ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1617 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
Revision 2469 by tim, Fri Dec 2 15:38:03 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "UseTheForce/fCutoffPolicy.h"
57 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 > #include "UseTheForce/doForces_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 > #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65 < #include "UseTheForce/DarkSide/simulation_interface.h"
13 < #include "UseTheForce/notifyCutoffs_interface.h"
65 > #include "selection/SelectionManager.hpp"
66  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
67   #ifdef IS_MPI
68 < #include "brains/mpiSimulation.hpp"
69 < #endif
68 > #include "UseTheForce/mpiComponentPlan.h"
69 > #include "UseTheForce/DarkSide/simParallel_interface.h"
70 > #endif
71  
72 < inline double roundMe( double x ){
73 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
74 < }
75 <          
76 < inline double min( double a, double b ){
77 <  return (a < b ) ? a : b;
78 < }
72 > namespace oopse {
73 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
74 >    std::map<int, std::set<int> >::iterator i = container.find(index);
75 >    std::set<int> result;
76 >    if (i != container.end()) {
77 >        result = i->second;
78 >    }
79  
80 < SimInfo* currentInfo;
81 <
33 < SimInfo::SimInfo(){
34 <
35 <  n_constraints = 0;
36 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
48 <
49 <  haveRcut = 0;
50 <  haveRsw = 0;
51 <  boxIsInit = 0;
80 >    return result;
81 >  }
82    
83 <  resetTime = 1e99;
83 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
84 >    forceField_(ff), simParams_(simParams),
85 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
86 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
87 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
88 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
89 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
90 >    sman_(NULL), fortranInitialized_(false) {
91  
92 <  orthoRhombic = 0;
93 <  orthoTolerance = 1E-6;
94 <  useInitXSstate = true;
92 >      MoleculeStamp* molStamp;
93 >      int nMolWithSameStamp;
94 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
95 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
96 >      CutoffGroupStamp* cgStamp;    
97 >      RigidBodyStamp* rbStamp;
98 >      int nRigidAtoms = 0;
99 >      std::vector<Component*> components = simParams->getComponents();
100 >      
101 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
102 >        molStamp = (*i)->getMoleculeStamp();
103 >        nMolWithSameStamp = (*i)->getNMol();
104 >        
105 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
106  
107 <  usePBC = 0;
108 <  useLJ = 0;
61 <  useSticky = 0;
62 <  useCharges = 0;
63 <  useDipoles = 0;
64 <  useReactionField = 0;
65 <  useGB = 0;
66 <  useEAM = 0;
67 <  useSolidThermInt = 0;
68 <  useLiquidThermInt = 0;
107 >        //calculate atoms in molecules
108 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
109  
110 <  haveCutoffGroups = false;
110 >        //calculate atoms in cutoff groups
111 >        int nAtomsInGroups = 0;
112 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
113 >        
114 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
115 >          cgStamp = molStamp->getCutoffGroupStamp(j);
116 >          nAtomsInGroups += cgStamp->getNMembers();
117 >        }
118  
119 <  excludes = Exclude::Instance();
119 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
120  
121 <  myConfiguration = new SimState();
121 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
122  
123 <  has_minimizer = false;
124 <  the_minimizer =NULL;
123 >        //calculate atoms in rigid bodies
124 >        int nAtomsInRigidBodies = 0;
125 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
126 >        
127 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
128 >          rbStamp = molStamp->getRigidBodyStamp(j);
129 >          nAtomsInRigidBodies += rbStamp->getNMembers();
130 >        }
131  
132 <  ngroup = 0;
132 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
133 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
134 >        
135 >      }
136  
137 < }
137 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
138 >      //group therefore the total number of cutoff groups in the system is
139 >      //equal to the total number of atoms minus number of atoms belong to
140 >      //cutoff group defined in meta-data file plus the number of cutoff
141 >      //groups defined in meta-data file
142 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
143  
144 +      //every free atom (atom does not belong to rigid bodies) is an
145 +      //integrable object therefore the total number of integrable objects
146 +      //in the system is equal to the total number of atoms minus number of
147 +      //atoms belong to rigid body defined in meta-data file plus the number
148 +      //of rigid bodies defined in meta-data file
149 +      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
150 +                                                + nGlobalRigidBodies_;
151 +  
152 +      nGlobalMols_ = molStampIds_.size();
153  
154 < SimInfo::~SimInfo(){
154 > #ifdef IS_MPI    
155 >      molToProcMap_.resize(nGlobalMols_);
156 > #endif
157  
158 <  delete myConfiguration;
158 >    }
159  
160 <  map<string, GenericData*>::iterator i;
161 <  
162 <  for(i = properties.begin(); i != properties.end(); i++)
163 <    delete (*i).second;
160 >  SimInfo::~SimInfo() {
161 >    std::map<int, Molecule*>::iterator i;
162 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
163 >      delete i->second;
164 >    }
165 >    molecules_.clear();
166 >      
167 >    delete sman_;
168 >    delete simParams_;
169 >    delete forceField_;
170 >  }
171  
172 < }
172 >  int SimInfo::getNGlobalConstraints() {
173 >    int nGlobalConstraints;
174 > #ifdef IS_MPI
175 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
176 >                  MPI_COMM_WORLD);    
177 > #else
178 >    nGlobalConstraints =  nConstraints_;
179 > #endif
180 >    return nGlobalConstraints;
181 >  }
182  
183 < void SimInfo::setBox(double newBox[3]) {
184 <  
97 <  int i, j;
98 <  double tempMat[3][3];
183 >  bool SimInfo::addMolecule(Molecule* mol) {
184 >    MoleculeIterator i;
185  
186 <  for(i=0; i<3; i++)
187 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
186 >    i = molecules_.find(mol->getGlobalIndex());
187 >    if (i == molecules_.end() ) {
188  
189 <  tempMat[0][0] = newBox[0];
190 <  tempMat[1][1] = newBox[1];
191 <  tempMat[2][2] = newBox[2];
189 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
190 >        
191 >      nAtoms_ += mol->getNAtoms();
192 >      nBonds_ += mol->getNBonds();
193 >      nBends_ += mol->getNBends();
194 >      nTorsions_ += mol->getNTorsions();
195 >      nRigidBodies_ += mol->getNRigidBodies();
196 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
197 >      nCutoffGroups_ += mol->getNCutoffGroups();
198 >      nConstraints_ += mol->getNConstraintPairs();
199  
200 <  setBoxM( tempMat );
200 >      addExcludePairs(mol);
201 >        
202 >      return true;
203 >    } else {
204 >      return false;
205 >    }
206 >  }
207  
208 < }
208 >  bool SimInfo::removeMolecule(Molecule* mol) {
209 >    MoleculeIterator i;
210 >    i = molecules_.find(mol->getGlobalIndex());
211  
212 < void SimInfo::setBoxM( double theBox[3][3] ){
112 <  
113 <  int i, j;
114 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
115 <                         // ordering in the array is as follows:
116 <                         // [ 0 3 6 ]
117 <                         // [ 1 4 7 ]
118 <                         // [ 2 5 8 ]
119 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
212 >    if (i != molecules_.end() ) {
213  
214 <  if( !boxIsInit ) boxIsInit = 1;
214 >      assert(mol == i->second);
215 >        
216 >      nAtoms_ -= mol->getNAtoms();
217 >      nBonds_ -= mol->getNBonds();
218 >      nBends_ -= mol->getNBends();
219 >      nTorsions_ -= mol->getNTorsions();
220 >      nRigidBodies_ -= mol->getNRigidBodies();
221 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
222 >      nCutoffGroups_ -= mol->getNCutoffGroups();
223 >      nConstraints_ -= mol->getNConstraintPairs();
224  
225 <  for(i=0; i < 3; i++)
226 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
125 <  
126 <  calcBoxL();
127 <  calcHmatInv();
225 >      removeExcludePairs(mol);
226 >      molecules_.erase(mol->getGlobalIndex());
227  
228 <  for(i=0; i < 3; i++) {
229 <    for (j=0; j < 3; j++) {
230 <      FortranHmat[3*j + i] = Hmat[i][j];
231 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
228 >      delete mol;
229 >        
230 >      return true;
231 >    } else {
232 >      return false;
233      }
134  }
234  
136  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
137
138 }
139
235  
236 < void SimInfo::getBoxM (double theBox[3][3]) {
236 >  }    
237  
238 <  int i, j;
239 <  for(i=0; i<3; i++)
240 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
241 < }
238 >        
239 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
240 >    i = molecules_.begin();
241 >    return i == molecules_.end() ? NULL : i->second;
242 >  }    
243  
244 +  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
245 +    ++i;
246 +    return i == molecules_.end() ? NULL : i->second;    
247 +  }
248  
149 void SimInfo::scaleBox(double scale) {
150  double theBox[3][3];
151  int i, j;
249  
250 <  // cerr << "Scaling box by " << scale << "\n";
250 >  void SimInfo::calcNdf() {
251 >    int ndf_local;
252 >    MoleculeIterator i;
253 >    std::vector<StuntDouble*>::iterator j;
254 >    Molecule* mol;
255 >    StuntDouble* integrableObject;
256  
257 <  for(i=0; i<3; i++)
258 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
257 >    ndf_local = 0;
258 >    
259 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
260 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
261 >           integrableObject = mol->nextIntegrableObject(j)) {
262  
263 <  setBoxM(theBox);
263 >        ndf_local += 3;
264  
265 < }
266 <
267 < void SimInfo::calcHmatInv( void ) {
268 <  
269 <  int oldOrtho;
270 <  int i,j;
271 <  double smallDiag;
272 <  double tol;
168 <  double sanity[3][3];
169 <
170 <  invertMat3( Hmat, HmatInv );
171 <
172 <  // check to see if Hmat is orthorhombic
173 <  
174 <  oldOrtho = orthoRhombic;
175 <
176 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
180 <
181 <  orthoRhombic = 1;
182 <  
183 <  for (i = 0; i < 3; i++ ) {
184 <    for (j = 0 ; j < 3; j++) {
185 <      if (i != j) {
186 <        if (orthoRhombic) {
187 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
188 <        }        
265 >        if (integrableObject->isDirectional()) {
266 >          if (integrableObject->isLinear()) {
267 >            ndf_local += 2;
268 >          } else {
269 >            ndf_local += 3;
270 >          }
271 >        }
272 >            
273        }
274      }
191  }
192
193  if( oldOrtho != orthoRhombic ){
275      
276 <    if( orthoRhombic ) {
277 <      sprintf( painCave.errMsg,
197 <               "OOPSE is switching from the default Non-Orthorhombic\n"
198 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
199 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
218 <  }
219 < }
276 >    // n_constraints is local, so subtract them on each processor
277 >    ndf_local -= nConstraints_;
278  
279 < void SimInfo::calcBoxL( void ){
279 > #ifdef IS_MPI
280 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
281 > #else
282 >    ndf_ = ndf_local;
283 > #endif
284  
285 <  double dx, dy, dz, dsq;
285 >    // nZconstraints_ is global, as are the 3 COM translations for the
286 >    // entire system:
287 >    ndf_ = ndf_ - 3 - nZconstraint_;
288  
289 <  // boxVol = Determinant of Hmat
289 >  }
290  
291 <  boxVol = matDet3( Hmat );
291 >  void SimInfo::calcNdfRaw() {
292 >    int ndfRaw_local;
293  
294 <  // boxLx
295 <  
296 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
297 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
294 >    MoleculeIterator i;
295 >    std::vector<StuntDouble*>::iterator j;
296 >    Molecule* mol;
297 >    StuntDouble* integrableObject;
298  
299 <  // boxLy
300 <  
238 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
239 <  dsq = dx*dx + dy*dy + dz*dz;
240 <  boxL[1] = sqrt( dsq );
241 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
242 <
243 <
244 <  // boxLz
245 <  
246 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
247 <  dsq = dx*dx + dy*dy + dz*dz;
248 <  boxL[2] = sqrt( dsq );
249 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
250 <
251 <  //calculate the max cutoff
252 <  maxCutoff =  calcMaxCutOff();
253 <  
254 <  checkCutOffs();
255 <
256 < }
257 <
258 <
259 < double SimInfo::calcMaxCutOff(){
260 <
261 <  double ri[3], rj[3], rk[3];
262 <  double rij[3], rjk[3], rki[3];
263 <  double minDist;
264 <
265 <  ri[0] = Hmat[0][0];
266 <  ri[1] = Hmat[1][0];
267 <  ri[2] = Hmat[2][0];
268 <
269 <  rj[0] = Hmat[0][1];
270 <  rj[1] = Hmat[1][1];
271 <  rj[2] = Hmat[2][1];
272 <
273 <  rk[0] = Hmat[0][2];
274 <  rk[1] = Hmat[1][2];
275 <  rk[2] = Hmat[2][2];
299 >    // Raw degrees of freedom that we have to set
300 >    ndfRaw_local = 0;
301      
302 <  crossProduct3(ri, rj, rij);
303 <  distXY = dotProduct3(rk,rij) / norm3(rij);
302 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
303 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
304 >           integrableObject = mol->nextIntegrableObject(j)) {
305  
306 <  crossProduct3(rj,rk, rjk);
281 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
306 >        ndfRaw_local += 3;
307  
308 <  crossProduct3(rk,ri, rki);
309 <  distZX = dotProduct3(rj,rki) / norm3(rki);
308 >        if (integrableObject->isDirectional()) {
309 >          if (integrableObject->isLinear()) {
310 >            ndfRaw_local += 2;
311 >          } else {
312 >            ndfRaw_local += 3;
313 >          }
314 >        }
315 >            
316 >      }
317 >    }
318 >    
319 > #ifdef IS_MPI
320 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
321 > #else
322 >    ndfRaw_ = ndfRaw_local;
323 > #endif
324 >  }
325  
326 <  minDist = min(min(distXY, distYZ), distZX);
327 <  return minDist/2;
288 <  
289 < }
326 >  void SimInfo::calcNdfTrans() {
327 >    int ndfTrans_local;
328  
329 < void SimInfo::wrapVector( double thePos[3] ){
329 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
330  
293  int i;
294  double scaled[3];
331  
332 <  if( !orthoRhombic ){
333 <    // calc the scaled coordinates.
334 <  
332 > #ifdef IS_MPI
333 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
334 > #else
335 >    ndfTrans_ = ndfTrans_local;
336 > #endif
337  
338 <    matVecMul3(HmatInv, thePos, scaled);
338 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
339 >
340 >  }
341 >
342 >  void SimInfo::addExcludePairs(Molecule* mol) {
343 >    std::vector<Bond*>::iterator bondIter;
344 >    std::vector<Bend*>::iterator bendIter;
345 >    std::vector<Torsion*>::iterator torsionIter;
346 >    Bond* bond;
347 >    Bend* bend;
348 >    Torsion* torsion;
349 >    int a;
350 >    int b;
351 >    int c;
352 >    int d;
353 >
354 >    std::map<int, std::set<int> > atomGroups;
355 >
356 >    Molecule::RigidBodyIterator rbIter;
357 >    RigidBody* rb;
358 >    Molecule::IntegrableObjectIterator ii;
359 >    StuntDouble* integrableObject;
360      
361 <    for(i=0; i<3; i++)
362 <      scaled[i] -= roundMe(scaled[i]);
304 <    
305 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
306 <    
307 <    matVecMul3(Hmat, scaled, thePos);
361 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
362 >           integrableObject = mol->nextIntegrableObject(ii)) {
363  
364 <  }
365 <  else{
366 <    // calc the scaled coordinates.
364 >      if (integrableObject->isRigidBody()) {
365 >          rb = static_cast<RigidBody*>(integrableObject);
366 >          std::vector<Atom*> atoms = rb->getAtoms();
367 >          std::set<int> rigidAtoms;
368 >          for (int i = 0; i < atoms.size(); ++i) {
369 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
370 >          }
371 >          for (int i = 0; i < atoms.size(); ++i) {
372 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
373 >          }      
374 >      } else {
375 >        std::set<int> oneAtomSet;
376 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
377 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
378 >      }
379 >    }  
380 >
381      
313    for(i=0; i<3; i++)
314      scaled[i] = thePos[i]*HmatInv[i][i];
382      
383 <    // wrap the scaled coordinates
384 <    
385 <    for(i=0; i<3; i++)
386 <      scaled[i] -= roundMe(scaled[i]);
387 <    
321 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
322 <    
323 <    for(i=0; i<3; i++)
324 <      thePos[i] = scaled[i]*Hmat[i][i];
325 <  }
326 <    
327 < }
383 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
384 >      a = bond->getAtomA()->getGlobalIndex();
385 >      b = bond->getAtomB()->getGlobalIndex();        
386 >      exclude_.addPair(a, b);
387 >    }
388  
389 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
390 +      a = bend->getAtomA()->getGlobalIndex();
391 +      b = bend->getAtomB()->getGlobalIndex();        
392 +      c = bend->getAtomC()->getGlobalIndex();
393 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
394 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
395 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
396  
397 < int SimInfo::getNDF(){
398 <  int ndf_local;
399 <
400 <  ndf_local = 0;
401 <  
402 <  for(int i = 0; i < integrableObjects.size(); i++){
403 <    ndf_local += 3;
337 <    if (integrableObjects[i]->isDirectional()) {
338 <      if (integrableObjects[i]->isLinear())
339 <        ndf_local += 2;
340 <      else
341 <        ndf_local += 3;
397 >      exclude_.addPairs(rigidSetA, rigidSetB);
398 >      exclude_.addPairs(rigidSetA, rigidSetC);
399 >      exclude_.addPairs(rigidSetB, rigidSetC);
400 >      
401 >      //exclude_.addPair(a, b);
402 >      //exclude_.addPair(a, c);
403 >      //exclude_.addPair(b, c);        
404      }
343  }
405  
406 <  // n_constraints is local, so subtract them on each processor:
406 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
407 >      a = torsion->getAtomA()->getGlobalIndex();
408 >      b = torsion->getAtomB()->getGlobalIndex();        
409 >      c = torsion->getAtomC()->getGlobalIndex();        
410 >      d = torsion->getAtomD()->getGlobalIndex();        
411 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
412 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
413 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
414 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
415  
416 <  ndf_local -= n_constraints;
416 >      exclude_.addPairs(rigidSetA, rigidSetB);
417 >      exclude_.addPairs(rigidSetA, rigidSetC);
418 >      exclude_.addPairs(rigidSetA, rigidSetD);
419 >      exclude_.addPairs(rigidSetB, rigidSetC);
420 >      exclude_.addPairs(rigidSetB, rigidSetD);
421 >      exclude_.addPairs(rigidSetC, rigidSetD);
422  
423 < #ifdef IS_MPI
424 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
425 < #else
426 <  ndf = ndf_local;
427 < #endif
423 >      /*
424 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
425 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
426 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
427 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
428 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
429 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
430 >        
431 >      
432 >      exclude_.addPair(a, b);
433 >      exclude_.addPair(a, c);
434 >      exclude_.addPair(a, d);
435 >      exclude_.addPair(b, c);
436 >      exclude_.addPair(b, d);
437 >      exclude_.addPair(c, d);        
438 >      */
439 >    }
440  
441 <  // nZconstraints is global, as are the 3 COM translations for the
442 <  // entire system:
441 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
442 >      std::vector<Atom*> atoms = rb->getAtoms();
443 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
444 >        for (int j = i + 1; j < atoms.size(); ++j) {
445 >          a = atoms[i]->getGlobalIndex();
446 >          b = atoms[j]->getGlobalIndex();
447 >          exclude_.addPair(a, b);
448 >        }
449 >      }
450 >    }        
451  
452 <  ndf = ndf - 3 - nZconstraints;
452 >  }
453  
454 <  return ndf;
455 < }
454 >  void SimInfo::removeExcludePairs(Molecule* mol) {
455 >    std::vector<Bond*>::iterator bondIter;
456 >    std::vector<Bend*>::iterator bendIter;
457 >    std::vector<Torsion*>::iterator torsionIter;
458 >    Bond* bond;
459 >    Bend* bend;
460 >    Torsion* torsion;
461 >    int a;
462 >    int b;
463 >    int c;
464 >    int d;
465  
466 < int SimInfo::getNDFraw() {
364 <  int ndfRaw_local;
466 >    std::map<int, std::set<int> > atomGroups;
467  
468 <  // Raw degrees of freedom that we have to set
469 <  ndfRaw_local = 0;
470 <
471 <  for(int i = 0; i < integrableObjects.size(); i++){
370 <    ndfRaw_local += 3;
371 <    if (integrableObjects[i]->isDirectional()) {
372 <       if (integrableObjects[i]->isLinear())
373 <        ndfRaw_local += 2;
374 <      else
375 <        ndfRaw_local += 3;
376 <    }
377 <  }
468 >    Molecule::RigidBodyIterator rbIter;
469 >    RigidBody* rb;
470 >    Molecule::IntegrableObjectIterator ii;
471 >    StuntDouble* integrableObject;
472      
473 < #ifdef IS_MPI
474 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
381 < #else
382 <  ndfRaw = ndfRaw_local;
383 < #endif
473 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
474 >           integrableObject = mol->nextIntegrableObject(ii)) {
475  
476 <  return ndfRaw;
477 < }
476 >      if (integrableObject->isRigidBody()) {
477 >          rb = static_cast<RigidBody*>(integrableObject);
478 >          std::vector<Atom*> atoms = rb->getAtoms();
479 >          std::set<int> rigidAtoms;
480 >          for (int i = 0; i < atoms.size(); ++i) {
481 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
482 >          }
483 >          for (int i = 0; i < atoms.size(); ++i) {
484 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
485 >          }      
486 >      } else {
487 >        std::set<int> oneAtomSet;
488 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
489 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
490 >      }
491 >    }  
492  
493 < int SimInfo::getNDFtranslational() {
494 <  int ndfTrans_local;
493 >    
494 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
495 >      a = bond->getAtomA()->getGlobalIndex();
496 >      b = bond->getAtomB()->getGlobalIndex();        
497 >      exclude_.removePair(a, b);
498 >    }
499  
500 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
500 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
501 >      a = bend->getAtomA()->getGlobalIndex();
502 >      b = bend->getAtomB()->getGlobalIndex();        
503 >      c = bend->getAtomC()->getGlobalIndex();
504  
505 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
506 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
507 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
508  
509 < #ifdef IS_MPI
510 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
511 < #else
512 <  ndfTrans = ndfTrans_local;
513 < #endif
509 >      exclude_.removePairs(rigidSetA, rigidSetB);
510 >      exclude_.removePairs(rigidSetA, rigidSetC);
511 >      exclude_.removePairs(rigidSetB, rigidSetC);
512 >      
513 >      //exclude_.removePair(a, b);
514 >      //exclude_.removePair(a, c);
515 >      //exclude_.removePair(b, c);        
516 >    }
517  
518 <  ndfTrans = ndfTrans - 3 - nZconstraints;
518 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
519 >      a = torsion->getAtomA()->getGlobalIndex();
520 >      b = torsion->getAtomB()->getGlobalIndex();        
521 >      c = torsion->getAtomC()->getGlobalIndex();        
522 >      d = torsion->getAtomD()->getGlobalIndex();        
523  
524 <  return ndfTrans;
525 < }
524 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
525 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
526 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
527 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
528  
529 < int SimInfo::getTotIntegrableObjects() {
530 <  int nObjs_local;
531 <  int nObjs;
529 >      exclude_.removePairs(rigidSetA, rigidSetB);
530 >      exclude_.removePairs(rigidSetA, rigidSetC);
531 >      exclude_.removePairs(rigidSetA, rigidSetD);
532 >      exclude_.removePairs(rigidSetB, rigidSetC);
533 >      exclude_.removePairs(rigidSetB, rigidSetD);
534 >      exclude_.removePairs(rigidSetC, rigidSetD);
535  
536 <  nObjs_local =  integrableObjects.size();
536 >      /*
537 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
538 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
539 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
540 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
541 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
542 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
543  
544 +      
545 +      exclude_.removePair(a, b);
546 +      exclude_.removePair(a, c);
547 +      exclude_.removePair(a, d);
548 +      exclude_.removePair(b, c);
549 +      exclude_.removePair(b, d);
550 +      exclude_.removePair(c, d);        
551 +      */
552 +    }
553  
554 < #ifdef IS_MPI
555 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
556 < #else
557 <  nObjs = nObjs_local;
558 < #endif
554 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
555 >      std::vector<Atom*> atoms = rb->getAtoms();
556 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
557 >        for (int j = i + 1; j < atoms.size(); ++j) {
558 >          a = atoms[i]->getGlobalIndex();
559 >          b = atoms[j]->getGlobalIndex();
560 >          exclude_.removePair(a, b);
561 >        }
562 >      }
563 >    }        
564  
565 +  }
566  
419  return nObjs;
420 }
567  
568 < void SimInfo::refreshSim(){
568 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
569 >    int curStampId;
570  
571 <  simtype fInfo;
572 <  int isError;
426 <  int n_global;
427 <  int* excl;
571 >    //index from 0
572 >    curStampId = moleculeStamps_.size();
573  
574 <  fInfo.dielect = 0.0;
575 <
431 <  if( useDipoles ){
432 <    if( useReactionField )fInfo.dielect = dielectric;
574 >    moleculeStamps_.push_back(molStamp);
575 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
576    }
577  
578 <  fInfo.SIM_uses_PBC = usePBC;
436 <  //fInfo.SIM_uses_LJ = 0;
437 <  fInfo.SIM_uses_LJ = useLJ;
438 <  fInfo.SIM_uses_sticky = useSticky;
439 <  //fInfo.SIM_uses_sticky = 0;
440 <  fInfo.SIM_uses_charges = useCharges;
441 <  fInfo.SIM_uses_dipoles = useDipoles;
442 <  //fInfo.SIM_uses_dipoles = 0;
443 <  fInfo.SIM_uses_RF = useReactionField;
444 <  //fInfo.SIM_uses_RF = 0;
445 <  fInfo.SIM_uses_GB = useGB;
446 <  fInfo.SIM_uses_EAM = useEAM;
578 >  void SimInfo::update() {
579  
580 <  n_exclude = excludes->getSize();
581 <  excl = excludes->getFortranArray();
450 <  
580 >    setupSimType();
581 >
582   #ifdef IS_MPI
583 <  n_global = mpiSim->getNAtomsGlobal();
453 < #else
454 <  n_global = n_atoms;
583 >    setupFortranParallel();
584   #endif
456  
457  isError = 0;
458  
459  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460  //it may not be a good idea to pass the address of first element in vector
461  //since c++ standard does not require vector to be stored continuously in meomory
462  //Most of the compilers will organize the memory of vector continuously
463  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
585  
586 <  if( isError ){
586 >    setupFortranSim();
587 >
588 >    //setup fortran force field
589 >    /** @deprecate */    
590 >    int isError = 0;
591      
592 <    sprintf( painCave.errMsg,
593 <             "There was an error setting the simulation information in fortran.\n" );
471 <    painCave.isFatal = 1;
472 <    painCave.severity = OOPSE_ERROR;
473 <    simError();
474 <  }
475 <  
476 < #ifdef IS_MPI
477 <  sprintf( checkPointMsg,
478 <           "succesfully sent the simulation information to fortran.\n");
479 <  MPIcheckPoint();
480 < #endif // is_mpi
481 <  
482 <  this->ndf = this->getNDF();
483 <  this->ndfRaw = this->getNDFraw();
484 <  this->ndfTrans = this->getNDFtranslational();
485 < }
592 >    setupElectrostaticSummationMethod( isError );
593 >    setupSwitchingFunction();
594  
595 < void SimInfo::setDefaultRcut( double theRcut ){
596 <  
597 <  haveRcut = 1;
598 <  rCut = theRcut;
599 <  rList = rCut + 1.0;
600 <  
601 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
602 < }
603 <
496 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
497 <
498 <  rSw = theRsw;
499 <  setDefaultRcut( theRcut );
500 < }
595 >    if(isError){
596 >      sprintf( painCave.errMsg,
597 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
598 >      painCave.isFatal = 1;
599 >      simError();
600 >    }
601 >  
602 >    
603 >    setupCutoff();
604  
605 +    calcNdf();
606 +    calcNdfRaw();
607 +    calcNdfTrans();
608  
609 < void SimInfo::checkCutOffs( void ){
610 <  
611 <  if( boxIsInit ){
609 >    fortranInitialized_ = true;
610 >  }
611 >
612 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
613 >    SimInfo::MoleculeIterator mi;
614 >    Molecule* mol;
615 >    Molecule::AtomIterator ai;
616 >    Atom* atom;
617 >    std::set<AtomType*> atomTypes;
618 >
619 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
620 >
621 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
622 >        atomTypes.insert(atom->getAtomType());
623 >      }
624 >        
625 >    }
626 >
627 >    return atomTypes;        
628 >  }
629 >
630 >  void SimInfo::setupSimType() {
631 >    std::set<AtomType*>::iterator i;
632 >    std::set<AtomType*> atomTypes;
633 >    atomTypes = getUniqueAtomTypes();
634      
635 <    //we need to check cutOffs against the box
635 >    int useLennardJones = 0;
636 >    int useElectrostatic = 0;
637 >    int useEAM = 0;
638 >    int useSC = 0;
639 >    int useCharge = 0;
640 >    int useDirectional = 0;
641 >    int useDipole = 0;
642 >    int useGayBerne = 0;
643 >    int useSticky = 0;
644 >    int useStickyPower = 0;
645 >    int useShape = 0;
646 >    int useFLARB = 0; //it is not in AtomType yet
647 >    int useDirectionalAtom = 0;    
648 >    int useElectrostatics = 0;
649 >    //usePBC and useRF are from simParams
650 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
651 >    int useRF;
652 >    int useSF;
653 >    std::string myMethod;
654 >
655 >    // set the useRF logical
656 >    useRF = 0;
657 >    useSF = 0;
658 >
659 >
660 >    if (simParams_->haveElectrostaticSummationMethod()) {
661 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
662 >      toUpper(myMethod);
663 >      if (myMethod == "REACTION_FIELD") {
664 >        useRF=1;
665 >      } else {
666 >        if (myMethod == "SHIFTED_FORCE") {
667 >          useSF = 1;
668 >        }
669 >      }
670 >    }
671 >
672 >    //loop over all of the atom types
673 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
674 >      useLennardJones |= (*i)->isLennardJones();
675 >      useElectrostatic |= (*i)->isElectrostatic();
676 >      useEAM |= (*i)->isEAM();
677 >      useSC |= (*i)->isSC();
678 >      useCharge |= (*i)->isCharge();
679 >      useDirectional |= (*i)->isDirectional();
680 >      useDipole |= (*i)->isDipole();
681 >      useGayBerne |= (*i)->isGayBerne();
682 >      useSticky |= (*i)->isSticky();
683 >      useStickyPower |= (*i)->isStickyPower();
684 >      useShape |= (*i)->isShape();
685 >    }
686 >
687 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
688 >      useDirectionalAtom = 1;
689 >    }
690 >
691 >    if (useCharge || useDipole) {
692 >      useElectrostatics = 1;
693 >    }
694 >
695 > #ifdef IS_MPI    
696 >    int temp;
697 >
698 >    temp = usePBC;
699 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
700 >
701 >    temp = useDirectionalAtom;
702 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
703 >
704 >    temp = useLennardJones;
705 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
706 >
707 >    temp = useElectrostatics;
708 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
709 >
710 >    temp = useCharge;
711 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
712 >
713 >    temp = useDipole;
714 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
715 >
716 >    temp = useSticky;
717 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
718 >
719 >    temp = useStickyPower;
720 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
721      
722 <    if( rCut > maxCutoff ){
723 <      sprintf( painCave.errMsg,
511 <               "cutoffRadius is too large for the current periodic box.\n"
512 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
513 <               "\tThis is larger than half of at least one of the\n"
514 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515 <               "\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n"
518 <               "\t[ %G %G %G ]\n",
519 <               rCut, currentTime,
520 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523 <      painCave.severity = OOPSE_ERROR;
524 <      painCave.isFatal = 1;
525 <      simError();
526 <    }    
527 <  } else {
528 <    // initialize this stuff before using it, OK?
529 <    sprintf( painCave.errMsg,
530 <             "Trying to check cutoffs without a box.\n"
531 <             "\tOOPSE should have better programmers than that.\n" );
532 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
535 <  }
536 <  
537 < }
722 >    temp = useGayBerne;
723 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724  
725 < void SimInfo::addProperty(GenericData* prop){
725 >    temp = useEAM;
726 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727  
728 <  map<string, GenericData*>::iterator result;
729 <  result = properties.find(prop->getID());
543 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
728 >    temp = useSC;
729 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
730      
731 <    delete (*result).second;
732 <    (*result).second = prop;
731 >    temp = useShape;
732 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
733 >
734 >    temp = useFLARB;
735 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 >
737 >    temp = useRF;
738 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739 >
740 >    temp = useSF;
741 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 >
743 > #endif
744 >
745 >    fInfo_.SIM_uses_PBC = usePBC;    
746 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
747 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
748 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
749 >    fInfo_.SIM_uses_Charges = useCharge;
750 >    fInfo_.SIM_uses_Dipoles = useDipole;
751 >    fInfo_.SIM_uses_Sticky = useSticky;
752 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
753 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
754 >    fInfo_.SIM_uses_EAM = useEAM;
755 >    fInfo_.SIM_uses_SC = useSC;
756 >    fInfo_.SIM_uses_Shapes = useShape;
757 >    fInfo_.SIM_uses_FLARB = useFLARB;
758 >    fInfo_.SIM_uses_RF = useRF;
759 >    fInfo_.SIM_uses_SF = useSF;
760 >
761 >    if( myMethod == "REACTION_FIELD") {
762        
763 +      if (simParams_->haveDielectric()) {
764 +        fInfo_.dielect = simParams_->getDielectric();
765 +      } else {
766 +        sprintf(painCave.errMsg,
767 +                "SimSetup Error: No Dielectric constant was set.\n"
768 +                "\tYou are trying to use Reaction Field without"
769 +                "\tsetting a dielectric constant!\n");
770 +        painCave.isFatal = 1;
771 +        simError();
772 +      }      
773 +    }
774 +
775    }
553  else{
776  
777 <    properties[prop->getID()] = prop;
777 >  void SimInfo::setupFortranSim() {
778 >    int isError;
779 >    int nExclude;
780 >    std::vector<int> fortranGlobalGroupMembership;
781 >    
782 >    nExclude = exclude_.getSize();
783 >    isError = 0;
784  
785 <  }
785 >    //globalGroupMembership_ is filled by SimCreator    
786 >    for (int i = 0; i < nGlobalAtoms_; i++) {
787 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
788 >    }
789 >
790 >    //calculate mass ratio of cutoff group
791 >    std::vector<double> mfact;
792 >    SimInfo::MoleculeIterator mi;
793 >    Molecule* mol;
794 >    Molecule::CutoffGroupIterator ci;
795 >    CutoffGroup* cg;
796 >    Molecule::AtomIterator ai;
797 >    Atom* atom;
798 >    double totalMass;
799 >
800 >    //to avoid memory reallocation, reserve enough space for mfact
801 >    mfact.reserve(getNCutoffGroups());
802      
803 < }
803 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
804 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
805  
806 < GenericData* SimInfo::getProperty(const string& propName){
807 <
808 <  map<string, GenericData*>::iterator result;
809 <  
810 <  //string lowerCaseName = ();
811 <  
812 <  result = properties.find(propName);
813 <  
569 <  if(result != properties.end())
570 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
806 >        totalMass = cg->getMass();
807 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
808 >          // Check for massless groups - set mfact to 1 if true
809 >          if (totalMass != 0)
810 >            mfact.push_back(atom->getMass()/totalMass);
811 >          else
812 >            mfact.push_back( 1.0 );
813 >        }
814  
815 +      }      
816 +    }
817  
818 < void SimInfo::getFortranGroupArrays(SimInfo* info,
819 <                                    vector<int>& FglobalGroupMembership,
578 <                                    vector<double>& mfact){
579 <  
580 <  Molecule* myMols;
581 <  Atom** myAtoms;
582 <  int numAtom;
583 <  double mtot;
584 <  int numMol;
585 <  int numCutoffGroups;
586 <  CutoffGroup* myCutoffGroup;
587 <  vector<CutoffGroup*>::iterator iterCutoff;
588 <  Atom* cutoffAtom;
589 <  vector<Atom*>::iterator iterAtom;
590 <  int atomIndex;
591 <  double totalMass;
592 <  
593 <  mfact.clear();
594 <  FglobalGroupMembership.clear();
595 <  
818 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
819 >    std::vector<int> identArray;
820  
821 <  // Fix the silly fortran indexing problem
821 >    //to avoid memory reallocation, reserve enough space identArray
822 >    identArray.reserve(getNAtoms());
823 >    
824 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
825 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
826 >        identArray.push_back(atom->getIdent());
827 >      }
828 >    }    
829 >
830 >    //fill molMembershipArray
831 >    //molMembershipArray is filled by SimCreator    
832 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
833 >    for (int i = 0; i < nGlobalAtoms_; i++) {
834 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
835 >    }
836 >    
837 >    //setup fortran simulation
838 >    int nGlobalExcludes = 0;
839 >    int* globalExcludes = NULL;
840 >    int* excludeList = exclude_.getExcludeList();
841 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
842 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
843 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
844 >
845 >    if( isError ){
846 >
847 >      sprintf( painCave.errMsg,
848 >               "There was an error setting the simulation information in fortran.\n" );
849 >      painCave.isFatal = 1;
850 >      painCave.severity = OOPSE_ERROR;
851 >      simError();
852 >    }
853 >
854   #ifdef IS_MPI
855 <  numAtom = mpiSim->getNAtomsGlobal();
856 < #else
857 <  numAtom = n_atoms;
858 < #endif
859 <  for (int i = 0; i < numAtom; i++)
604 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605 <  
855 >    sprintf( checkPointMsg,
856 >             "succesfully sent the simulation information to fortran.\n");
857 >    MPIcheckPoint();
858 > #endif // is_mpi
859 >  }
860  
607  myMols = info->molecules;
608  numMol = info->n_mol;
609  for(int i  = 0; i < numMol; i++){
610    numCutoffGroups = myMols[i].getNCutoffGroups();
611    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612        myCutoffGroup != NULL;
613        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
861  
862 <      totalMass = myCutoffGroup->getMass();
863 <      
864 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
865 <          cutoffAtom != NULL;
866 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
867 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
868 <      }  
862 > #ifdef IS_MPI
863 >  void SimInfo::setupFortranParallel() {
864 >    
865 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
866 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
867 >    std::vector<int> localToGlobalCutoffGroupIndex;
868 >    SimInfo::MoleculeIterator mi;
869 >    Molecule::AtomIterator ai;
870 >    Molecule::CutoffGroupIterator ci;
871 >    Molecule* mol;
872 >    Atom* atom;
873 >    CutoffGroup* cg;
874 >    mpiSimData parallelData;
875 >    int isError;
876 >
877 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
878 >
879 >      //local index(index in DataStorge) of atom is important
880 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
881 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
882 >      }
883 >
884 >      //local index of cutoff group is trivial, it only depends on the order of travesing
885 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
886 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
887 >      }        
888 >        
889      }
890 +
891 +    //fill up mpiSimData struct
892 +    parallelData.nMolGlobal = getNGlobalMolecules();
893 +    parallelData.nMolLocal = getNMolecules();
894 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
895 +    parallelData.nAtomsLocal = getNAtoms();
896 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
897 +    parallelData.nGroupsLocal = getNCutoffGroups();
898 +    parallelData.myNode = worldRank;
899 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
900 +
901 +    //pass mpiSimData struct and index arrays to fortran
902 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
903 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
904 +                    &localToGlobalCutoffGroupIndex[0], &isError);
905 +
906 +    if (isError) {
907 +      sprintf(painCave.errMsg,
908 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
909 +      painCave.isFatal = 1;
910 +      simError();
911 +    }
912 +
913 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
914 +    MPIcheckPoint();
915 +
916 +
917    }
918  
919 < }
919 > #endif
920 >
921 >  void SimInfo::setupCutoff() {          
922 >    
923 >    // Check the cutoff policy
924 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
925 >    if (simParams_->haveCutoffPolicy()) {
926 >      std::string myPolicy = simParams_->getCutoffPolicy();
927 >      toUpper(myPolicy);
928 >      if (myPolicy == "MIX") {
929 >        cp = MIX_CUTOFF_POLICY;
930 >      } else {
931 >        if (myPolicy == "MAX") {
932 >          cp = MAX_CUTOFF_POLICY;
933 >        } else {
934 >          if (myPolicy == "TRADITIONAL") {            
935 >            cp = TRADITIONAL_CUTOFF_POLICY;
936 >          } else {
937 >            // throw error        
938 >            sprintf( painCave.errMsg,
939 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
940 >            painCave.isFatal = 1;
941 >            simError();
942 >          }    
943 >        }          
944 >      }
945 >    }          
946 >    notifyFortranCutoffPolicy(&cp);
947 >
948 >    // Check the Skin Thickness for neighborlists
949 >    double skin;
950 >    if (simParams_->haveSkinThickness()) {
951 >      skin = simParams_->getSkinThickness();
952 >      notifyFortranSkinThickness(&skin);
953 >    }            
954 >        
955 >    // Check if the cutoff was set explicitly:
956 >    if (simParams_->haveCutoffRadius()) {
957 >      rcut_ = simParams_->getCutoffRadius();
958 >      if (simParams_->haveSwitchingRadius()) {
959 >        rsw_  = simParams_->getSwitchingRadius();
960 >      } else {
961 >        rsw_ = rcut_;
962 >      }
963 >      notifyFortranCutoffs(&rcut_, &rsw_);
964 >      
965 >    } else {
966 >      
967 >      // For electrostatic atoms, we'll assume a large safe value:
968 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
969 >        sprintf(painCave.errMsg,
970 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
971 >                "\tOOPSE will use a default value of 15.0 angstroms"
972 >                "\tfor the cutoffRadius.\n");
973 >        painCave.isFatal = 0;
974 >        simError();
975 >        rcut_ = 15.0;
976 >      
977 >        if (simParams_->haveElectrostaticSummationMethod()) {
978 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
979 >          toUpper(myMethod);
980 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
981 >            if (simParams_->haveSwitchingRadius()){
982 >              sprintf(painCave.errMsg,
983 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
984 >                      "\teven though the electrostaticSummationMethod was\n"
985 >                      "\tset to %s\n", myMethod.c_str());
986 >              painCave.isFatal = 1;
987 >              simError();            
988 >            }
989 >          }
990 >        }
991 >      
992 >        if (simParams_->haveSwitchingRadius()){
993 >          rsw_ = simParams_->getSwitchingRadius();
994 >        } else {        
995 >          sprintf(painCave.errMsg,
996 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
997 >                  "\tOOPSE will use a default value of\n"
998 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
999 >          painCave.isFatal = 0;
1000 >          simError();
1001 >          rsw_ = 0.85 * rcut_;
1002 >        }
1003 >        notifyFortranCutoffs(&rcut_, &rsw_);
1004 >      } else {
1005 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1006 >        // We'll punt and let fortran figure out the cutoffs later.
1007 >        
1008 >        notifyFortranYouAreOnYourOwn();
1009 >
1010 >      }
1011 >    }
1012 >  }
1013 >
1014 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1015 >    
1016 >    int errorOut;
1017 >    int esm =  NONE;
1018 >    int sm = UNDAMPED;
1019 >    double alphaVal;
1020 >    double dielectric;
1021 >
1022 >    errorOut = isError;
1023 >    alphaVal = simParams_->getDampingAlpha();
1024 >    dielectric = simParams_->getDielectric();
1025 >
1026 >    if (simParams_->haveElectrostaticSummationMethod()) {
1027 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1028 >      toUpper(myMethod);
1029 >      if (myMethod == "NONE") {
1030 >        esm = NONE;
1031 >      } else {
1032 >        if (myMethod == "SWITCHING_FUNCTION") {
1033 >          esm = SWITCHING_FUNCTION;
1034 >        } else {
1035 >          if (myMethod == "SHIFTED_POTENTIAL") {
1036 >            esm = SHIFTED_POTENTIAL;
1037 >          } else {
1038 >            if (myMethod == "SHIFTED_FORCE") {            
1039 >              esm = SHIFTED_FORCE;
1040 >            } else {
1041 >              if (myMethod == "REACTION_FIELD") {            
1042 >                esm = REACTION_FIELD;
1043 >              } else {
1044 >                // throw error        
1045 >                sprintf( painCave.errMsg,
1046 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1047 >                         "\t(Input file specified %s .)\n"
1048 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1049 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1050 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1051 >                painCave.isFatal = 1;
1052 >                simError();
1053 >              }    
1054 >            }          
1055 >          }
1056 >        }
1057 >      }
1058 >    }
1059 >    
1060 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1061 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1062 >      toUpper(myScreen);
1063 >      if (myScreen == "UNDAMPED") {
1064 >        sm = UNDAMPED;
1065 >      } else {
1066 >        if (myScreen == "DAMPED") {
1067 >          sm = DAMPED;
1068 >          if (!simParams_->haveDampingAlpha()) {
1069 >            //throw error
1070 >            sprintf( painCave.errMsg,
1071 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1072 >                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1073 >            painCave.isFatal = 0;
1074 >            simError();
1075 >          }
1076 >        } else {
1077 >          // throw error        
1078 >          sprintf( painCave.errMsg,
1079 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1080 >                   "\t(Input file specified %s .)\n"
1081 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1082 >                   "or \"damped\".\n", myScreen.c_str() );
1083 >          painCave.isFatal = 1;
1084 >          simError();
1085 >        }
1086 >      }
1087 >    }
1088 >    
1089 >    // let's pass some summation method variables to fortran
1090 >    setElectrostaticSummationMethod( &esm );
1091 >    notifyFortranElectrostaticMethod( &esm );
1092 >    setScreeningMethod( &sm );
1093 >    setDampingAlpha( &alphaVal );
1094 >    setReactionFieldDielectric( &dielectric );
1095 >    initFortranFF( &errorOut );
1096 >  }
1097 >
1098 >  void SimInfo::setupSwitchingFunction() {    
1099 >    int ft = CUBIC;
1100 >
1101 >    if (simParams_->haveSwitchingFunctionType()) {
1102 >      std::string funcType = simParams_->getSwitchingFunctionType();
1103 >      toUpper(funcType);
1104 >      if (funcType == "CUBIC") {
1105 >        ft = CUBIC;
1106 >      } else {
1107 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1108 >          ft = FIFTH_ORDER_POLY;
1109 >        } else {
1110 >          // throw error        
1111 >          sprintf( painCave.errMsg,
1112 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1113 >          painCave.isFatal = 1;
1114 >          simError();
1115 >        }          
1116 >      }
1117 >    }
1118 >
1119 >    // send switching function notification to switcheroo
1120 >    setFunctionType(&ft);
1121 >
1122 >  }
1123 >
1124 >  void SimInfo::addProperty(GenericData* genData) {
1125 >    properties_.addProperty(genData);  
1126 >  }
1127 >
1128 >  void SimInfo::removeProperty(const std::string& propName) {
1129 >    properties_.removeProperty(propName);  
1130 >  }
1131 >
1132 >  void SimInfo::clearProperties() {
1133 >    properties_.clearProperties();
1134 >  }
1135 >
1136 >  std::vector<std::string> SimInfo::getPropertyNames() {
1137 >    return properties_.getPropertyNames();  
1138 >  }
1139 >      
1140 >  std::vector<GenericData*> SimInfo::getProperties() {
1141 >    return properties_.getProperties();
1142 >  }
1143 >
1144 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1145 >    return properties_.getPropertyByName(propName);
1146 >  }
1147 >
1148 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1149 >    if (sman_ == sman) {
1150 >      return;
1151 >    }    
1152 >    delete sman_;
1153 >    sman_ = sman;
1154 >
1155 >    Molecule* mol;
1156 >    RigidBody* rb;
1157 >    Atom* atom;
1158 >    SimInfo::MoleculeIterator mi;
1159 >    Molecule::RigidBodyIterator rbIter;
1160 >    Molecule::AtomIterator atomIter;;
1161 >
1162 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1163 >        
1164 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1165 >        atom->setSnapshotManager(sman_);
1166 >      }
1167 >        
1168 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1169 >        rb->setSnapshotManager(sman_);
1170 >      }
1171 >    }    
1172 >    
1173 >  }
1174 >
1175 >  Vector3d SimInfo::getComVel(){
1176 >    SimInfo::MoleculeIterator i;
1177 >    Molecule* mol;
1178 >
1179 >    Vector3d comVel(0.0);
1180 >    double totalMass = 0.0;
1181 >    
1182 >
1183 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1184 >      double mass = mol->getMass();
1185 >      totalMass += mass;
1186 >      comVel += mass * mol->getComVel();
1187 >    }  
1188 >
1189 > #ifdef IS_MPI
1190 >    double tmpMass = totalMass;
1191 >    Vector3d tmpComVel(comVel);    
1192 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1193 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1194 > #endif
1195 >
1196 >    comVel /= totalMass;
1197 >
1198 >    return comVel;
1199 >  }
1200 >
1201 >  Vector3d SimInfo::getCom(){
1202 >    SimInfo::MoleculeIterator i;
1203 >    Molecule* mol;
1204 >
1205 >    Vector3d com(0.0);
1206 >    double totalMass = 0.0;
1207 >    
1208 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1209 >      double mass = mol->getMass();
1210 >      totalMass += mass;
1211 >      com += mass * mol->getCom();
1212 >    }  
1213 >
1214 > #ifdef IS_MPI
1215 >    double tmpMass = totalMass;
1216 >    Vector3d tmpCom(com);    
1217 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1218 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1219 > #endif
1220 >
1221 >    com /= totalMass;
1222 >
1223 >    return com;
1224 >
1225 >  }        
1226 >
1227 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1228 >
1229 >    return o;
1230 >  }
1231 >  
1232 >  
1233 >   /*
1234 >   Returns center of mass and center of mass velocity in one function call.
1235 >   */
1236 >  
1237 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1238 >      SimInfo::MoleculeIterator i;
1239 >      Molecule* mol;
1240 >      
1241 >    
1242 >      double totalMass = 0.0;
1243 >    
1244 >
1245 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1246 >         double mass = mol->getMass();
1247 >         totalMass += mass;
1248 >         com += mass * mol->getCom();
1249 >         comVel += mass * mol->getComVel();          
1250 >      }  
1251 >      
1252 > #ifdef IS_MPI
1253 >      double tmpMass = totalMass;
1254 >      Vector3d tmpCom(com);  
1255 >      Vector3d tmpComVel(comVel);
1256 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1257 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1258 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1259 > #endif
1260 >      
1261 >      com /= totalMass;
1262 >      comVel /= totalMass;
1263 >   }        
1264 >  
1265 >   /*
1266 >   Return intertia tensor for entire system and angular momentum Vector.
1267 >
1268 >
1269 >       [  Ixx -Ixy  -Ixz ]
1270 >  J =| -Iyx  Iyy  -Iyz |
1271 >       [ -Izx -Iyz   Izz ]
1272 >    */
1273 >
1274 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1275 >      
1276 >
1277 >      double xx = 0.0;
1278 >      double yy = 0.0;
1279 >      double zz = 0.0;
1280 >      double xy = 0.0;
1281 >      double xz = 0.0;
1282 >      double yz = 0.0;
1283 >      Vector3d com(0.0);
1284 >      Vector3d comVel(0.0);
1285 >      
1286 >      getComAll(com, comVel);
1287 >      
1288 >      SimInfo::MoleculeIterator i;
1289 >      Molecule* mol;
1290 >      
1291 >      Vector3d thisq(0.0);
1292 >      Vector3d thisv(0.0);
1293 >
1294 >      double thisMass = 0.0;
1295 >    
1296 >      
1297 >      
1298 >  
1299 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1300 >        
1301 >         thisq = mol->getCom()-com;
1302 >         thisv = mol->getComVel()-comVel;
1303 >         thisMass = mol->getMass();
1304 >         // Compute moment of intertia coefficients.
1305 >         xx += thisq[0]*thisq[0]*thisMass;
1306 >         yy += thisq[1]*thisq[1]*thisMass;
1307 >         zz += thisq[2]*thisq[2]*thisMass;
1308 >        
1309 >         // compute products of intertia
1310 >         xy += thisq[0]*thisq[1]*thisMass;
1311 >         xz += thisq[0]*thisq[2]*thisMass;
1312 >         yz += thisq[1]*thisq[2]*thisMass;
1313 >            
1314 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1315 >            
1316 >      }  
1317 >      
1318 >      
1319 >      inertiaTensor(0,0) = yy + zz;
1320 >      inertiaTensor(0,1) = -xy;
1321 >      inertiaTensor(0,2) = -xz;
1322 >      inertiaTensor(1,0) = -xy;
1323 >      inertiaTensor(1,1) = xx + zz;
1324 >      inertiaTensor(1,2) = -yz;
1325 >      inertiaTensor(2,0) = -xz;
1326 >      inertiaTensor(2,1) = -yz;
1327 >      inertiaTensor(2,2) = xx + yy;
1328 >      
1329 > #ifdef IS_MPI
1330 >      Mat3x3d tmpI(inertiaTensor);
1331 >      Vector3d tmpAngMom;
1332 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1333 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1334 > #endif
1335 >              
1336 >      return;
1337 >   }
1338 >
1339 >   //Returns the angular momentum of the system
1340 >   Vector3d SimInfo::getAngularMomentum(){
1341 >      
1342 >      Vector3d com(0.0);
1343 >      Vector3d comVel(0.0);
1344 >      Vector3d angularMomentum(0.0);
1345 >      
1346 >      getComAll(com,comVel);
1347 >      
1348 >      SimInfo::MoleculeIterator i;
1349 >      Molecule* mol;
1350 >      
1351 >      Vector3d thisr(0.0);
1352 >      Vector3d thisp(0.0);
1353 >      
1354 >      double thisMass;
1355 >      
1356 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1357 >        thisMass = mol->getMass();
1358 >        thisr = mol->getCom()-com;
1359 >        thisp = (mol->getComVel()-comVel)*thisMass;
1360 >        
1361 >        angularMomentum += cross( thisr, thisp );
1362 >        
1363 >      }  
1364 >      
1365 > #ifdef IS_MPI
1366 >      Vector3d tmpAngMom;
1367 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1368 > #endif
1369 >      
1370 >      return angularMomentum;
1371 >   }
1372 >  
1373 >  
1374 > }//end namespace oopse
1375 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines