ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1617 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
Revision 2448 by tim, Wed Nov 16 23:10:02 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
56 < #include "utils/simError.h"
57 < #include "UseTheForce/DarkSide/simulation_interface.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "UseTheForce/fCutoffPolicy.h"
57 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 > #include "UseTheForce/doForces_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62   #include "UseTheForce/notifyCutoffs_interface.h"
63 + #include "UseTheForce/DarkSide/switcheroo_interface.h"
64 + #include "utils/MemoryUtils.hpp"
65 + #include "utils/simError.h"
66 + #include "selection/SelectionManager.hpp"
67  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
68   #ifdef IS_MPI
69 < #include "brains/mpiSimulation.hpp"
70 < #endif
69 > #include "UseTheForce/mpiComponentPlan.h"
70 > #include "UseTheForce/DarkSide/simParallel_interface.h"
71 > #endif
72  
73 < inline double roundMe( double x ){
74 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
75 < }
76 <          
77 < inline double min( double a, double b ){
78 <  return (a < b ) ? a : b;
79 < }
73 > namespace oopse {
74 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
75 >    std::map<int, std::set<int> >::iterator i = container.find(index);
76 >    std::set<int> result;
77 >    if (i != container.end()) {
78 >        result = i->second;
79 >    }
80  
81 < SimInfo* currentInfo;
82 <
33 < SimInfo::SimInfo(){
34 <
35 <  n_constraints = 0;
36 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
48 <
49 <  haveRcut = 0;
50 <  haveRsw = 0;
51 <  boxIsInit = 0;
81 >    return result;
82 >  }
83    
84 <  resetTime = 1e99;
84 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
85 >                   ForceField* ff, Globals* simParams) :
86 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
87 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
91 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
92 >    sman_(NULL), fortranInitialized_(false) {
93  
94 <  orthoRhombic = 0;
95 <  orthoTolerance = 1E-6;
96 <  useInitXSstate = true;
94 >            
95 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
96 >      MoleculeStamp* molStamp;
97 >      int nMolWithSameStamp;
98 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
99 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
100 >      CutoffGroupStamp* cgStamp;    
101 >      RigidBodyStamp* rbStamp;
102 >      int nRigidAtoms = 0;
103 >    
104 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
105 >        molStamp = i->first;
106 >        nMolWithSameStamp = i->second;
107 >        
108 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
109  
110 <  usePBC = 0;
111 <  useLJ = 0;
61 <  useSticky = 0;
62 <  useCharges = 0;
63 <  useDipoles = 0;
64 <  useReactionField = 0;
65 <  useGB = 0;
66 <  useEAM = 0;
67 <  useSolidThermInt = 0;
68 <  useLiquidThermInt = 0;
110 >        //calculate atoms in molecules
111 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
112  
70  haveCutoffGroups = false;
113  
114 <  excludes = Exclude::Instance();
114 >        //calculate atoms in cutoff groups
115 >        int nAtomsInGroups = 0;
116 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
117 >        
118 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
119 >          cgStamp = molStamp->getCutoffGroup(j);
120 >          nAtomsInGroups += cgStamp->getNMembers();
121 >        }
122  
123 <  myConfiguration = new SimState();
123 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
124  
125 <  has_minimizer = false;
77 <  the_minimizer =NULL;
125 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
126  
127 <  ngroup = 0;
127 >        //calculate atoms in rigid bodies
128 >        int nAtomsInRigidBodies = 0;
129 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
130 >        
131 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
132 >          rbStamp = molStamp->getRigidBody(j);
133 >          nAtomsInRigidBodies += rbStamp->getNMembers();
134 >        }
135  
136 < }
136 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
137 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
138 >        
139 >      }
140  
141 +      //every free atom (atom does not belong to cutoff groups) is a cutoff
142 +      //group therefore the total number of cutoff groups in the system is
143 +      //equal to the total number of atoms minus number of atoms belong to
144 +      //cutoff group defined in meta-data file plus the number of cutoff
145 +      //groups defined in meta-data file
146 +      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
147  
148 < SimInfo::~SimInfo(){
149 <
150 <  delete myConfiguration;
151 <
152 <  map<string, GenericData*>::iterator i;
148 >      //every free atom (atom does not belong to rigid bodies) is an
149 >      //integrable object therefore the total number of integrable objects
150 >      //in the system is equal to the total number of atoms minus number of
151 >      //atoms belong to rigid body defined in meta-data file plus the number
152 >      //of rigid bodies defined in meta-data file
153 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
154 >                                                + nGlobalRigidBodies_;
155    
156 <  for(i = properties.begin(); i != properties.end(); i++)
91 <    delete (*i).second;
156 >      nGlobalMols_ = molStampIds_.size();
157  
158 < }
158 > #ifdef IS_MPI    
159 >      molToProcMap_.resize(nGlobalMols_);
160 > #endif
161  
162 < void SimInfo::setBox(double newBox[3]) {
96 <  
97 <  int i, j;
98 <  double tempMat[3][3];
162 >    }
163  
164 <  for(i=0; i<3; i++)
165 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
164 >  SimInfo::~SimInfo() {
165 >    std::map<int, Molecule*>::iterator i;
166 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
167 >      delete i->second;
168 >    }
169 >    molecules_.clear();
170 >      
171 >    delete stamps_;
172 >    delete sman_;
173 >    delete simParams_;
174 >    delete forceField_;
175 >  }
176  
177 <  tempMat[0][0] = newBox[0];
178 <  tempMat[1][1] = newBox[1];
179 <  tempMat[2][2] = newBox[2];
177 >  int SimInfo::getNGlobalConstraints() {
178 >    int nGlobalConstraints;
179 > #ifdef IS_MPI
180 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
181 >                  MPI_COMM_WORLD);    
182 > #else
183 >    nGlobalConstraints =  nConstraints_;
184 > #endif
185 >    return nGlobalConstraints;
186 >  }
187  
188 <  setBoxM( tempMat );
188 >  bool SimInfo::addMolecule(Molecule* mol) {
189 >    MoleculeIterator i;
190  
191 < }
191 >    i = molecules_.find(mol->getGlobalIndex());
192 >    if (i == molecules_.end() ) {
193  
194 < void SimInfo::setBoxM( double theBox[3][3] ){
195 <  
196 <  int i, j;
197 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
198 <                         // ordering in the array is as follows:
199 <                         // [ 0 3 6 ]
200 <                         // [ 1 4 7 ]
201 <                         // [ 2 5 8 ]
202 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
203 <
121 <  if( !boxIsInit ) boxIsInit = 1;
194 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
195 >        
196 >      nAtoms_ += mol->getNAtoms();
197 >      nBonds_ += mol->getNBonds();
198 >      nBends_ += mol->getNBends();
199 >      nTorsions_ += mol->getNTorsions();
200 >      nRigidBodies_ += mol->getNRigidBodies();
201 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
202 >      nCutoffGroups_ += mol->getNCutoffGroups();
203 >      nConstraints_ += mol->getNConstraintPairs();
204  
205 <  for(i=0; i < 3; i++)
206 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
207 <  
208 <  calcBoxL();
209 <  calcHmatInv();
128 <
129 <  for(i=0; i < 3; i++) {
130 <    for (j=0; j < 3; j++) {
131 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
205 >      addExcludePairs(mol);
206 >        
207 >      return true;
208 >    } else {
209 >      return false;
210      }
211    }
212  
213 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
214 <
215 < }
139 <
213 >  bool SimInfo::removeMolecule(Molecule* mol) {
214 >    MoleculeIterator i;
215 >    i = molecules_.find(mol->getGlobalIndex());
216  
217 < void SimInfo::getBoxM (double theBox[3][3]) {
217 >    if (i != molecules_.end() ) {
218  
219 <  int i, j;
220 <  for(i=0; i<3; i++)
221 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
222 < }
219 >      assert(mol == i->second);
220 >        
221 >      nAtoms_ -= mol->getNAtoms();
222 >      nBonds_ -= mol->getNBonds();
223 >      nBends_ -= mol->getNBends();
224 >      nTorsions_ -= mol->getNTorsions();
225 >      nRigidBodies_ -= mol->getNRigidBodies();
226 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
227 >      nCutoffGroups_ -= mol->getNCutoffGroups();
228 >      nConstraints_ -= mol->getNConstraintPairs();
229  
230 +      removeExcludePairs(mol);
231 +      molecules_.erase(mol->getGlobalIndex());
232  
233 < void SimInfo::scaleBox(double scale) {
234 <  double theBox[3][3];
235 <  int i, j;
233 >      delete mol;
234 >        
235 >      return true;
236 >    } else {
237 >      return false;
238 >    }
239  
153  // cerr << "Scaling box by " << scale << "\n";
240  
241 <  for(i=0; i<3; i++)
156 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
241 >  }    
242  
243 <  setBoxM(theBox);
243 >        
244 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
245 >    i = molecules_.begin();
246 >    return i == molecules_.end() ? NULL : i->second;
247 >  }    
248  
249 < }
249 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
250 >    ++i;
251 >    return i == molecules_.end() ? NULL : i->second;    
252 >  }
253  
162 void SimInfo::calcHmatInv( void ) {
163  
164  int oldOrtho;
165  int i,j;
166  double smallDiag;
167  double tol;
168  double sanity[3][3];
254  
255 <  invertMat3( Hmat, HmatInv );
255 >  void SimInfo::calcNdf() {
256 >    int ndf_local;
257 >    MoleculeIterator i;
258 >    std::vector<StuntDouble*>::iterator j;
259 >    Molecule* mol;
260 >    StuntDouble* integrableObject;
261  
262 <  // check to see if Hmat is orthorhombic
263 <  
264 <  oldOrtho = orthoRhombic;
262 >    ndf_local = 0;
263 >    
264 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
265 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
266 >           integrableObject = mol->nextIntegrableObject(j)) {
267  
268 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
268 >        ndf_local += 3;
269  
270 <  orthoRhombic = 1;
271 <  
272 <  for (i = 0; i < 3; i++ ) {
273 <    for (j = 0 ; j < 3; j++) {
274 <      if (i != j) {
275 <        if (orthoRhombic) {
276 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
277 <        }        
278 <      }
279 <    }
191 <  }
192 <
193 <  if( oldOrtho != orthoRhombic ){
270 >        if (integrableObject->isDirectional()) {
271 >          if (integrableObject->isLinear()) {
272 >            ndf_local += 2;
273 >          } else {
274 >            ndf_local += 3;
275 >          }
276 >        }
277 >            
278 >      }//end for (integrableObject)
279 >    }// end for (mol)
280      
281 <    if( orthoRhombic ) {
282 <      sprintf( painCave.errMsg,
197 <               "OOPSE is switching from the default Non-Orthorhombic\n"
198 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
199 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
218 <  }
219 < }
281 >    // n_constraints is local, so subtract them on each processor
282 >    ndf_local -= nConstraints_;
283  
284 < void SimInfo::calcBoxL( void ){
284 > #ifdef IS_MPI
285 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286 > #else
287 >    ndf_ = ndf_local;
288 > #endif
289  
290 <  double dx, dy, dz, dsq;
290 >    // nZconstraints_ is global, as are the 3 COM translations for the
291 >    // entire system:
292 >    ndf_ = ndf_ - 3 - nZconstraint_;
293  
294 <  // boxVol = Determinant of Hmat
294 >  }
295  
296 <  boxVol = matDet3( Hmat );
296 >  void SimInfo::calcNdfRaw() {
297 >    int ndfRaw_local;
298  
299 <  // boxLx
300 <  
301 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
302 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
299 >    MoleculeIterator i;
300 >    std::vector<StuntDouble*>::iterator j;
301 >    Molecule* mol;
302 >    StuntDouble* integrableObject;
303  
304 <  // boxLy
305 <  
238 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
239 <  dsq = dx*dx + dy*dy + dz*dz;
240 <  boxL[1] = sqrt( dsq );
241 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
242 <
243 <
244 <  // boxLz
245 <  
246 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
247 <  dsq = dx*dx + dy*dy + dz*dz;
248 <  boxL[2] = sqrt( dsq );
249 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
250 <
251 <  //calculate the max cutoff
252 <  maxCutoff =  calcMaxCutOff();
253 <  
254 <  checkCutOffs();
255 <
256 < }
257 <
258 <
259 < double SimInfo::calcMaxCutOff(){
260 <
261 <  double ri[3], rj[3], rk[3];
262 <  double rij[3], rjk[3], rki[3];
263 <  double minDist;
264 <
265 <  ri[0] = Hmat[0][0];
266 <  ri[1] = Hmat[1][0];
267 <  ri[2] = Hmat[2][0];
268 <
269 <  rj[0] = Hmat[0][1];
270 <  rj[1] = Hmat[1][1];
271 <  rj[2] = Hmat[2][1];
272 <
273 <  rk[0] = Hmat[0][2];
274 <  rk[1] = Hmat[1][2];
275 <  rk[2] = Hmat[2][2];
304 >    // Raw degrees of freedom that we have to set
305 >    ndfRaw_local = 0;
306      
307 <  crossProduct3(ri, rj, rij);
308 <  distXY = dotProduct3(rk,rij) / norm3(rij);
307 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
308 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
309 >           integrableObject = mol->nextIntegrableObject(j)) {
310  
311 <  crossProduct3(rj,rk, rjk);
281 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
311 >        ndfRaw_local += 3;
312  
313 <  crossProduct3(rk,ri, rki);
314 <  distZX = dotProduct3(rj,rki) / norm3(rki);
315 <
316 <  minDist = min(min(distXY, distYZ), distZX);
317 <  return minDist/2;
318 <  
319 < }
320 <
321 < void SimInfo::wrapVector( double thePos[3] ){
322 <
293 <  int i;
294 <  double scaled[3];
295 <
296 <  if( !orthoRhombic ){
297 <    // calc the scaled coordinates.
298 <  
299 <
300 <    matVecMul3(HmatInv, thePos, scaled);
313 >        if (integrableObject->isDirectional()) {
314 >          if (integrableObject->isLinear()) {
315 >            ndfRaw_local += 2;
316 >          } else {
317 >            ndfRaw_local += 3;
318 >          }
319 >        }
320 >            
321 >      }
322 >    }
323      
324 <    for(i=0; i<3; i++)
325 <      scaled[i] -= roundMe(scaled[i]);
326 <    
327 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
328 <    
307 <    matVecMul3(Hmat, scaled, thePos);
308 <
324 > #ifdef IS_MPI
325 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
326 > #else
327 >    ndfRaw_ = ndfRaw_local;
328 > #endif
329    }
310  else{
311    // calc the scaled coordinates.
312    
313    for(i=0; i<3; i++)
314      scaled[i] = thePos[i]*HmatInv[i][i];
315    
316    // wrap the scaled coordinates
317    
318    for(i=0; i<3; i++)
319      scaled[i] -= roundMe(scaled[i]);
320    
321    // calc the wrapped real coordinates from the wrapped scaled coordinates
322    
323    for(i=0; i<3; i++)
324      thePos[i] = scaled[i]*Hmat[i][i];
325  }
326    
327 }
330  
331 +  void SimInfo::calcNdfTrans() {
332 +    int ndfTrans_local;
333  
334 < int SimInfo::getNDF(){
331 <  int ndf_local;
334 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
335  
333  ndf_local = 0;
334  
335  for(int i = 0; i < integrableObjects.size(); i++){
336    ndf_local += 3;
337    if (integrableObjects[i]->isDirectional()) {
338      if (integrableObjects[i]->isLinear())
339        ndf_local += 2;
340      else
341        ndf_local += 3;
342    }
343  }
336  
345  // n_constraints is local, so subtract them on each processor:
346
347  ndf_local -= n_constraints;
348
337   #ifdef IS_MPI
338 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
338 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
339   #else
340 <  ndf = ndf_local;
340 >    ndfTrans_ = ndfTrans_local;
341   #endif
342  
343 <  // nZconstraints is global, as are the 3 COM translations for the
344 <  // entire system:
343 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
344 >
345 >  }
346  
347 <  ndf = ndf - 3 - nZconstraints;
347 >  void SimInfo::addExcludePairs(Molecule* mol) {
348 >    std::vector<Bond*>::iterator bondIter;
349 >    std::vector<Bend*>::iterator bendIter;
350 >    std::vector<Torsion*>::iterator torsionIter;
351 >    Bond* bond;
352 >    Bend* bend;
353 >    Torsion* torsion;
354 >    int a;
355 >    int b;
356 >    int c;
357 >    int d;
358  
359 <  return ndf;
361 < }
359 >    std::map<int, std::set<int> > atomGroups;
360  
361 < int SimInfo::getNDFraw() {
362 <  int ndfRaw_local;
361 >    Molecule::RigidBodyIterator rbIter;
362 >    RigidBody* rb;
363 >    Molecule::IntegrableObjectIterator ii;
364 >    StuntDouble* integrableObject;
365 >    
366 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
367 >           integrableObject = mol->nextIntegrableObject(ii)) {
368  
369 <  // Raw degrees of freedom that we have to set
370 <  ndfRaw_local = 0;
369 >      if (integrableObject->isRigidBody()) {
370 >          rb = static_cast<RigidBody*>(integrableObject);
371 >          std::vector<Atom*> atoms = rb->getAtoms();
372 >          std::set<int> rigidAtoms;
373 >          for (int i = 0; i < atoms.size(); ++i) {
374 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 >          }
376 >          for (int i = 0; i < atoms.size(); ++i) {
377 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 >          }      
379 >      } else {
380 >        std::set<int> oneAtomSet;
381 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
382 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
383 >      }
384 >    }  
385  
369  for(int i = 0; i < integrableObjects.size(); i++){
370    ndfRaw_local += 3;
371    if (integrableObjects[i]->isDirectional()) {
372       if (integrableObjects[i]->isLinear())
373        ndfRaw_local += 2;
374      else
375        ndfRaw_local += 3;
376    }
377  }
386      
387 < #ifdef IS_MPI
388 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
389 < #else
390 <  ndfRaw = ndfRaw_local;
391 < #endif
387 >    
388 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
389 >      a = bond->getAtomA()->getGlobalIndex();
390 >      b = bond->getAtomB()->getGlobalIndex();        
391 >      exclude_.addPair(a, b);
392 >    }
393  
394 <  return ndfRaw;
395 < }
394 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
395 >      a = bend->getAtomA()->getGlobalIndex();
396 >      b = bend->getAtomB()->getGlobalIndex();        
397 >      c = bend->getAtomC()->getGlobalIndex();
398 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
399 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
400 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
401  
402 < int SimInfo::getNDFtranslational() {
403 <  int ndfTrans_local;
402 >      exclude_.addPairs(rigidSetA, rigidSetB);
403 >      exclude_.addPairs(rigidSetA, rigidSetC);
404 >      exclude_.addPairs(rigidSetB, rigidSetC);
405 >      
406 >      //exclude_.addPair(a, b);
407 >      //exclude_.addPair(a, c);
408 >      //exclude_.addPair(b, c);        
409 >    }
410  
411 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
411 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
412 >      a = torsion->getAtomA()->getGlobalIndex();
413 >      b = torsion->getAtomB()->getGlobalIndex();        
414 >      c = torsion->getAtomC()->getGlobalIndex();        
415 >      d = torsion->getAtomD()->getGlobalIndex();        
416 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
417 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
418 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
419 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
420  
421 +      exclude_.addPairs(rigidSetA, rigidSetB);
422 +      exclude_.addPairs(rigidSetA, rigidSetC);
423 +      exclude_.addPairs(rigidSetA, rigidSetD);
424 +      exclude_.addPairs(rigidSetB, rigidSetC);
425 +      exclude_.addPairs(rigidSetB, rigidSetD);
426 +      exclude_.addPairs(rigidSetC, rigidSetD);
427  
428 < #ifdef IS_MPI
429 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
430 < #else
431 <  ndfTrans = ndfTrans_local;
432 < #endif
428 >      /*
429 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
430 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
431 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
432 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
433 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
434 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
435 >        
436 >      
437 >      exclude_.addPair(a, b);
438 >      exclude_.addPair(a, c);
439 >      exclude_.addPair(a, d);
440 >      exclude_.addPair(b, c);
441 >      exclude_.addPair(b, d);
442 >      exclude_.addPair(c, d);        
443 >      */
444 >    }
445  
446 <  ndfTrans = ndfTrans - 3 - nZconstraints;
446 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
447 >      std::vector<Atom*> atoms = rb->getAtoms();
448 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
449 >        for (int j = i + 1; j < atoms.size(); ++j) {
450 >          a = atoms[i]->getGlobalIndex();
451 >          b = atoms[j]->getGlobalIndex();
452 >          exclude_.addPair(a, b);
453 >        }
454 >      }
455 >    }        
456  
457 <  return ndfTrans;
403 < }
457 >  }
458  
459 < int SimInfo::getTotIntegrableObjects() {
460 <  int nObjs_local;
461 <  int nObjs;
462 <
463 <  nObjs_local =  integrableObjects.size();
459 >  void SimInfo::removeExcludePairs(Molecule* mol) {
460 >    std::vector<Bond*>::iterator bondIter;
461 >    std::vector<Bend*>::iterator bendIter;
462 >    std::vector<Torsion*>::iterator torsionIter;
463 >    Bond* bond;
464 >    Bend* bend;
465 >    Torsion* torsion;
466 >    int a;
467 >    int b;
468 >    int c;
469 >    int d;
470  
471 +    std::map<int, std::set<int> > atomGroups;
472  
473 +    Molecule::RigidBodyIterator rbIter;
474 +    RigidBody* rb;
475 +    Molecule::IntegrableObjectIterator ii;
476 +    StuntDouble* integrableObject;
477 +    
478 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
479 +           integrableObject = mol->nextIntegrableObject(ii)) {
480 +
481 +      if (integrableObject->isRigidBody()) {
482 +          rb = static_cast<RigidBody*>(integrableObject);
483 +          std::vector<Atom*> atoms = rb->getAtoms();
484 +          std::set<int> rigidAtoms;
485 +          for (int i = 0; i < atoms.size(); ++i) {
486 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
487 +          }
488 +          for (int i = 0; i < atoms.size(); ++i) {
489 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
490 +          }      
491 +      } else {
492 +        std::set<int> oneAtomSet;
493 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
494 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
495 +      }
496 +    }  
497 +
498 +    
499 +    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
500 +      a = bond->getAtomA()->getGlobalIndex();
501 +      b = bond->getAtomB()->getGlobalIndex();        
502 +      exclude_.removePair(a, b);
503 +    }
504 +
505 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
506 +      a = bend->getAtomA()->getGlobalIndex();
507 +      b = bend->getAtomB()->getGlobalIndex();        
508 +      c = bend->getAtomC()->getGlobalIndex();
509 +
510 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
511 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
512 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
513 +
514 +      exclude_.removePairs(rigidSetA, rigidSetB);
515 +      exclude_.removePairs(rigidSetA, rigidSetC);
516 +      exclude_.removePairs(rigidSetB, rigidSetC);
517 +      
518 +      //exclude_.removePair(a, b);
519 +      //exclude_.removePair(a, c);
520 +      //exclude_.removePair(b, c);        
521 +    }
522 +
523 +    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
524 +      a = torsion->getAtomA()->getGlobalIndex();
525 +      b = torsion->getAtomB()->getGlobalIndex();        
526 +      c = torsion->getAtomC()->getGlobalIndex();        
527 +      d = torsion->getAtomD()->getGlobalIndex();        
528 +
529 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
530 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
531 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
532 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
533 +
534 +      exclude_.removePairs(rigidSetA, rigidSetB);
535 +      exclude_.removePairs(rigidSetA, rigidSetC);
536 +      exclude_.removePairs(rigidSetA, rigidSetD);
537 +      exclude_.removePairs(rigidSetB, rigidSetC);
538 +      exclude_.removePairs(rigidSetB, rigidSetD);
539 +      exclude_.removePairs(rigidSetC, rigidSetD);
540 +
541 +      /*
542 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
543 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
544 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
545 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
546 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
547 +      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
548 +
549 +      
550 +      exclude_.removePair(a, b);
551 +      exclude_.removePair(a, c);
552 +      exclude_.removePair(a, d);
553 +      exclude_.removePair(b, c);
554 +      exclude_.removePair(b, d);
555 +      exclude_.removePair(c, d);        
556 +      */
557 +    }
558 +
559 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
560 +      std::vector<Atom*> atoms = rb->getAtoms();
561 +      for (int i = 0; i < atoms.size() -1 ; ++i) {
562 +        for (int j = i + 1; j < atoms.size(); ++j) {
563 +          a = atoms[i]->getGlobalIndex();
564 +          b = atoms[j]->getGlobalIndex();
565 +          exclude_.removePair(a, b);
566 +        }
567 +      }
568 +    }        
569 +
570 +  }
571 +
572 +
573 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
574 +    int curStampId;
575 +
576 +    //index from 0
577 +    curStampId = moleculeStamps_.size();
578 +
579 +    moleculeStamps_.push_back(molStamp);
580 +    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
581 +  }
582 +
583 +  void SimInfo::update() {
584 +
585 +    setupSimType();
586 +
587   #ifdef IS_MPI
588 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
414 < #else
415 <  nObjs = nObjs_local;
588 >    setupFortranParallel();
589   #endif
590  
591 +    setupFortranSim();
592  
593 <  return nObjs;
594 < }
593 >    //setup fortran force field
594 >    /** @deprecate */    
595 >    int isError = 0;
596 >    
597 >    setupElectrostaticSummationMethod( isError );
598 >    setupSwitchingFunction();
599  
600 < void SimInfo::refreshSim(){
600 >    if(isError){
601 >      sprintf( painCave.errMsg,
602 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
603 >      painCave.isFatal = 1;
604 >      simError();
605 >    }
606 >  
607 >    
608 >    setupCutoff();
609  
610 <  simtype fInfo;
611 <  int isError;
612 <  int n_global;
427 <  int* excl;
610 >    calcNdf();
611 >    calcNdfRaw();
612 >    calcNdfTrans();
613  
614 <  fInfo.dielect = 0.0;
614 >    fortranInitialized_ = true;
615 >  }
616  
617 <  if( useDipoles ){
618 <    if( useReactionField )fInfo.dielect = dielectric;
617 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
618 >    SimInfo::MoleculeIterator mi;
619 >    Molecule* mol;
620 >    Molecule::AtomIterator ai;
621 >    Atom* atom;
622 >    std::set<AtomType*> atomTypes;
623 >
624 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
625 >
626 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
627 >        atomTypes.insert(atom->getAtomType());
628 >      }
629 >        
630 >    }
631 >
632 >    return atomTypes;        
633    }
634  
635 <  fInfo.SIM_uses_PBC = usePBC;
636 <  //fInfo.SIM_uses_LJ = 0;
637 <  fInfo.SIM_uses_LJ = useLJ;
638 <  fInfo.SIM_uses_sticky = useSticky;
639 <  //fInfo.SIM_uses_sticky = 0;
640 <  fInfo.SIM_uses_charges = useCharges;
641 <  fInfo.SIM_uses_dipoles = useDipoles;
642 <  //fInfo.SIM_uses_dipoles = 0;
643 <  fInfo.SIM_uses_RF = useReactionField;
644 <  //fInfo.SIM_uses_RF = 0;
645 <  fInfo.SIM_uses_GB = useGB;
646 <  fInfo.SIM_uses_EAM = useEAM;
635 >  void SimInfo::setupSimType() {
636 >    std::set<AtomType*>::iterator i;
637 >    std::set<AtomType*> atomTypes;
638 >    atomTypes = getUniqueAtomTypes();
639 >    
640 >    int useLennardJones = 0;
641 >    int useElectrostatic = 0;
642 >    int useEAM = 0;
643 >    int useSC = 0;
644 >    int useCharge = 0;
645 >    int useDirectional = 0;
646 >    int useDipole = 0;
647 >    int useGayBerne = 0;
648 >    int useSticky = 0;
649 >    int useStickyPower = 0;
650 >    int useShape = 0;
651 >    int useFLARB = 0; //it is not in AtomType yet
652 >    int useDirectionalAtom = 0;    
653 >    int useElectrostatics = 0;
654 >    //usePBC and useRF are from simParams
655 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
656 >    int useRF;
657 >    int useSF;
658 >    std::string myMethod;
659 >
660 >    // set the useRF logical
661 >    useRF = 0;
662 >    useSF = 0;
663 >
664 >
665 >    if (simParams_->haveElectrostaticSummationMethod()) {
666 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
667 >      toUpper(myMethod);
668 >      if (myMethod == "REACTION_FIELD") {
669 >        useRF=1;
670 >      } else {
671 >        if (myMethod == "SHIFTED_FORCE") {
672 >          useSF = 1;
673 >        }
674 >      }
675 >    }
676  
677 <  n_exclude = excludes->getSize();
678 <  excl = excludes->getFortranArray();
679 <  
680 < #ifdef IS_MPI
681 <  n_global = mpiSim->getNAtomsGlobal();
682 < #else
683 <  n_global = n_atoms;
684 < #endif
685 <  
686 <  isError = 0;
687 <  
688 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
689 <  //it may not be a good idea to pass the address of first element in vector
690 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
677 >    //loop over all of the atom types
678 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
679 >      useLennardJones |= (*i)->isLennardJones();
680 >      useElectrostatic |= (*i)->isElectrostatic();
681 >      useEAM |= (*i)->isEAM();
682 >      useSC |= (*i)->isSC();
683 >      useCharge |= (*i)->isCharge();
684 >      useDirectional |= (*i)->isDirectional();
685 >      useDipole |= (*i)->isDipole();
686 >      useGayBerne |= (*i)->isGayBerne();
687 >      useSticky |= (*i)->isSticky();
688 >      useStickyPower |= (*i)->isStickyPower();
689 >      useShape |= (*i)->isShape();
690 >    }
691  
692 <  if( isError ){
692 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
693 >      useDirectionalAtom = 1;
694 >    }
695 >
696 >    if (useCharge || useDipole) {
697 >      useElectrostatics = 1;
698 >    }
699 >
700 > #ifdef IS_MPI    
701 >    int temp;
702 >
703 >    temp = usePBC;
704 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
705 >
706 >    temp = useDirectionalAtom;
707 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
708 >
709 >    temp = useLennardJones;
710 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
711 >
712 >    temp = useElectrostatics;
713 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
714 >
715 >    temp = useCharge;
716 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
717 >
718 >    temp = useDipole;
719 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
720 >
721 >    temp = useSticky;
722 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
723 >
724 >    temp = useStickyPower;
725 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
726      
727 <    sprintf( painCave.errMsg,
728 <             "There was an error setting the simulation information in fortran.\n" );
729 <    painCave.isFatal = 1;
730 <    painCave.severity = OOPSE_ERROR;
731 <    simError();
727 >    temp = useGayBerne;
728 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
729 >
730 >    temp = useEAM;
731 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
732 >
733 >    temp = useSC;
734 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
735 >    
736 >    temp = useShape;
737 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
738 >
739 >    temp = useFLARB;
740 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
741 >
742 >    temp = useRF;
743 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
744 >
745 >    temp = useSF;
746 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
747 >
748 > #endif
749 >
750 >    fInfo_.SIM_uses_PBC = usePBC;    
751 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
752 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
753 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
754 >    fInfo_.SIM_uses_Charges = useCharge;
755 >    fInfo_.SIM_uses_Dipoles = useDipole;
756 >    fInfo_.SIM_uses_Sticky = useSticky;
757 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
758 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
759 >    fInfo_.SIM_uses_EAM = useEAM;
760 >    fInfo_.SIM_uses_SC = useSC;
761 >    fInfo_.SIM_uses_Shapes = useShape;
762 >    fInfo_.SIM_uses_FLARB = useFLARB;
763 >    fInfo_.SIM_uses_RF = useRF;
764 >    fInfo_.SIM_uses_SF = useSF;
765 >
766 >    if( myMethod == "REACTION_FIELD") {
767 >      
768 >      if (simParams_->haveDielectric()) {
769 >        fInfo_.dielect = simParams_->getDielectric();
770 >      } else {
771 >        sprintf(painCave.errMsg,
772 >                "SimSetup Error: No Dielectric constant was set.\n"
773 >                "\tYou are trying to use Reaction Field without"
774 >                "\tsetting a dielectric constant!\n");
775 >        painCave.isFatal = 1;
776 >        simError();
777 >      }      
778 >    }
779 >
780    }
475  
476 #ifdef IS_MPI
477  sprintf( checkPointMsg,
478           "succesfully sent the simulation information to fortran.\n");
479  MPIcheckPoint();
480 #endif // is_mpi
481  
482  this->ndf = this->getNDF();
483  this->ndfRaw = this->getNDFraw();
484  this->ndfTrans = this->getNDFtranslational();
485 }
781  
782 < void SimInfo::setDefaultRcut( double theRcut ){
783 <  
784 <  haveRcut = 1;
785 <  rCut = theRcut;
786 <  rList = rCut + 1.0;
787 <  
788 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
494 < }
782 >  void SimInfo::setupFortranSim() {
783 >    int isError;
784 >    int nExclude;
785 >    std::vector<int> fortranGlobalGroupMembership;
786 >    
787 >    nExclude = exclude_.getSize();
788 >    isError = 0;
789  
790 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
790 >    //globalGroupMembership_ is filled by SimCreator    
791 >    for (int i = 0; i < nGlobalAtoms_; i++) {
792 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
793 >    }
794  
795 <  rSw = theRsw;
796 <  setDefaultRcut( theRcut );
797 < }
795 >    //calculate mass ratio of cutoff group
796 >    std::vector<double> mfact;
797 >    SimInfo::MoleculeIterator mi;
798 >    Molecule* mol;
799 >    Molecule::CutoffGroupIterator ci;
800 >    CutoffGroup* cg;
801 >    Molecule::AtomIterator ai;
802 >    Atom* atom;
803 >    double totalMass;
804  
805 +    //to avoid memory reallocation, reserve enough space for mfact
806 +    mfact.reserve(getNCutoffGroups());
807 +    
808 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
809 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
810  
811 < void SimInfo::checkCutOffs( void ){
812 <  
813 <  if( boxIsInit ){
811 >        totalMass = cg->getMass();
812 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
813 >          // Check for massless groups - set mfact to 1 if true
814 >          if (totalMass != 0)
815 >            mfact.push_back(atom->getMass()/totalMass);
816 >          else
817 >            mfact.push_back( 1.0 );
818 >        }
819 >
820 >      }      
821 >    }
822 >
823 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
824 >    std::vector<int> identArray;
825 >
826 >    //to avoid memory reallocation, reserve enough space identArray
827 >    identArray.reserve(getNAtoms());
828      
829 <    //we need to check cutOffs against the box
829 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
830 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
831 >        identArray.push_back(atom->getIdent());
832 >      }
833 >    }    
834 >
835 >    //fill molMembershipArray
836 >    //molMembershipArray is filled by SimCreator    
837 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
838 >    for (int i = 0; i < nGlobalAtoms_; i++) {
839 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
840 >    }
841      
842 <    if( rCut > maxCutoff ){
842 >    //setup fortran simulation
843 >    int nGlobalExcludes = 0;
844 >    int* globalExcludes = NULL;
845 >    int* excludeList = exclude_.getExcludeList();
846 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
847 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
848 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
849 >
850 >    if( isError ){
851 >
852        sprintf( painCave.errMsg,
853 <               "cutoffRadius is too large for the current periodic box.\n"
512 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
513 <               "\tThis is larger than half of at least one of the\n"
514 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515 <               "\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n"
518 <               "\t[ %G %G %G ]\n",
519 <               rCut, currentTime,
520 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523 <      painCave.severity = OOPSE_ERROR;
853 >               "There was an error setting the simulation information in fortran.\n" );
854        painCave.isFatal = 1;
855 +      painCave.severity = OOPSE_ERROR;
856        simError();
857 <    }    
858 <  } else {
859 <    // initialize this stuff before using it, OK?
860 <    sprintf( painCave.errMsg,
861 <             "Trying to check cutoffs without a box.\n"
862 <             "\tOOPSE should have better programmers than that.\n" );
863 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
857 >    }
858 >
859 > #ifdef IS_MPI
860 >    sprintf( checkPointMsg,
861 >             "succesfully sent the simulation information to fortran.\n");
862 >    MPIcheckPoint();
863 > #endif // is_mpi
864    }
536  
537 }
865  
539 void SimInfo::addProperty(GenericData* prop){
866  
867 <  map<string, GenericData*>::iterator result;
868 <  result = properties.find(prop->getID());
543 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
867 > #ifdef IS_MPI
868 >  void SimInfo::setupFortranParallel() {
869      
870 <    delete (*result).second;
871 <    (*result).second = prop;
872 <      
873 <  }
874 <  else{
870 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
871 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
872 >    std::vector<int> localToGlobalCutoffGroupIndex;
873 >    SimInfo::MoleculeIterator mi;
874 >    Molecule::AtomIterator ai;
875 >    Molecule::CutoffGroupIterator ci;
876 >    Molecule* mol;
877 >    Atom* atom;
878 >    CutoffGroup* cg;
879 >    mpiSimData parallelData;
880 >    int isError;
881  
882 <    properties[prop->getID()] = prop;
882 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
883  
884 +      //local index(index in DataStorge) of atom is important
885 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
886 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
887 +      }
888 +
889 +      //local index of cutoff group is trivial, it only depends on the order of travesing
890 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
891 +        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
892 +      }        
893 +        
894 +    }
895 +
896 +    //fill up mpiSimData struct
897 +    parallelData.nMolGlobal = getNGlobalMolecules();
898 +    parallelData.nMolLocal = getNMolecules();
899 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
900 +    parallelData.nAtomsLocal = getNAtoms();
901 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
902 +    parallelData.nGroupsLocal = getNCutoffGroups();
903 +    parallelData.myNode = worldRank;
904 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
905 +
906 +    //pass mpiSimData struct and index arrays to fortran
907 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
908 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
909 +                    &localToGlobalCutoffGroupIndex[0], &isError);
910 +
911 +    if (isError) {
912 +      sprintf(painCave.errMsg,
913 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
914 +      painCave.isFatal = 1;
915 +      simError();
916 +    }
917 +
918 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
919 +    MPIcheckPoint();
920 +
921 +
922    }
558    
559 }
923  
924 < GenericData* SimInfo::getProperty(const string& propName){
562 <
563 <  map<string, GenericData*>::iterator result;
564 <  
565 <  //string lowerCaseName = ();
566 <  
567 <  result = properties.find(propName);
568 <  
569 <  if(result != properties.end())
570 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
924 > #endif
925  
926 +  double SimInfo::calcMaxCutoffRadius() {
927  
576 void SimInfo::getFortranGroupArrays(SimInfo* info,
577                                    vector<int>& FglobalGroupMembership,
578                                    vector<double>& mfact){
579  
580  Molecule* myMols;
581  Atom** myAtoms;
582  int numAtom;
583  double mtot;
584  int numMol;
585  int numCutoffGroups;
586  CutoffGroup* myCutoffGroup;
587  vector<CutoffGroup*>::iterator iterCutoff;
588  Atom* cutoffAtom;
589  vector<Atom*>::iterator iterAtom;
590  int atomIndex;
591  double totalMass;
592  
593  mfact.clear();
594  FglobalGroupMembership.clear();
595  
928  
929 <  // Fix the silly fortran indexing problem
929 >    std::set<AtomType*> atomTypes;
930 >    std::set<AtomType*>::iterator i;
931 >    std::vector<double> cutoffRadius;
932 >
933 >    //get the unique atom types
934 >    atomTypes = getUniqueAtomTypes();
935 >
936 >    //query the max cutoff radius among these atom types
937 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
938 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
939 >    }
940 >
941 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
942   #ifdef IS_MPI
943 <  numAtom = mpiSim->getNAtomsGlobal();
600 < #else
601 <  numAtom = n_atoms;
943 >    //pick the max cutoff radius among the processors
944   #endif
603  for (int i = 0; i < numAtom; i++)
604    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605  
945  
946 <  myMols = info->molecules;
947 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
946 >    return maxCutoffRadius;
947 >  }
948  
949 <      totalMass = myCutoffGroup->getMass();
950 <      
951 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
952 <          cutoffAtom != NULL;
953 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
954 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
955 <      }  
949 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
950 >    
951 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
952 >        
953 >      if (!simParams_->haveCutoffRadius()){
954 >        sprintf(painCave.errMsg,
955 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
956 >                "\tOOPSE will use a default value of 15.0 angstroms"
957 >                "\tfor the cutoffRadius.\n");
958 >        painCave.isFatal = 0;
959 >        simError();
960 >        rcut = 15.0;
961 >      } else{
962 >        rcut = simParams_->getCutoffRadius();
963 >      }
964 >
965 >      if (!simParams_->haveSwitchingRadius()){
966 >        sprintf(painCave.errMsg,
967 >                "SimCreator Warning: No value was set for switchingRadius.\n"
968 >                "\tOOPSE will use a default value of\n"
969 >                "\t0.85 * cutoffRadius for the switchingRadius\n");
970 >        painCave.isFatal = 0;
971 >        simError();
972 >        rsw = 0.85 * rcut;
973 >      } else{
974 >        rsw = simParams_->getSwitchingRadius();
975 >      }
976 >
977 >    } else {
978 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
979 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
980 >        
981 >      if (simParams_->haveCutoffRadius()) {
982 >        rcut = simParams_->getCutoffRadius();
983 >      } else {
984 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
985 >        rcut = calcMaxCutoffRadius();
986 >      }
987 >
988 >      if (simParams_->haveSwitchingRadius()) {
989 >        rsw  = simParams_->getSwitchingRadius();
990 >      } else {
991 >        rsw = rcut;
992 >      }
993 >    
994      }
995    }
996  
997 < }
997 >  void SimInfo::setupCutoff() {    
998 >    getCutoff(rcut_, rsw_);    
999 >    double rnblist = rcut_ + 1; // skin of neighbor list
1000 >
1001 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1002 >    
1003 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
1004 >    if (simParams_->haveCutoffPolicy()) {
1005 >      std::string myPolicy = simParams_->getCutoffPolicy();
1006 >      toUpper(myPolicy);
1007 >      if (myPolicy == "MIX") {
1008 >        cp = MIX_CUTOFF_POLICY;
1009 >      } else {
1010 >        if (myPolicy == "MAX") {
1011 >          cp = MAX_CUTOFF_POLICY;
1012 >        } else {
1013 >          if (myPolicy == "TRADITIONAL") {            
1014 >            cp = TRADITIONAL_CUTOFF_POLICY;
1015 >          } else {
1016 >            // throw error        
1017 >            sprintf( painCave.errMsg,
1018 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1019 >            painCave.isFatal = 1;
1020 >            simError();
1021 >          }    
1022 >        }          
1023 >      }
1024 >    }
1025 >
1026 >
1027 >    if (simParams_->haveSkinThickness()) {
1028 >      double skinThickness = simParams_->getSkinThickness();
1029 >    }
1030 >
1031 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
1032 >    // also send cutoff notification to electrostatics
1033 >    setElectrostaticCutoffRadius(&rcut_, &rsw_);
1034 >  }
1035 >
1036 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1037 >    
1038 >    int errorOut;
1039 >    int esm =  NONE;
1040 >    int sm = UNDAMPED;
1041 >    double alphaVal;
1042 >    double dielectric;
1043 >
1044 >    errorOut = isError;
1045 >    alphaVal = simParams_->getDampingAlpha();
1046 >    dielectric = simParams_->getDielectric();
1047 >
1048 >    if (simParams_->haveElectrostaticSummationMethod()) {
1049 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1050 >      toUpper(myMethod);
1051 >      if (myMethod == "NONE") {
1052 >        esm = NONE;
1053 >      } else {
1054 >        if (myMethod == "SWITCHING_FUNCTION") {
1055 >          esm = SWITCHING_FUNCTION;
1056 >        } else {
1057 >          if (myMethod == "SHIFTED_POTENTIAL") {
1058 >            esm = SHIFTED_POTENTIAL;
1059 >          } else {
1060 >            if (myMethod == "SHIFTED_FORCE") {            
1061 >              esm = SHIFTED_FORCE;
1062 >            } else {
1063 >              if (myMethod == "REACTION_FIELD") {            
1064 >                esm = REACTION_FIELD;
1065 >              } else {
1066 >                // throw error        
1067 >                sprintf( painCave.errMsg,
1068 >                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
1069 >                painCave.isFatal = 1;
1070 >                simError();
1071 >              }    
1072 >            }          
1073 >          }
1074 >        }
1075 >      }
1076 >    }
1077 >    
1078 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1079 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1080 >      toUpper(myScreen);
1081 >      if (myScreen == "UNDAMPED") {
1082 >        sm = UNDAMPED;
1083 >      } else {
1084 >        if (myScreen == "DAMPED") {
1085 >          sm = DAMPED;
1086 >          if (!simParams_->haveDampingAlpha()) {
1087 >            //throw error
1088 >            sprintf( painCave.errMsg,
1089 >                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
1090 >            painCave.isFatal = 0;
1091 >            simError();
1092 >          }
1093 >        } else {
1094 >          // throw error        
1095 >          sprintf( painCave.errMsg,
1096 >                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
1097 >          painCave.isFatal = 1;
1098 >          simError();
1099 >        }
1100 >      }
1101 >    }
1102 >    
1103 >    // let's pass some summation method variables to fortran
1104 >    setElectrostaticSummationMethod( &esm );
1105 >    setScreeningMethod( &sm );
1106 >    setDampingAlpha( &alphaVal );
1107 >    setReactionFieldDielectric( &dielectric );
1108 >    initFortranFF( &esm, &errorOut );
1109 >  }
1110 >
1111 >  void SimInfo::setupSwitchingFunction() {    
1112 >    int ft = CUBIC;
1113 >
1114 >    if (simParams_->haveSwitchingFunctionType()) {
1115 >      std::string funcType = simParams_->getSwitchingFunctionType();
1116 >      toUpper(funcType);
1117 >      if (funcType == "CUBIC") {
1118 >        ft = CUBIC;
1119 >      } else {
1120 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1121 >          ft = FIFTH_ORDER_POLY;
1122 >        } else {
1123 >          // throw error        
1124 >          sprintf( painCave.errMsg,
1125 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1126 >          painCave.isFatal = 1;
1127 >          simError();
1128 >        }          
1129 >      }
1130 >    }
1131 >
1132 >    // send switching function notification to switcheroo
1133 >    setFunctionType(&ft);
1134 >
1135 >  }
1136 >
1137 >  void SimInfo::addProperty(GenericData* genData) {
1138 >    properties_.addProperty(genData);  
1139 >  }
1140 >
1141 >  void SimInfo::removeProperty(const std::string& propName) {
1142 >    properties_.removeProperty(propName);  
1143 >  }
1144 >
1145 >  void SimInfo::clearProperties() {
1146 >    properties_.clearProperties();
1147 >  }
1148 >
1149 >  std::vector<std::string> SimInfo::getPropertyNames() {
1150 >    return properties_.getPropertyNames();  
1151 >  }
1152 >      
1153 >  std::vector<GenericData*> SimInfo::getProperties() {
1154 >    return properties_.getProperties();
1155 >  }
1156 >
1157 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1158 >    return properties_.getPropertyByName(propName);
1159 >  }
1160 >
1161 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1162 >    if (sman_ == sman) {
1163 >      return;
1164 >    }    
1165 >    delete sman_;
1166 >    sman_ = sman;
1167 >
1168 >    Molecule* mol;
1169 >    RigidBody* rb;
1170 >    Atom* atom;
1171 >    SimInfo::MoleculeIterator mi;
1172 >    Molecule::RigidBodyIterator rbIter;
1173 >    Molecule::AtomIterator atomIter;;
1174 >
1175 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1176 >        
1177 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1178 >        atom->setSnapshotManager(sman_);
1179 >      }
1180 >        
1181 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1182 >        rb->setSnapshotManager(sman_);
1183 >      }
1184 >    }    
1185 >    
1186 >  }
1187 >
1188 >  Vector3d SimInfo::getComVel(){
1189 >    SimInfo::MoleculeIterator i;
1190 >    Molecule* mol;
1191 >
1192 >    Vector3d comVel(0.0);
1193 >    double totalMass = 0.0;
1194 >    
1195 >
1196 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1197 >      double mass = mol->getMass();
1198 >      totalMass += mass;
1199 >      comVel += mass * mol->getComVel();
1200 >    }  
1201 >
1202 > #ifdef IS_MPI
1203 >    double tmpMass = totalMass;
1204 >    Vector3d tmpComVel(comVel);    
1205 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1206 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1207 > #endif
1208 >
1209 >    comVel /= totalMass;
1210 >
1211 >    return comVel;
1212 >  }
1213 >
1214 >  Vector3d SimInfo::getCom(){
1215 >    SimInfo::MoleculeIterator i;
1216 >    Molecule* mol;
1217 >
1218 >    Vector3d com(0.0);
1219 >    double totalMass = 0.0;
1220 >    
1221 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1222 >      double mass = mol->getMass();
1223 >      totalMass += mass;
1224 >      com += mass * mol->getCom();
1225 >    }  
1226 >
1227 > #ifdef IS_MPI
1228 >    double tmpMass = totalMass;
1229 >    Vector3d tmpCom(com);    
1230 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1231 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1232 > #endif
1233 >
1234 >    com /= totalMass;
1235 >
1236 >    return com;
1237 >
1238 >  }        
1239 >
1240 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1241 >
1242 >    return o;
1243 >  }
1244 >  
1245 >  
1246 >   /*
1247 >   Returns center of mass and center of mass velocity in one function call.
1248 >   */
1249 >  
1250 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1251 >      SimInfo::MoleculeIterator i;
1252 >      Molecule* mol;
1253 >      
1254 >    
1255 >      double totalMass = 0.0;
1256 >    
1257 >
1258 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1259 >         double mass = mol->getMass();
1260 >         totalMass += mass;
1261 >         com += mass * mol->getCom();
1262 >         comVel += mass * mol->getComVel();          
1263 >      }  
1264 >      
1265 > #ifdef IS_MPI
1266 >      double tmpMass = totalMass;
1267 >      Vector3d tmpCom(com);  
1268 >      Vector3d tmpComVel(comVel);
1269 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1270 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1271 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1272 > #endif
1273 >      
1274 >      com /= totalMass;
1275 >      comVel /= totalMass;
1276 >   }        
1277 >  
1278 >   /*
1279 >   Return intertia tensor for entire system and angular momentum Vector.
1280 >
1281 >
1282 >       [  Ixx -Ixy  -Ixz ]
1283 >  J =| -Iyx  Iyy  -Iyz |
1284 >       [ -Izx -Iyz   Izz ]
1285 >    */
1286 >
1287 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1288 >      
1289 >
1290 >      double xx = 0.0;
1291 >      double yy = 0.0;
1292 >      double zz = 0.0;
1293 >      double xy = 0.0;
1294 >      double xz = 0.0;
1295 >      double yz = 0.0;
1296 >      Vector3d com(0.0);
1297 >      Vector3d comVel(0.0);
1298 >      
1299 >      getComAll(com, comVel);
1300 >      
1301 >      SimInfo::MoleculeIterator i;
1302 >      Molecule* mol;
1303 >      
1304 >      Vector3d thisq(0.0);
1305 >      Vector3d thisv(0.0);
1306 >
1307 >      double thisMass = 0.0;
1308 >    
1309 >      
1310 >      
1311 >  
1312 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1313 >        
1314 >         thisq = mol->getCom()-com;
1315 >         thisv = mol->getComVel()-comVel;
1316 >         thisMass = mol->getMass();
1317 >         // Compute moment of intertia coefficients.
1318 >         xx += thisq[0]*thisq[0]*thisMass;
1319 >         yy += thisq[1]*thisq[1]*thisMass;
1320 >         zz += thisq[2]*thisq[2]*thisMass;
1321 >        
1322 >         // compute products of intertia
1323 >         xy += thisq[0]*thisq[1]*thisMass;
1324 >         xz += thisq[0]*thisq[2]*thisMass;
1325 >         yz += thisq[1]*thisq[2]*thisMass;
1326 >            
1327 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1328 >            
1329 >      }  
1330 >      
1331 >      
1332 >      inertiaTensor(0,0) = yy + zz;
1333 >      inertiaTensor(0,1) = -xy;
1334 >      inertiaTensor(0,2) = -xz;
1335 >      inertiaTensor(1,0) = -xy;
1336 >      inertiaTensor(1,1) = xx + zz;
1337 >      inertiaTensor(1,2) = -yz;
1338 >      inertiaTensor(2,0) = -xz;
1339 >      inertiaTensor(2,1) = -yz;
1340 >      inertiaTensor(2,2) = xx + yy;
1341 >      
1342 > #ifdef IS_MPI
1343 >      Mat3x3d tmpI(inertiaTensor);
1344 >      Vector3d tmpAngMom;
1345 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1346 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1347 > #endif
1348 >              
1349 >      return;
1350 >   }
1351 >
1352 >   //Returns the angular momentum of the system
1353 >   Vector3d SimInfo::getAngularMomentum(){
1354 >      
1355 >      Vector3d com(0.0);
1356 >      Vector3d comVel(0.0);
1357 >      Vector3d angularMomentum(0.0);
1358 >      
1359 >      getComAll(com,comVel);
1360 >      
1361 >      SimInfo::MoleculeIterator i;
1362 >      Molecule* mol;
1363 >      
1364 >      Vector3d thisr(0.0);
1365 >      Vector3d thisp(0.0);
1366 >      
1367 >      double thisMass;
1368 >      
1369 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1370 >        thisMass = mol->getMass();
1371 >        thisr = mol->getCom()-com;
1372 >        thisp = (mol->getComVel()-comVel)*thisMass;
1373 >        
1374 >        angularMomentum += cross( thisr, thisp );
1375 >        
1376 >      }  
1377 >      
1378 > #ifdef IS_MPI
1379 >      Vector3d tmpAngMom;
1380 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1381 > #endif
1382 >      
1383 >      return angularMomentum;
1384 >   }
1385 >  
1386 >  
1387 > }//end namespace oopse
1388 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines