){
420 <  int ndf_local;
419 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
420 >      a = torsion->getAtomA()->getGlobalIndex();
421 >      b = torsion->getAtomB()->getGlobalIndex();        
422 >      c = torsion->getAtomC()->getGlobalIndex();        
423 >      d = torsion->getAtomD()->getGlobalIndex();        
424  
425 <  ndf_local = 0;
426 <  
427 <  for(int i = 0; i < integrableObjects.size(); i++){
428 <    ndf_local += 3;
429 <    if (integrableObjects[i]->isDirectional()) {
430 <      if (integrableObjects[i]->isLinear())
339 <        ndf_local += 2;
340 <      else
341 <        ndf_local += 3;
425 >      exclude_.removePair(a, b);
426 >      exclude_.removePair(a, c);
427 >      exclude_.removePair(a, d);
428 >      exclude_.removePair(b, c);
429 >      exclude_.removePair(b, d);
430 >      exclude_.removePair(c, d);        
431      }
432 +
433 +    Molecule::RigidBodyIterator rbIter;
434 +    RigidBody* rb;
435 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
436 +      std::vector<Atom*> atoms = rb->getAtoms();
437 +      for (int i = 0; i < atoms.size() -1 ; ++i) {
438 +        for (int j = i + 1; j < atoms.size(); ++j) {
439 +          a = atoms[i]->getGlobalIndex();
440 +          b = atoms[j]->getGlobalIndex();
441 +          exclude_.removePair(a, b);
442 +        }
443 +      }
444 +    }        
445 +
446    }
447  
345  // n_constraints is local, so subtract them on each processor:
448  
449 <  ndf_local -= n_constraints;
449 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
450 >    int curStampId;
451  
452 < #ifdef IS_MPI
453 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
351 < #else
352 <  ndf = ndf_local;
353 < #endif
452 >    //index from 0
453 >    curStampId = moleculeStamps_.size();
454  
455 <  // nZconstraints is global, as are the 3 COM translations for the
456 <  // entire system:
455 >    moleculeStamps_.push_back(molStamp);
456 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
457 >  }
458  
459 <  ndf = ndf - 3 - nZconstraints;
459 >  void SimInfo::update() {
460  
461 <  return ndf;
361 < }
461 >    setupSimType();
462  
463 < int SimInfo::getNDFraw() {
464 <  int ndfRaw_local;
463 > #ifdef IS_MPI
464 >    setupFortranParallel();
465 > #endif
466  
467 <  // Raw degrees of freedom that we have to set
367 <  ndfRaw_local = 0;
467 >    setupFortranSim();
468  
469 <  for(int i = 0; i < integrableObjects.size(); i++){
470 <    ndfRaw_local += 3;
471 <    if (integrableObjects[i]->isDirectional()) {
472 <       if (integrableObjects[i]->isLinear())
473 <        ndfRaw_local += 2;
474 <      else
475 <        ndfRaw_local += 3;
469 >    //setup fortran force field
470 >    /** @deprecate */    
471 >    int isError = 0;
472 >    
473 >    setupElectrostaticSummationMethod( isError );
474 >
475 >    if(isError){
476 >      sprintf( painCave.errMsg,
477 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
478 >      painCave.isFatal = 1;
479 >      simError();
480      }
481 <  }
481 >  
482      
483 < #ifdef IS_MPI
380 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
381 < #else
382 <  ndfRaw = ndfRaw_local;
383 < #endif
483 >    setupCutoff();
484  
485 <  return ndfRaw;
486 < }
485 >    calcNdf();
486 >    calcNdfRaw();
487 >    calcNdfTrans();
488  
489 < int SimInfo::getNDFtranslational() {
490 <  int ndfTrans_local;
489 >    fortranInitialized_ = true;
490 >  }
491  
492 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
492 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
493 >    SimInfo::MoleculeIterator mi;
494 >    Molecule* mol;
495 >    Molecule::AtomIterator ai;
496 >    Atom* atom;
497 >    std::set<AtomType*> atomTypes;
498  
499 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
500  
501 < #ifdef IS_MPI
502 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
503 < #else
504 <  ndfTrans = ndfTrans_local;
505 < #endif
501 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
502 >        atomTypes.insert(atom->getAtomType());
503 >      }
504 >        
505 >    }
506  
507 <  ndfTrans = ndfTrans - 3 - nZconstraints;
507 >    return atomTypes;        
508 >  }
509  
510 <  return ndfTrans;
511 < }
510 >  void SimInfo::setupSimType() {
511 >    std::set<AtomType*>::iterator i;
512 >    std::set<AtomType*> atomTypes;
513 >    atomTypes = getUniqueAtomTypes();
514 >    
515 >    int useLennardJones = 0;
516 >    int useElectrostatic = 0;
517 >    int useEAM = 0;
518 >    int useCharge = 0;
519 >    int useDirectional = 0;
520 >    int useDipole = 0;
521 >    int useGayBerne = 0;
522 >    int useSticky = 0;
523 >    int useStickyPower = 0;
524 >    int useShape = 0;
525 >    int useFLARB = 0; //it is not in AtomType yet
526 >    int useDirectionalAtom = 0;    
527 >    int useElectrostatics = 0;
528 >    //usePBC and useRF are from simParams
529 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
530 >    int useRF;
531 >    int useDW;
532 >    std::string myMethod;
533  
534 < int SimInfo::getTotIntegrableObjects() {
535 <  int nObjs_local;
536 <  int nObjs;
534 >    // set the useRF logical
535 >    useRF = 0;
536 >    useDW = 0;
537  
409  nObjs_local =  integrableObjects.size();
538  
539 +    if (simParams_->haveElectrostaticSummationMethod()) {
540 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
541 +      toUpper(myMethod);
542 +      if (myMethod == "REACTION_FIELD") {
543 +        useRF=1;
544 +      } else {
545 +        if (myMethod == "DAMPED_WOLF") {
546 +          useDW = 1;
547 +        }
548 +      }
549 +    }
550  
551 < #ifdef IS_MPI
552 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
553 < #else
554 <  nObjs = nObjs_local;
555 < #endif
551 >    //loop over all of the atom types
552 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
553 >      useLennardJones |= (*i)->isLennardJones();
554 >      useElectrostatic |= (*i)->isElectrostatic();
555 >      useEAM |= (*i)->isEAM();
556 >      useCharge |= (*i)->isCharge();
557 >      useDirectional |= (*i)->isDirectional();
558 >      useDipole |= (*i)->isDipole();
559 >      useGayBerne |= (*i)->isGayBerne();
560 >      useSticky |= (*i)->isSticky();
561 >      useStickyPower |= (*i)->isStickyPower();
562 >      useShape |= (*i)->isShape();
563 >    }
564  
565 +    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
566 +      useDirectionalAtom = 1;
567 +    }
568  
569 <  return nObjs;
570 < }
569 >    if (useCharge || useDipole) {
570 >      useElectrostatics = 1;
571 >    }
572  
573 < void SimInfo::refreshSim(){
573 > #ifdef IS_MPI    
574 >    int temp;
575  
576 <  simtype fInfo;
577 <  int isError;
426 <  int n_global;
427 <  int* excl;
576 >    temp = usePBC;
577 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
578  
579 <  fInfo.dielect = 0.0;
579 >    temp = useDirectionalAtom;
580 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
581  
582 <  if( useDipoles ){
583 <    if( useReactionField )fInfo.dielect = dielectric;
584 <  }
582 >    temp = useLennardJones;
583 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
584 >
585 >    temp = useElectrostatics;
586 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
587 >
588 >    temp = useCharge;
589 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
590  
591 <  fInfo.SIM_uses_PBC = usePBC;
592 <  //fInfo.SIM_uses_LJ = 0;
437 <  fInfo.SIM_uses_LJ = useLJ;
438 <  fInfo.SIM_uses_sticky = useSticky;
439 <  //fInfo.SIM_uses_sticky = 0;
440 <  fInfo.SIM_uses_charges = useCharges;
441 <  fInfo.SIM_uses_dipoles = useDipoles;
442 <  //fInfo.SIM_uses_dipoles = 0;
443 <  fInfo.SIM_uses_RF = useReactionField;
444 <  //fInfo.SIM_uses_RF = 0;
445 <  fInfo.SIM_uses_GB = useGB;
446 <  fInfo.SIM_uses_EAM = useEAM;
591 >    temp = useDipole;
592 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
593  
594 <  n_exclude = excludes->getSize();
595 <  excl = excludes->getFortranArray();
450 <  
451 < #ifdef IS_MPI
452 <  n_global = mpiSim->getNAtomsGlobal();
453 < #else
454 <  n_global = n_atoms;
455 < #endif
456 <  
457 <  isError = 0;
458 <  
459 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460 <  //it may not be a good idea to pass the address of first element in vector
461 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
594 >    temp = useSticky;
595 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
596  
597 <  if( isError ){
597 >    temp = useStickyPower;
598 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
599      
600 <    sprintf( painCave.errMsg,
601 <             "There was an error setting the simulation information in fortran.\n" );
602 <    painCave.isFatal = 1;
603 <    painCave.severity = OOPSE_ERROR;
604 <    simError();
600 >    temp = useGayBerne;
601 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
602 >
603 >    temp = useEAM;
604 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
605 >
606 >    temp = useShape;
607 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
608 >
609 >    temp = useFLARB;
610 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
611 >
612 >    temp = useRF;
613 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
614 >
615 >    temp = useDW;
616 >    MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
617 >
618 > #endif
619 >
620 >    fInfo_.SIM_uses_PBC = usePBC;    
621 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
622 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
623 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
624 >    fInfo_.SIM_uses_Charges = useCharge;
625 >    fInfo_.SIM_uses_Dipoles = useDipole;
626 >    fInfo_.SIM_uses_Sticky = useSticky;
627 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
628 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
629 >    fInfo_.SIM_uses_EAM = useEAM;
630 >    fInfo_.SIM_uses_Shapes = useShape;
631 >    fInfo_.SIM_uses_FLARB = useFLARB;
632 >    fInfo_.SIM_uses_RF = useRF;
633 >    fInfo_.SIM_uses_DampedWolf = useDW;
634 >
635 >    if( myMethod == "REACTION_FIELD") {
636 >      
637 >      if (simParams_->haveDielectric()) {
638 >        fInfo_.dielect = simParams_->getDielectric();
639 >      } else {
640 >        sprintf(painCave.errMsg,
641 >                "SimSetup Error: No Dielectric constant was set.\n"
642 >                "\tYou are trying to use Reaction Field without"
643 >                "\tsetting a dielectric constant!\n");
644 >        painCave.isFatal = 1;
645 >        simError();
646 >      }      
647 >    }
648 >
649    }
475  
476 #ifdef IS_MPI
477  sprintf( checkPointMsg,
478           "succesfully sent the simulation information to fortran.\n");
479  MPIcheckPoint();
480 #endif // is_mpi
481  
482  this->ndf = this->getNDF();
483  this->ndfRaw = this->getNDFraw();
484  this->ndfTrans = this->getNDFtranslational();
485 }
650  
651 < void SimInfo::setDefaultRcut( double theRcut ){
652 <  
653 <  haveRcut = 1;
654 <  rCut = theRcut;
655 <  rList = rCut + 1.0;
656 <  
657 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
494 < }
651 >  void SimInfo::setupFortranSim() {
652 >    int isError;
653 >    int nExclude;
654 >    std::vector<int> fortranGlobalGroupMembership;
655 >    
656 >    nExclude = exclude_.getSize();
657 >    isError = 0;
658  
659 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
659 >    //globalGroupMembership_ is filled by SimCreator    
660 >    for (int i = 0; i < nGlobalAtoms_; i++) {
661 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
662 >    }
663  
664 <  rSw = theRsw;
665 <  setDefaultRcut( theRcut );
666 < }
664 >    //calculate mass ratio of cutoff group
665 >    std::vector<double> mfact;
666 >    SimInfo::MoleculeIterator mi;
667 >    Molecule* mol;
668 >    Molecule::CutoffGroupIterator ci;
669 >    CutoffGroup* cg;
670 >    Molecule::AtomIterator ai;
671 >    Atom* atom;
672 >    double totalMass;
673  
674 +    //to avoid memory reallocation, reserve enough space for mfact
675 +    mfact.reserve(getNCutoffGroups());
676 +    
677 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
678 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
679  
680 < void SimInfo::checkCutOffs( void ){
681 <  
682 <  if( boxIsInit ){
680 >        totalMass = cg->getMass();
681 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
682 >          // Check for massless groups - set mfact to 1 if true
683 >          if (totalMass != 0)
684 >            mfact.push_back(atom->getMass()/totalMass);
685 >          else
686 >            mfact.push_back( 1.0 );
687 >        }
688 >
689 >      }      
690 >    }
691 >
692 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
693 >    std::vector<int> identArray;
694 >
695 >    //to avoid memory reallocation, reserve enough space identArray
696 >    identArray.reserve(getNAtoms());
697      
698 <    //we need to check cutOffs against the box
698 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
699 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
700 >        identArray.push_back(atom->getIdent());
701 >      }
702 >    }    
703 >
704 >    //fill molMembershipArray
705 >    //molMembershipArray is filled by SimCreator    
706 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
707 >    for (int i = 0; i < nGlobalAtoms_; i++) {
708 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
709 >    }
710      
711 <    if( rCut > maxCutoff ){
711 >    //setup fortran simulation
712 >    int nGlobalExcludes = 0;
713 >    int* globalExcludes = NULL;
714 >    int* excludeList = exclude_.getExcludeList();
715 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
716 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
717 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
718 >
719 >    if( isError ){
720 >
721        sprintf( painCave.errMsg,
722 <               "cutoffRadius is too large for the current periodic box.\n"
512 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
513 <               "\tThis is larger than half of at least one of the\n"
514 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515 <               "\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n"
518 <               "\t[ %G %G %G ]\n",
519 <               rCut, currentTime,
520 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523 <      painCave.severity = OOPSE_ERROR;
722 >               "There was an error setting the simulation information in fortran.\n" );
723        painCave.isFatal = 1;
724 +      painCave.severity = OOPSE_ERROR;
725        simError();
726 <    }    
727 <  } else {
728 <    // initialize this stuff before using it, OK?
729 <    sprintf( painCave.errMsg,
730 <             "Trying to check cutoffs without a box.\n"
731 <             "\tOOPSE should have better programmers than that.\n" );
732 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
726 >    }
727 >
728 > #ifdef IS_MPI
729 >    sprintf( checkPointMsg,
730 >             "succesfully sent the simulation information to fortran.\n");
731 >    MPIcheckPoint();
732 > #endif // is_mpi
733    }
536  
537 }
734  
539 void SimInfo::addProperty(GenericData* prop){
735  
736 <  map<string, GenericData*>::iterator result;
737 <  result = properties.find(prop->getID());
543 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
736 > #ifdef IS_MPI
737 >  void SimInfo::setupFortranParallel() {
738      
739 <    delete (*result).second;
740 <    (*result).second = prop;
741 <      
742 <  }
743 <  else{
739 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
740 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
741 >    std::vector<int> localToGlobalCutoffGroupIndex;
742 >    SimInfo::MoleculeIterator mi;
743 >    Molecule::AtomIterator ai;
744 >    Molecule::CutoffGroupIterator ci;
745 >    Molecule* mol;
746 >    Atom* atom;
747 >    CutoffGroup* cg;
748 >    mpiSimData parallelData;
749 >    int isError;
750  
751 <    properties[prop->getID()] = prop;
751 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
752  
753 +      //local index(index in DataStorge) of atom is important
754 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
755 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
756 +      }
757 +
758 +      //local index of cutoff group is trivial, it only depends on the order of travesing
759 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
760 +        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
761 +      }        
762 +        
763 +    }
764 +
765 +    //fill up mpiSimData struct
766 +    parallelData.nMolGlobal = getNGlobalMolecules();
767 +    parallelData.nMolLocal = getNMolecules();
768 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
769 +    parallelData.nAtomsLocal = getNAtoms();
770 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
771 +    parallelData.nGroupsLocal = getNCutoffGroups();
772 +    parallelData.myNode = worldRank;
773 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
774 +
775 +    //pass mpiSimData struct and index arrays to fortran
776 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
777 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
778 +                    &localToGlobalCutoffGroupIndex[0], &isError);
779 +
780 +    if (isError) {
781 +      sprintf(painCave.errMsg,
782 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
783 +      painCave.isFatal = 1;
784 +      simError();
785 +    }
786 +
787 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
788 +    MPIcheckPoint();
789 +
790 +
791    }
558    
559 }
792  
793 < GenericData* SimInfo::getProperty(const string& propName){
562 <
563 <  map<string, GenericData*>::iterator result;
564 <  
565 <  //string lowerCaseName = ();
566 <  
567 <  result = properties.find(propName);
568 <  
569 <  if(result != properties.end())
570 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
793 > #endif
794  
795 +  double SimInfo::calcMaxCutoffRadius() {
796  
576 void SimInfo::getFortranGroupArrays(SimInfo* info,
577                                    vector<int>& FglobalGroupMembership,
578                                    vector<double>& mfact){
579  
580  Molecule* myMols;
581  Atom** myAtoms;
582  int numAtom;
583  double mtot;
584  int numMol;
585  int numCutoffGroups;
586  CutoffGroup* myCutoffGroup;
587  vector<CutoffGroup*>::iterator iterCutoff;
588  Atom* cutoffAtom;
589  vector<Atom*>::iterator iterAtom;
590  int atomIndex;
591  double totalMass;
592  
593  mfact.clear();
594  FglobalGroupMembership.clear();
595  
797  
798 <  // Fix the silly fortran indexing problem
798 >    std::set<AtomType*> atomTypes;
799 >    std::set<AtomType*>::iterator i;
800 >    std::vector<double> cutoffRadius;
801 >
802 >    //get the unique atom types
803 >    atomTypes = getUniqueAtomTypes();
804 >
805 >    //query the max cutoff radius among these atom types
806 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
807 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
808 >    }
809 >
810 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
811   #ifdef IS_MPI
812 <  numAtom = mpiSim->getNAtomsGlobal();
600 < #else
601 <  numAtom = n_atoms;
812 >    //pick the max cutoff radius among the processors
813   #endif
603  for (int i = 0; i < numAtom; i++)
604    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605  
814  
815 <  myMols = info->molecules;
816 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
815 >    return maxCutoffRadius;
816 >  }
817  
818 <      totalMass = myCutoffGroup->getMass();
819 <      
820 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
821 <          cutoffAtom != NULL;
822 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
823 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
824 <      }  
818 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
819 >    
820 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
821 >        
822 >      if (!simParams_->haveCutoffRadius()){
823 >        sprintf(painCave.errMsg,
824 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
825 >                "\tOOPSE will use a default value of 15.0 angstroms"
826 >                "\tfor the cutoffRadius.\n");
827 >        painCave.isFatal = 0;
828 >        simError();
829 >        rcut = 15.0;
830 >      } else{
831 >        rcut = simParams_->getCutoffRadius();
832 >      }
833 >
834 >      if (!simParams_->haveSwitchingRadius()){
835 >        sprintf(painCave.errMsg,
836 >                "SimCreator Warning: No value was set for switchingRadius.\n"
837 >                "\tOOPSE will use a default value of\n"
838 >                "\t0.85 * cutoffRadius for the switchingRadius\n");
839 >        painCave.isFatal = 0;
840 >        simError();
841 >        rsw = 0.85 * rcut;
842 >      } else{
843 >        rsw = simParams_->getSwitchingRadius();
844 >      }
845 >
846 >    } else {
847 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
848 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
849 >        
850 >      if (simParams_->haveCutoffRadius()) {
851 >        rcut = simParams_->getCutoffRadius();
852 >      } else {
853 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
854 >        rcut = calcMaxCutoffRadius();
855 >      }
856 >
857 >      if (simParams_->haveSwitchingRadius()) {
858 >        rsw  = simParams_->getSwitchingRadius();
859 >      } else {
860 >        rsw = rcut;
861 >      }
862 >    
863      }
864    }
865  
866 < }
866 >  void SimInfo::setupCutoff() {    
867 >    getCutoff(rcut_, rsw_);    
868 >    double rnblist = rcut_ + 1; // skin of neighbor list
869 >
870 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
871 >    
872 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
873 >    if (simParams_->haveCutoffPolicy()) {
874 >      std::string myPolicy = simParams_->getCutoffPolicy();
875 >      toUpper(myPolicy);
876 >      if (myPolicy == "MIX") {
877 >        cp = MIX_CUTOFF_POLICY;
878 >      } else {
879 >        if (myPolicy == "MAX") {
880 >          cp = MAX_CUTOFF_POLICY;
881 >        } else {
882 >          if (myPolicy == "TRADITIONAL") {            
883 >            cp = TRADITIONAL_CUTOFF_POLICY;
884 >          } else {
885 >            // throw error        
886 >            sprintf( painCave.errMsg,
887 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
888 >            painCave.isFatal = 1;
889 >            simError();
890 >          }    
891 >        }          
892 >      }
893 >    }
894 >
895 >
896 >    if (simParams_->haveSkinThickness()) {
897 >      double skinThickness = simParams_->getSkinThickness();
898 >    }
899 >
900 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
901 >    // also send cutoff notification to electrostatics
902 >    setElectrostaticCutoffRadius(&rcut_, &rsw_);
903 >  }
904 >
905 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
906 >    
907 >    int errorOut;
908 >    int esm =  NONE;
909 >    double alphaVal;
910 >    double dielectric;
911 >
912 >    errorOut = isError;
913 >    alphaVal = simParams_->getDampingAlpha();
914 >    dielectric = simParams_->getDielectric();
915 >
916 >    if (simParams_->haveElectrostaticSummationMethod()) {
917 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
918 >      toUpper(myMethod);
919 >      if (myMethod == "NONE") {
920 >        esm = NONE;
921 >      } else {
922 >        if (myMethod == "UNDAMPED_WOLF") {
923 >          esm = UNDAMPED_WOLF;
924 >        } else {
925 >          if (myMethod == "DAMPED_WOLF") {            
926 >            esm = DAMPED_WOLF;
927 >            if (!simParams_->haveDampingAlpha()) {
928 >              //throw error
929 >              sprintf( painCave.errMsg,
930 >                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
931 >              painCave.isFatal = 0;
932 >              simError();
933 >            }
934 >          } else {
935 >            if (myMethod == "REACTION_FIELD") {      
936 >              esm = REACTION_FIELD;
937 >            } else {
938 >              // throw error        
939 >              sprintf( painCave.errMsg,
940 >                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
941 >              painCave.isFatal = 1;
942 >              simError();
943 >            }    
944 >          }          
945 >        }
946 >      }
947 >    }
948 >    // let's pass some summation method variables to fortran
949 >    setElectrostaticSummationMethod( &esm );
950 >    setDampedWolfAlpha( &alphaVal );
951 >    setReactionFieldDielectric( &dielectric );
952 >    initFortranFF( &esm, &errorOut );
953 >  }
954 >
955 >  void SimInfo::addProperty(GenericData* genData) {
956 >    properties_.addProperty(genData);  
957 >  }
958 >
959 >  void SimInfo::removeProperty(const std::string& propName) {
960 >    properties_.removeProperty(propName);  
961 >  }
962 >
963 >  void SimInfo::clearProperties() {
964 >    properties_.clearProperties();
965 >  }
966 >
967 >  std::vector<std::string> SimInfo::getPropertyNames() {
968 >    return properties_.getPropertyNames();  
969 >  }
970 >      
971 >  std::vector<GenericData*> SimInfo::getProperties() {
972 >    return properties_.getProperties();
973 >  }
974 >
975 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
976 >    return properties_.getPropertyByName(propName);
977 >  }
978 >
979 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
980 >    if (sman_ == sman) {
981 >      return;
982 >    }    
983 >    delete sman_;
984 >    sman_ = sman;
985 >
986 >    Molecule* mol;
987 >    RigidBody* rb;
988 >    Atom* atom;
989 >    SimInfo::MoleculeIterator mi;
990 >    Molecule::RigidBodyIterator rbIter;
991 >    Molecule::AtomIterator atomIter;;
992 >
993 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
994 >        
995 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
996 >        atom->setSnapshotManager(sman_);
997 >      }
998 >        
999 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1000 >        rb->setSnapshotManager(sman_);
1001 >      }
1002 >    }    
1003 >    
1004 >  }
1005 >
1006 >  Vector3d SimInfo::getComVel(){
1007 >    SimInfo::MoleculeIterator i;
1008 >    Molecule* mol;
1009 >
1010 >    Vector3d comVel(0.0);
1011 >    double totalMass = 0.0;
1012 >    
1013 >
1014 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1015 >      double mass = mol->getMass();
1016 >      totalMass += mass;
1017 >      comVel += mass * mol->getComVel();
1018 >    }  
1019 >
1020 > #ifdef IS_MPI
1021 >    double tmpMass = totalMass;
1022 >    Vector3d tmpComVel(comVel);    
1023 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1024 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1025 > #endif
1026 >
1027 >    comVel /= totalMass;
1028 >
1029 >    return comVel;
1030 >  }
1031 >
1032 >  Vector3d SimInfo::getCom(){
1033 >    SimInfo::MoleculeIterator i;
1034 >    Molecule* mol;
1035 >
1036 >    Vector3d com(0.0);
1037 >    double totalMass = 0.0;
1038 >    
1039 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1040 >      double mass = mol->getMass();
1041 >      totalMass += mass;
1042 >      com += mass * mol->getCom();
1043 >    }  
1044 >
1045 > #ifdef IS_MPI
1046 >    double tmpMass = totalMass;
1047 >    Vector3d tmpCom(com);    
1048 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1049 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1050 > #endif
1051 >
1052 >    com /= totalMass;
1053 >
1054 >    return com;
1055 >
1056 >  }        
1057 >
1058 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1059 >
1060 >    return o;
1061 >  }
1062 >  
1063 >  
1064 >   /*
1065 >   Returns center of mass and center of mass velocity in one function call.
1066 >   */
1067 >  
1068 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1069 >      SimInfo::MoleculeIterator i;
1070 >      Molecule* mol;
1071 >      
1072 >    
1073 >      double totalMass = 0.0;
1074 >    
1075 >
1076 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1077 >         double mass = mol->getMass();
1078 >         totalMass += mass;
1079 >         com += mass * mol->getCom();
1080 >         comVel += mass * mol->getComVel();          
1081 >      }  
1082 >      
1083 > #ifdef IS_MPI
1084 >      double tmpMass = totalMass;
1085 >      Vector3d tmpCom(com);  
1086 >      Vector3d tmpComVel(comVel);
1087 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1088 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1089 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1090 > #endif
1091 >      
1092 >      com /= totalMass;
1093 >      comVel /= totalMass;
1094 >   }        
1095 >  
1096 >   /*
1097 >   Return intertia tensor for entire system and angular momentum Vector.
1098 >
1099 >
1100 >       [  Ixx -Ixy  -Ixz ]
1101 >  J =| -Iyx  Iyy  -Iyz |
1102 >       [ -Izx -Iyz   Izz ]
1103 >    */
1104 >
1105 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1106 >      
1107 >
1108 >      double xx = 0.0;
1109 >      double yy = 0.0;
1110 >      double zz = 0.0;
1111 >      double xy = 0.0;
1112 >      double xz = 0.0;
1113 >      double yz = 0.0;
1114 >      Vector3d com(0.0);
1115 >      Vector3d comVel(0.0);
1116 >      
1117 >      getComAll(com, comVel);
1118 >      
1119 >      SimInfo::MoleculeIterator i;
1120 >      Molecule* mol;
1121 >      
1122 >      Vector3d thisq(0.0);
1123 >      Vector3d thisv(0.0);
1124 >
1125 >      double thisMass = 0.0;
1126 >    
1127 >      
1128 >      
1129 >  
1130 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1131 >        
1132 >         thisq = mol->getCom()-com;
1133 >         thisv = mol->getComVel()-comVel;
1134 >         thisMass = mol->getMass();
1135 >         // Compute moment of intertia coefficients.
1136 >         xx += thisq[0]*thisq[0]*thisMass;
1137 >         yy += thisq[1]*thisq[1]*thisMass;
1138 >         zz += thisq[2]*thisq[2]*thisMass;
1139 >        
1140 >         // compute products of intertia
1141 >         xy += thisq[0]*thisq[1]*thisMass;
1142 >         xz += thisq[0]*thisq[2]*thisMass;
1143 >         yz += thisq[1]*thisq[2]*thisMass;
1144 >            
1145 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1146 >            
1147 >      }  
1148 >      
1149 >      
1150 >      inertiaTensor(0,0) = yy + zz;
1151 >      inertiaTensor(0,1) = -xy;
1152 >      inertiaTensor(0,2) = -xz;
1153 >      inertiaTensor(1,0) = -xy;
1154 >      inertiaTensor(1,1) = xx + zz;
1155 >      inertiaTensor(1,2) = -yz;
1156 >      inertiaTensor(2,0) = -xz;
1157 >      inertiaTensor(2,1) = -yz;
1158 >      inertiaTensor(2,2) = xx + yy;
1159 >      
1160 > #ifdef IS_MPI
1161 >      Mat3x3d tmpI(inertiaTensor);
1162 >      Vector3d tmpAngMom;
1163 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1164 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1165 > #endif
1166 >              
1167 >      return;
1168 >   }
1169 >
1170 >   //Returns the angular momentum of the system
1171 >   Vector3d SimInfo::getAngularMomentum(){
1172 >      
1173 >      Vector3d com(0.0);
1174 >      Vector3d comVel(0.0);
1175 >      Vector3d angularMomentum(0.0);
1176 >      
1177 >      getComAll(com,comVel);
1178 >      
1179 >      SimInfo::MoleculeIterator i;
1180 >      Molecule* mol;
1181 >      
1182 >      Vector3d thisr(0.0);
1183 >      Vector3d thisp(0.0);
1184 >      
1185 >      double thisMass;
1186 >      
1187 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1188 >        thisMass = mol->getMass();
1189 >        thisr = mol->getCom()-com;
1190 >        thisp = (mol->getComVel()-comVel)*thisMass;
1191 >        
1192 >        angularMomentum += cross( thisr, thisp );
1193 >        
1194 >      }  
1195 >      
1196 > #ifdef IS_MPI
1197 >      Vector3d tmpAngMom;
1198 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1199 > #endif
1200 >      
1201 >      return angularMomentum;
1202 >   }
1203 >  
1204 >  
1205 > }//end namespace oopse
1206 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines