ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1636 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
Revision 2309 by chrisfen, Sun Sep 18 20:45:38 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51  
52   #include "brains/SimInfo.hpp"
53 < #define __C
54 < #include "brains/fSimulation.h"
55 < #include "utils/simError.h"
56 < #include "UseTheForce/DarkSide/simulation_interface.h"
53 > #include "math/Vector3.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "UseTheForce/fCutoffPolicy.h"
56 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 > #include "UseTheForce/doForces_interface.h"
58 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
59   #include "UseTheForce/notifyCutoffs_interface.h"
60 + #include "utils/MemoryUtils.hpp"
61 + #include "utils/simError.h"
62 + #include "selection/SelectionManager.hpp"
63  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
64   #ifdef IS_MPI
65 < #include "brains/mpiSimulation.hpp"
66 < #endif
65 > #include "UseTheForce/mpiComponentPlan.h"
66 > #include "UseTheForce/DarkSide/simParallel_interface.h"
67 > #endif
68  
69 < inline double roundMe( double x ){
24 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
25 < }
26 <          
27 < inline double min( double a, double b ){
28 <  return (a < b ) ? a : b;
29 < }
69 > namespace oopse {
70  
71 < SimInfo* currentInfo;
71 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 >                   ForceField* ff, Globals* simParams) :
73 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
78 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
79 >    sman_(NULL), fortranInitialized_(false) {
80  
81 < SimInfo::SimInfo(){
81 >            
82 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 >      MoleculeStamp* molStamp;
84 >      int nMolWithSameStamp;
85 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >      int nGroups = 0;          //total cutoff groups defined in meta-data file
87 >      CutoffGroupStamp* cgStamp;    
88 >      RigidBodyStamp* rbStamp;
89 >      int nRigidAtoms = 0;
90 >    
91 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92 >        molStamp = i->first;
93 >        nMolWithSameStamp = i->second;
94 >        
95 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
96  
97 <  n_constraints = 0;
98 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
97 >        //calculate atoms in molecules
98 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99  
49  haveRcut = 0;
50  haveRsw = 0;
51  boxIsInit = 0;
52  
53  resetTime = 1e99;
100  
101 <  orthoRhombic = 0;
102 <  orthoTolerance = 1E-6;
103 <  useInitXSstate = true;
101 >        //calculate atoms in cutoff groups
102 >        int nAtomsInGroups = 0;
103 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >        
105 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >          cgStamp = molStamp->getCutoffGroup(j);
107 >          nAtomsInGroups += cgStamp->getNMembers();
108 >        }
109  
110 <  usePBC = 0;
111 <  useDirectionalAtoms = 0;
61 <  useLennardJones = 0;
62 <  useElectrostatics = 0;
63 <  useCharges = 0;
64 <  useDipoles = 0;
65 <  useSticky = 0;
66 <  useGayBerne = 0;
67 <  useEAM = 0;
68 <  useShapes = 0;
69 <  useFLARB = 0;
110 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112  
113 <  useSolidThermInt = 0;
114 <  useLiquidThermInt = 0;
113 >        //calculate atoms in rigid bodies
114 >        int nAtomsInRigidBodies = 0;
115 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >        
117 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >          rbStamp = molStamp->getRigidBody(j);
119 >          nAtomsInRigidBodies += rbStamp->getNMembers();
120 >        }
121  
122 <  haveCutoffGroups = false;
122 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >        
125 >      }
126  
127 <  excludes = Exclude::Instance();
127 >      //every free atom (atom does not belong to cutoff groups) is a cutoff group
128 >      //therefore the total number of cutoff groups in the system is equal to
129 >      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
130 >      //file plus the number of cutoff groups defined in meta-data file
131 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
132  
133 <  myConfiguration = new SimState();
133 >      //every free atom (atom does not belong to rigid bodies) is an integrable object
134 >      //therefore the total number of  integrable objects in the system is equal to
135 >      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
136 >      //file plus the number of  rigid bodies defined in meta-data file
137 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
138  
139 <  has_minimizer = false;
81 <  the_minimizer =NULL;
139 >      nGlobalMols_ = molStampIds_.size();
140  
141 <  ngroup = 0;
141 > #ifdef IS_MPI    
142 >      molToProcMap_.resize(nGlobalMols_);
143 > #endif
144  
145 < }
145 >    }
146  
147 +  SimInfo::~SimInfo() {
148 +    std::map<int, Molecule*>::iterator i;
149 +    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 +      delete i->second;
151 +    }
152 +    molecules_.clear();
153 +      
154 +    delete stamps_;
155 +    delete sman_;
156 +    delete simParams_;
157 +    delete forceField_;
158 +  }
159  
160 < SimInfo::~SimInfo(){
160 >  int SimInfo::getNGlobalConstraints() {
161 >    int nGlobalConstraints;
162 > #ifdef IS_MPI
163 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
164 >                  MPI_COMM_WORLD);    
165 > #else
166 >    nGlobalConstraints =  nConstraints_;
167 > #endif
168 >    return nGlobalConstraints;
169 >  }
170  
171 <  delete myConfiguration;
171 >  bool SimInfo::addMolecule(Molecule* mol) {
172 >    MoleculeIterator i;
173  
174 <  map<string, GenericData*>::iterator i;
175 <  
94 <  for(i = properties.begin(); i != properties.end(); i++)
95 <    delete (*i).second;
174 >    i = molecules_.find(mol->getGlobalIndex());
175 >    if (i == molecules_.end() ) {
176  
177 < }
178 <
179 < void SimInfo::setBox(double newBox[3]) {
180 <  
181 <  int i, j;
182 <  double tempMat[3][3];
183 <
184 <  for(i=0; i<3; i++)
185 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
186 <
107 <  tempMat[0][0] = newBox[0];
108 <  tempMat[1][1] = newBox[1];
109 <  tempMat[2][2] = newBox[2];
110 <
111 <  setBoxM( tempMat );
177 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
178 >        
179 >      nAtoms_ += mol->getNAtoms();
180 >      nBonds_ += mol->getNBonds();
181 >      nBends_ += mol->getNBends();
182 >      nTorsions_ += mol->getNTorsions();
183 >      nRigidBodies_ += mol->getNRigidBodies();
184 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
185 >      nCutoffGroups_ += mol->getNCutoffGroups();
186 >      nConstraints_ += mol->getNConstraintPairs();
187  
188 < }
189 <
190 < void SimInfo::setBoxM( double theBox[3][3] ){
191 <  
192 <  int i, j;
118 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
119 <                         // ordering in the array is as follows:
120 <                         // [ 0 3 6 ]
121 <                         // [ 1 4 7 ]
122 <                         // [ 2 5 8 ]
123 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
124 <
125 <  if( !boxIsInit ) boxIsInit = 1;
126 <
127 <  for(i=0; i < 3; i++)
128 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
129 <  
130 <  calcBoxL();
131 <  calcHmatInv();
132 <
133 <  for(i=0; i < 3; i++) {
134 <    for (j=0; j < 3; j++) {
135 <      FortranHmat[3*j + i] = Hmat[i][j];
136 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
188 >      addExcludePairs(mol);
189 >        
190 >      return true;
191 >    } else {
192 >      return false;
193      }
194    }
195  
196 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
197 <
198 < }
143 <
196 >  bool SimInfo::removeMolecule(Molecule* mol) {
197 >    MoleculeIterator i;
198 >    i = molecules_.find(mol->getGlobalIndex());
199  
200 < void SimInfo::getBoxM (double theBox[3][3]) {
200 >    if (i != molecules_.end() ) {
201  
202 <  int i, j;
203 <  for(i=0; i<3; i++)
204 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
205 < }
202 >      assert(mol == i->second);
203 >        
204 >      nAtoms_ -= mol->getNAtoms();
205 >      nBonds_ -= mol->getNBonds();
206 >      nBends_ -= mol->getNBends();
207 >      nTorsions_ -= mol->getNTorsions();
208 >      nRigidBodies_ -= mol->getNRigidBodies();
209 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
210 >      nCutoffGroups_ -= mol->getNCutoffGroups();
211 >      nConstraints_ -= mol->getNConstraintPairs();
212  
213 +      removeExcludePairs(mol);
214 +      molecules_.erase(mol->getGlobalIndex());
215  
216 < void SimInfo::scaleBox(double scale) {
217 <  double theBox[3][3];
218 <  int i, j;
216 >      delete mol;
217 >        
218 >      return true;
219 >    } else {
220 >      return false;
221 >    }
222  
157  // cerr << "Scaling box by " << scale << "\n";
223  
224 <  for(i=0; i<3; i++)
160 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
224 >  }    
225  
226 <  setBoxM(theBox);
226 >        
227 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
228 >    i = molecules_.begin();
229 >    return i == molecules_.end() ? NULL : i->second;
230 >  }    
231  
232 < }
232 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
233 >    ++i;
234 >    return i == molecules_.end() ? NULL : i->second;    
235 >  }
236  
166 void SimInfo::calcHmatInv( void ) {
167  
168  int oldOrtho;
169  int i,j;
170  double smallDiag;
171  double tol;
172  double sanity[3][3];
237  
238 <  invertMat3( Hmat, HmatInv );
238 >  void SimInfo::calcNdf() {
239 >    int ndf_local;
240 >    MoleculeIterator i;
241 >    std::vector<StuntDouble*>::iterator j;
242 >    Molecule* mol;
243 >    StuntDouble* integrableObject;
244  
245 <  // check to see if Hmat is orthorhombic
246 <  
247 <  oldOrtho = orthoRhombic;
245 >    ndf_local = 0;
246 >    
247 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
248 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
249 >           integrableObject = mol->nextIntegrableObject(j)) {
250  
251 <  smallDiag = fabs(Hmat[0][0]);
181 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
182 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
183 <  tol = smallDiag * orthoTolerance;
251 >        ndf_local += 3;
252  
253 <  orthoRhombic = 1;
254 <  
255 <  for (i = 0; i < 3; i++ ) {
256 <    for (j = 0 ; j < 3; j++) {
257 <      if (i != j) {
258 <        if (orthoRhombic) {
259 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
260 <        }        
261 <      }
262 <    }
195 <  }
196 <
197 <  if( oldOrtho != orthoRhombic ){
253 >        if (integrableObject->isDirectional()) {
254 >          if (integrableObject->isLinear()) {
255 >            ndf_local += 2;
256 >          } else {
257 >            ndf_local += 3;
258 >          }
259 >        }
260 >            
261 >      }//end for (integrableObject)
262 >    }// end for (mol)
263      
264 <    if( orthoRhombic ) {
265 <      sprintf( painCave.errMsg,
201 <               "OOPSE is switching from the default Non-Orthorhombic\n"
202 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
203 <               "\tThis is usually a good thing, but if you wan't the\n"
204 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
205 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
209 <    }
210 <    else {
211 <      sprintf( painCave.errMsg,
212 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
213 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
214 <               "\tThis is usually because the box has deformed under\n"
215 <               "\tNPTf integration. If you wan't to live on the edge with\n"
216 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217 <               "\tvariable ( currently set to %G ) larger.\n",
218 <               orthoTolerance);
219 <      painCave.severity = OOPSE_WARNING;
220 <      simError();
221 <    }
222 <  }
223 < }
264 >    // n_constraints is local, so subtract them on each processor
265 >    ndf_local -= nConstraints_;
266  
267 < void SimInfo::calcBoxL( void ){
267 > #ifdef IS_MPI
268 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 > #else
270 >    ndf_ = ndf_local;
271 > #endif
272  
273 <  double dx, dy, dz, dsq;
273 >    // nZconstraints_ is global, as are the 3 COM translations for the
274 >    // entire system:
275 >    ndf_ = ndf_ - 3 - nZconstraint_;
276  
277 <  // boxVol = Determinant of Hmat
277 >  }
278  
279 <  boxVol = matDet3( Hmat );
279 >  void SimInfo::calcNdfRaw() {
280 >    int ndfRaw_local;
281  
282 <  // boxLx
283 <  
284 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
285 <  dsq = dx*dx + dy*dy + dz*dz;
237 <  boxL[0] = sqrt( dsq );
238 <  //maxCutoff = 0.5 * boxL[0];
282 >    MoleculeIterator i;
283 >    std::vector<StuntDouble*>::iterator j;
284 >    Molecule* mol;
285 >    StuntDouble* integrableObject;
286  
287 <  // boxLy
288 <  
289 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
290 <  dsq = dx*dx + dy*dy + dz*dz;
291 <  boxL[1] = sqrt( dsq );
292 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
287 >    // Raw degrees of freedom that we have to set
288 >    ndfRaw_local = 0;
289 >    
290 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 >           integrableObject = mol->nextIntegrableObject(j)) {
293  
294 +        ndfRaw_local += 3;
295  
296 <  // boxLz
297 <  
298 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
299 <  dsq = dx*dx + dy*dy + dz*dz;
300 <  boxL[2] = sqrt( dsq );
301 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
296 >        if (integrableObject->isDirectional()) {
297 >          if (integrableObject->isLinear()) {
298 >            ndfRaw_local += 2;
299 >          } else {
300 >            ndfRaw_local += 3;
301 >          }
302 >        }
303 >            
304 >      }
305 >    }
306 >    
307 > #ifdef IS_MPI
308 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
309 > #else
310 >    ndfRaw_ = ndfRaw_local;
311 > #endif
312 >  }
313  
314 <  //calculate the max cutoff
315 <  maxCutoff =  calcMaxCutOff();
257 <  
258 <  checkCutOffs();
314 >  void SimInfo::calcNdfTrans() {
315 >    int ndfTrans_local;
316  
317 < }
317 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
318  
319  
320 < double SimInfo::calcMaxCutOff(){
320 > #ifdef IS_MPI
321 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
322 > #else
323 >    ndfTrans_ = ndfTrans_local;
324 > #endif
325  
326 <  double ri[3], rj[3], rk[3];
327 <  double rij[3], rjk[3], rki[3];
328 <  double minDist;
326 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
327 >
328 >  }
329  
330 <  ri[0] = Hmat[0][0];
331 <  ri[1] = Hmat[1][0];
332 <  ri[2] = Hmat[2][0];
333 <
334 <  rj[0] = Hmat[0][1];
335 <  rj[1] = Hmat[1][1];
336 <  rj[2] = Hmat[2][1];
337 <
338 <  rk[0] = Hmat[0][2];
339 <  rk[1] = Hmat[1][2];
340 <  rk[2] = Hmat[2][2];
330 >  void SimInfo::addExcludePairs(Molecule* mol) {
331 >    std::vector<Bond*>::iterator bondIter;
332 >    std::vector<Bend*>::iterator bendIter;
333 >    std::vector<Torsion*>::iterator torsionIter;
334 >    Bond* bond;
335 >    Bend* bend;
336 >    Torsion* torsion;
337 >    int a;
338 >    int b;
339 >    int c;
340 >    int d;
341      
342 <  crossProduct3(ri, rj, rij);
343 <  distXY = dotProduct3(rk,rij) / norm3(rij);
342 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
343 >      a = bond->getAtomA()->getGlobalIndex();
344 >      b = bond->getAtomB()->getGlobalIndex();        
345 >      exclude_.addPair(a, b);
346 >    }
347  
348 <  crossProduct3(rj,rk, rjk);
349 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
348 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
349 >      a = bend->getAtomA()->getGlobalIndex();
350 >      b = bend->getAtomB()->getGlobalIndex();        
351 >      c = bend->getAtomC()->getGlobalIndex();
352  
353 <  crossProduct3(rk,ri, rki);
354 <  distZX = dotProduct3(rj,rki) / norm3(rki);
353 >      exclude_.addPair(a, b);
354 >      exclude_.addPair(a, c);
355 >      exclude_.addPair(b, c);        
356 >    }
357  
358 <  minDist = min(min(distXY, distYZ), distZX);
359 <  return minDist/2;
360 <  
361 < }
358 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
359 >      a = torsion->getAtomA()->getGlobalIndex();
360 >      b = torsion->getAtomB()->getGlobalIndex();        
361 >      c = torsion->getAtomC()->getGlobalIndex();        
362 >      d = torsion->getAtomD()->getGlobalIndex();        
363  
364 < void SimInfo::wrapVector( double thePos[3] ){
364 >      exclude_.addPair(a, b);
365 >      exclude_.addPair(a, c);
366 >      exclude_.addPair(a, d);
367 >      exclude_.addPair(b, c);
368 >      exclude_.addPair(b, d);
369 >      exclude_.addPair(c, d);        
370 >    }
371  
372 <  int i;
373 <  double scaled[3];
372 >    Molecule::RigidBodyIterator rbIter;
373 >    RigidBody* rb;
374 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
375 >      std::vector<Atom*> atoms = rb->getAtoms();
376 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
377 >        for (int j = i + 1; j < atoms.size(); ++j) {
378 >          a = atoms[i]->getGlobalIndex();
379 >          b = atoms[j]->getGlobalIndex();
380 >          exclude_.addPair(a, b);
381 >        }
382 >      }
383 >    }        
384  
385 <  if( !orthoRhombic ){
301 <    // calc the scaled coordinates.
302 <  
385 >  }
386  
387 <    matVecMul3(HmatInv, thePos, scaled);
387 >  void SimInfo::removeExcludePairs(Molecule* mol) {
388 >    std::vector<Bond*>::iterator bondIter;
389 >    std::vector<Bend*>::iterator bendIter;
390 >    std::vector<Torsion*>::iterator torsionIter;
391 >    Bond* bond;
392 >    Bend* bend;
393 >    Torsion* torsion;
394 >    int a;
395 >    int b;
396 >    int c;
397 >    int d;
398      
399 <    for(i=0; i<3; i++)
400 <      scaled[i] -= roundMe(scaled[i]);
401 <    
402 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
403 <    
311 <    matVecMul3(Hmat, scaled, thePos);
399 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
400 >      a = bond->getAtomA()->getGlobalIndex();
401 >      b = bond->getAtomB()->getGlobalIndex();        
402 >      exclude_.removePair(a, b);
403 >    }
404  
405 <  }
406 <  else{
407 <    // calc the scaled coordinates.
408 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] = thePos[i]*HmatInv[i][i];
319 <    
320 <    // wrap the scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      scaled[i] -= roundMe(scaled[i]);
324 <    
325 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
326 <    
327 <    for(i=0; i<3; i++)
328 <      thePos[i] = scaled[i]*Hmat[i][i];
329 <  }
330 <    
331 < }
405 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
406 >      a = bend->getAtomA()->getGlobalIndex();
407 >      b = bend->getAtomB()->getGlobalIndex();        
408 >      c = bend->getAtomC()->getGlobalIndex();
409  
410 +      exclude_.removePair(a, b);
411 +      exclude_.removePair(a, c);
412 +      exclude_.removePair(b, c);        
413 +    }
414  
415 < int SimInfo::getNDF(){
416 <  int ndf_local;
415 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
416 >      a = torsion->getAtomA()->getGlobalIndex();
417 >      b = torsion->getAtomB()->getGlobalIndex();        
418 >      c = torsion->getAtomC()->getGlobalIndex();        
419 >      d = torsion->getAtomD()->getGlobalIndex();        
420  
421 <  ndf_local = 0;
422 <  
423 <  for(int i = 0; i < integrableObjects.size(); i++){
424 <    ndf_local += 3;
425 <    if (integrableObjects[i]->isDirectional()) {
426 <      if (integrableObjects[i]->isLinear())
343 <        ndf_local += 2;
344 <      else
345 <        ndf_local += 3;
421 >      exclude_.removePair(a, b);
422 >      exclude_.removePair(a, c);
423 >      exclude_.removePair(a, d);
424 >      exclude_.removePair(b, c);
425 >      exclude_.removePair(b, d);
426 >      exclude_.removePair(c, d);        
427      }
428 +
429 +    Molecule::RigidBodyIterator rbIter;
430 +    RigidBody* rb;
431 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
432 +      std::vector<Atom*> atoms = rb->getAtoms();
433 +      for (int i = 0; i < atoms.size() -1 ; ++i) {
434 +        for (int j = i + 1; j < atoms.size(); ++j) {
435 +          a = atoms[i]->getGlobalIndex();
436 +          b = atoms[j]->getGlobalIndex();
437 +          exclude_.removePair(a, b);
438 +        }
439 +      }
440 +    }        
441 +
442    }
443  
349  // n_constraints is local, so subtract them on each processor:
444  
445 <  ndf_local -= n_constraints;
445 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
446 >    int curStampId;
447  
448 < #ifdef IS_MPI
449 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
355 < #else
356 <  ndf = ndf_local;
357 < #endif
448 >    //index from 0
449 >    curStampId = moleculeStamps_.size();
450  
451 <  // nZconstraints is global, as are the 3 COM translations for the
452 <  // entire system:
451 >    moleculeStamps_.push_back(molStamp);
452 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
453 >  }
454  
455 <  ndf = ndf - 3 - nZconstraints;
455 >  void SimInfo::update() {
456  
457 <  return ndf;
365 < }
457 >    setupSimType();
458  
459 < int SimInfo::getNDFraw() {
460 <  int ndfRaw_local;
459 > #ifdef IS_MPI
460 >    setupFortranParallel();
461 > #endif
462  
463 <  // Raw degrees of freedom that we have to set
371 <  ndfRaw_local = 0;
463 >    setupFortranSim();
464  
465 <  for(int i = 0; i < integrableObjects.size(); i++){
466 <    ndfRaw_local += 3;
467 <    if (integrableObjects[i]->isDirectional()) {
468 <       if (integrableObjects[i]->isLinear())
469 <        ndfRaw_local += 2;
470 <      else
471 <        ndfRaw_local += 3;
465 >    //setup fortran force field
466 >    /** @deprecate */    
467 >    int isError = 0;
468 >    
469 >    setupElectrostaticSummationMethod( isError );
470 >
471 >    if(isError){
472 >      sprintf( painCave.errMsg,
473 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
474 >      painCave.isFatal = 1;
475 >      simError();
476      }
477 <  }
477 >  
478      
479 < #ifdef IS_MPI
384 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
385 < #else
386 <  ndfRaw = ndfRaw_local;
387 < #endif
479 >    setupCutoff();
480  
481 <  return ndfRaw;
482 < }
481 >    calcNdf();
482 >    calcNdfRaw();
483 >    calcNdfTrans();
484  
485 < int SimInfo::getNDFtranslational() {
486 <  int ndfTrans_local;
485 >    fortranInitialized_ = true;
486 >  }
487  
488 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
488 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
489 >    SimInfo::MoleculeIterator mi;
490 >    Molecule* mol;
491 >    Molecule::AtomIterator ai;
492 >    Atom* atom;
493 >    std::set<AtomType*> atomTypes;
494  
495 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
496  
497 < #ifdef IS_MPI
498 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
499 < #else
500 <  ndfTrans = ndfTrans_local;
501 < #endif
497 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
498 >        atomTypes.insert(atom->getAtomType());
499 >      }
500 >        
501 >    }
502  
503 <  ndfTrans = ndfTrans - 3 - nZconstraints;
503 >    return atomTypes;        
504 >  }
505  
506 <  return ndfTrans;
507 < }
506 >  void SimInfo::setupSimType() {
507 >    std::set<AtomType*>::iterator i;
508 >    std::set<AtomType*> atomTypes;
509 >    atomTypes = getUniqueAtomTypes();
510 >    
511 >    int useLennardJones = 0;
512 >    int useElectrostatic = 0;
513 >    int useEAM = 0;
514 >    int useCharge = 0;
515 >    int useDirectional = 0;
516 >    int useDipole = 0;
517 >    int useGayBerne = 0;
518 >    int useSticky = 0;
519 >    int useStickyPower = 0;
520 >    int useShape = 0;
521 >    int useFLARB = 0; //it is not in AtomType yet
522 >    int useDirectionalAtom = 0;    
523 >    int useElectrostatics = 0;
524 >    //usePBC and useRF are from simParams
525 >    int usePBC = simParams_->getPBC();
526  
527 < int SimInfo::getTotIntegrableObjects() {
528 <  int nObjs_local;
529 <  int nObjs;
527 >    //loop over all of the atom types
528 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
529 >      useLennardJones |= (*i)->isLennardJones();
530 >      useElectrostatic |= (*i)->isElectrostatic();
531 >      useEAM |= (*i)->isEAM();
532 >      useCharge |= (*i)->isCharge();
533 >      useDirectional |= (*i)->isDirectional();
534 >      useDipole |= (*i)->isDipole();
535 >      useGayBerne |= (*i)->isGayBerne();
536 >      useSticky |= (*i)->isSticky();
537 >      useStickyPower |= (*i)->isStickyPower();
538 >      useShape |= (*i)->isShape();
539 >    }
540  
541 <  nObjs_local =  integrableObjects.size();
541 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
542 >      useDirectionalAtom = 1;
543 >    }
544  
545 +    if (useCharge || useDipole) {
546 +      useElectrostatics = 1;
547 +    }
548  
549 < #ifdef IS_MPI
550 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
418 < #else
419 <  nObjs = nObjs_local;
420 < #endif
549 > #ifdef IS_MPI    
550 >    int temp;
551  
552 +    temp = usePBC;
553 +    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
554  
555 <  return nObjs;
556 < }
555 >    temp = useDirectionalAtom;
556 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
557  
558 < void SimInfo::refreshSim(){
558 >    temp = useLennardJones;
559 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
560  
561 <  simtype fInfo;
562 <  int isError;
430 <  int n_global;
431 <  int* excl;
561 >    temp = useElectrostatics;
562 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
563  
564 <  fInfo.dielect = 0.0;
564 >    temp = useCharge;
565 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
566 >
567 >    temp = useDipole;
568 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
569 >
570 >    temp = useSticky;
571 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
572  
573 <  if( useDipoles ){
574 <    if( useReactionField )fInfo.dielect = dielectric;
575 <  }
573 >    temp = useStickyPower;
574 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
575 >    
576 >    temp = useGayBerne;
577 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
578  
579 <  fInfo.SIM_uses_PBC = usePBC;
579 >    temp = useEAM;
580 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
581  
582 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
583 <    useDirectionalAtoms = 1;
443 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
444 <  }
582 >    temp = useShape;
583 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
584  
585 <  fInfo.SIM_uses_LennardJones = useLennardJones;
585 >    temp = useFLARB;
586 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
587  
588 <  if (useCharges || useDipoles) {
589 <    useElectrostatics = 1;
590 <    fInfo.SIM_uses_Electrostatics = useElectrostatics;
588 > #endif
589 >
590 >    fInfo_.SIM_uses_PBC = usePBC;    
591 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
592 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
593 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
594 >    fInfo_.SIM_uses_Charges = useCharge;
595 >    fInfo_.SIM_uses_Dipoles = useDipole;
596 >    fInfo_.SIM_uses_Sticky = useSticky;
597 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
598 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
599 >    fInfo_.SIM_uses_EAM = useEAM;
600 >    fInfo_.SIM_uses_Shapes = useShape;
601 >    fInfo_.SIM_uses_FLARB = useFLARB;
602 >
603 >    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
604 >
605 >      if (simParams_->haveDielectric()) {
606 >        fInfo_.dielect = simParams_->getDielectric();
607 >      } else {
608 >        sprintf(painCave.errMsg,
609 >                "SimSetup Error: No Dielectric constant was set.\n"
610 >                "\tYou are trying to use Reaction Field without"
611 >                "\tsetting a dielectric constant!\n");
612 >        painCave.isFatal = 1;
613 >        simError();
614 >      }
615 >        
616 >    } else {
617 >      fInfo_.dielect = 0.0;
618 >    }
619 >
620    }
621  
622 <  fInfo.SIM_uses_Charges = useCharges;
623 <  fInfo.SIM_uses_Dipoles = useDipoles;
624 <  fInfo.SIM_uses_Sticky = useSticky;
625 <  fInfo.SIM_uses_GayBerne = useGayBerne;
626 <  fInfo.SIM_uses_EAM = useEAM;
627 <  fInfo.SIM_uses_Shapes = useShapes;
628 <  fInfo.SIM_uses_FLARB = useFLARB;
460 <  fInfo.SIM_uses_RF = useReactionField;
622 >  void SimInfo::setupFortranSim() {
623 >    int isError;
624 >    int nExclude;
625 >    std::vector<int> fortranGlobalGroupMembership;
626 >    
627 >    nExclude = exclude_.getSize();
628 >    isError = 0;
629  
630 <  n_exclude = excludes->getSize();
631 <  excl = excludes->getFortranArray();
632 <  
633 < #ifdef IS_MPI
466 <  n_global = mpiSim->getNAtomsGlobal();
467 < #else
468 <  n_global = n_atoms;
469 < #endif
470 <  
471 <  isError = 0;
472 <  
473 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
474 <  //it may not be a good idea to pass the address of first element in vector
475 <  //since c++ standard does not require vector to be stored continuously in meomory
476 <  //Most of the compilers will organize the memory of vector continuously
477 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
478 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
479 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
630 >    //globalGroupMembership_ is filled by SimCreator    
631 >    for (int i = 0; i < nGlobalAtoms_; i++) {
632 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
633 >    }
634  
635 <  if( isError ){
635 >    //calculate mass ratio of cutoff group
636 >    std::vector<double> mfact;
637 >    SimInfo::MoleculeIterator mi;
638 >    Molecule* mol;
639 >    Molecule::CutoffGroupIterator ci;
640 >    CutoffGroup* cg;
641 >    Molecule::AtomIterator ai;
642 >    Atom* atom;
643 >    double totalMass;
644 >
645 >    //to avoid memory reallocation, reserve enough space for mfact
646 >    mfact.reserve(getNCutoffGroups());
647      
648 <    sprintf( painCave.errMsg,
649 <             "There was an error setting the simulation information in fortran.\n" );
485 <    painCave.isFatal = 1;
486 <    painCave.severity = OOPSE_ERROR;
487 <    simError();
488 <  }
489 <  
490 < #ifdef IS_MPI
491 <  sprintf( checkPointMsg,
492 <           "succesfully sent the simulation information to fortran.\n");
493 <  MPIcheckPoint();
494 < #endif // is_mpi
495 <  
496 <  this->ndf = this->getNDF();
497 <  this->ndfRaw = this->getNDFraw();
498 <  this->ndfTrans = this->getNDFtranslational();
499 < }
648 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
649 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
650  
651 < void SimInfo::setDefaultRcut( double theRcut ){
652 <  
653 <  haveRcut = 1;
654 <  rCut = theRcut;
505 <  rList = rCut + 1.0;
506 <  
507 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
508 < }
651 >        totalMass = cg->getMass();
652 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
653 >          mfact.push_back(atom->getMass()/totalMass);
654 >        }
655  
656 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
656 >      }      
657 >    }
658  
659 <  rSw = theRsw;
660 <  setDefaultRcut( theRcut );
514 < }
659 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
660 >    std::vector<int> identArray;
661  
662 +    //to avoid memory reallocation, reserve enough space identArray
663 +    identArray.reserve(getNAtoms());
664 +    
665 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
666 +      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
667 +        identArray.push_back(atom->getIdent());
668 +      }
669 +    }    
670  
671 < void SimInfo::checkCutOffs( void ){
672 <  
673 <  if( boxIsInit ){
671 >    //fill molMembershipArray
672 >    //molMembershipArray is filled by SimCreator    
673 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
674 >    for (int i = 0; i < nGlobalAtoms_; i++) {
675 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
676 >    }
677      
678 <    //we need to check cutOffs against the box
679 <    
680 <    if( rCut > maxCutoff ){
678 >    //setup fortran simulation
679 >    int nGlobalExcludes = 0;
680 >    int* globalExcludes = NULL;
681 >    int* excludeList = exclude_.getExcludeList();
682 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
683 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
684 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
685 >
686 >    if( isError ){
687 >
688        sprintf( painCave.errMsg,
689 <               "cutoffRadius is too large for the current periodic box.\n"
526 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
527 <               "\tThis is larger than half of at least one of the\n"
528 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
529 <               "\n"
530 <               "\t[ %G %G %G ]\n"
531 <               "\t[ %G %G %G ]\n"
532 <               "\t[ %G %G %G ]\n",
533 <               rCut, currentTime,
534 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
535 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
536 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
537 <      painCave.severity = OOPSE_ERROR;
689 >               "There was an error setting the simulation information in fortran.\n" );
690        painCave.isFatal = 1;
691 +      painCave.severity = OOPSE_ERROR;
692        simError();
693 <    }    
694 <  } else {
695 <    // initialize this stuff before using it, OK?
696 <    sprintf( painCave.errMsg,
697 <             "Trying to check cutoffs without a box.\n"
698 <             "\tOOPSE should have better programmers than that.\n" );
699 <    painCave.severity = OOPSE_ERROR;
547 <    painCave.isFatal = 1;
548 <    simError();      
693 >    }
694 >
695 > #ifdef IS_MPI
696 >    sprintf( checkPointMsg,
697 >             "succesfully sent the simulation information to fortran.\n");
698 >    MPIcheckPoint();
699 > #endif // is_mpi
700    }
550  
551 }
701  
553 void SimInfo::addProperty(GenericData* prop){
702  
703 <  map<string, GenericData*>::iterator result;
704 <  result = properties.find(prop->getID());
557 <  
558 <  //we can't simply use  properties[prop->getID()] = prop,
559 <  //it will cause memory leak if we already contain a propery which has the same name of prop
560 <  
561 <  if(result != properties.end()){
703 > #ifdef IS_MPI
704 >  void SimInfo::setupFortranParallel() {
705      
706 <    delete (*result).second;
707 <    (*result).second = prop;
708 <      
709 <  }
710 <  else{
706 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
707 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
708 >    std::vector<int> localToGlobalCutoffGroupIndex;
709 >    SimInfo::MoleculeIterator mi;
710 >    Molecule::AtomIterator ai;
711 >    Molecule::CutoffGroupIterator ci;
712 >    Molecule* mol;
713 >    Atom* atom;
714 >    CutoffGroup* cg;
715 >    mpiSimData parallelData;
716 >    int isError;
717  
718 <    properties[prop->getID()] = prop;
718 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
719  
720 +      //local index(index in DataStorge) of atom is important
721 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
722 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
723 +      }
724 +
725 +      //local index of cutoff group is trivial, it only depends on the order of travesing
726 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
727 +        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
728 +      }        
729 +        
730 +    }
731 +
732 +    //fill up mpiSimData struct
733 +    parallelData.nMolGlobal = getNGlobalMolecules();
734 +    parallelData.nMolLocal = getNMolecules();
735 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
736 +    parallelData.nAtomsLocal = getNAtoms();
737 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
738 +    parallelData.nGroupsLocal = getNCutoffGroups();
739 +    parallelData.myNode = worldRank;
740 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
741 +
742 +    //pass mpiSimData struct and index arrays to fortran
743 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
744 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
745 +                    &localToGlobalCutoffGroupIndex[0], &isError);
746 +
747 +    if (isError) {
748 +      sprintf(painCave.errMsg,
749 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
750 +      painCave.isFatal = 1;
751 +      simError();
752 +    }
753 +
754 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
755 +    MPIcheckPoint();
756 +
757 +
758    }
572    
573 }
759  
760 < GenericData* SimInfo::getProperty(const string& propName){
576 <
577 <  map<string, GenericData*>::iterator result;
578 <  
579 <  //string lowerCaseName = ();
580 <  
581 <  result = properties.find(propName);
582 <  
583 <  if(result != properties.end())
584 <    return (*result).second;  
585 <  else  
586 <    return NULL;  
587 < }
760 > #endif
761  
762 +  double SimInfo::calcMaxCutoffRadius() {
763  
590 void SimInfo::getFortranGroupArrays(SimInfo* info,
591                                    vector<int>& FglobalGroupMembership,
592                                    vector<double>& mfact){
593  
594  Molecule* myMols;
595  Atom** myAtoms;
596  int numAtom;
597  double mtot;
598  int numMol;
599  int numCutoffGroups;
600  CutoffGroup* myCutoffGroup;
601  vector<CutoffGroup*>::iterator iterCutoff;
602  Atom* cutoffAtom;
603  vector<Atom*>::iterator iterAtom;
604  int atomIndex;
605  double totalMass;
606  
607  mfact.clear();
608  FglobalGroupMembership.clear();
609  
764  
765 <  // Fix the silly fortran indexing problem
765 >    std::set<AtomType*> atomTypes;
766 >    std::set<AtomType*>::iterator i;
767 >    std::vector<double> cutoffRadius;
768 >
769 >    //get the unique atom types
770 >    atomTypes = getUniqueAtomTypes();
771 >
772 >    //query the max cutoff radius among these atom types
773 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
774 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
775 >    }
776 >
777 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
778   #ifdef IS_MPI
779 <  numAtom = mpiSim->getNAtomsGlobal();
614 < #else
615 <  numAtom = n_atoms;
779 >    //pick the max cutoff radius among the processors
780   #endif
617  for (int i = 0; i < numAtom; i++)
618    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
619  
781  
782 <  myMols = info->molecules;
783 <  numMol = info->n_mol;
623 <  for(int i  = 0; i < numMol; i++){
624 <    numCutoffGroups = myMols[i].getNCutoffGroups();
625 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
626 <        myCutoffGroup != NULL;
627 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
782 >    return maxCutoffRadius;
783 >  }
784  
785 <      totalMass = myCutoffGroup->getMass();
786 <      
787 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
788 <          cutoffAtom != NULL;
789 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
790 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
791 <      }  
785 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
786 >    
787 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
788 >        
789 >      if (!simParams_->haveRcut()){
790 >        sprintf(painCave.errMsg,
791 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
792 >                "\tOOPSE will use a default value of 15.0 angstroms"
793 >                "\tfor the cutoffRadius.\n");
794 >        painCave.isFatal = 0;
795 >        simError();
796 >        rcut = 15.0;
797 >      } else{
798 >        rcut = simParams_->getRcut();
799 >      }
800 >
801 >      if (!simParams_->haveRsw()){
802 >        sprintf(painCave.errMsg,
803 >                "SimCreator Warning: No value was set for switchingRadius.\n"
804 >                "\tOOPSE will use a default value of\n"
805 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
806 >        painCave.isFatal = 0;
807 >        simError();
808 >        rsw = 0.95 * rcut;
809 >      } else{
810 >        rsw = simParams_->getRsw();
811 >      }
812 >
813 >    } else {
814 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
815 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
816 >        
817 >      if (simParams_->haveRcut()) {
818 >        rcut = simParams_->getRcut();
819 >      } else {
820 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
821 >        rcut = calcMaxCutoffRadius();
822 >      }
823 >
824 >      if (simParams_->haveRsw()) {
825 >        rsw  = simParams_->getRsw();
826 >      } else {
827 >        rsw = rcut;
828 >      }
829 >    
830      }
831    }
832  
833 < }
833 >  void SimInfo::setupCutoff() {    
834 >    getCutoff(rcut_, rsw_);    
835 >    double rnblist = rcut_ + 1; // skin of neighbor list
836 >
837 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
838 >    
839 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
840 >    if (simParams_->haveCutoffPolicy()) {
841 >      std::string myPolicy = simParams_->getCutoffPolicy();
842 >      if (myPolicy == "MIX") {
843 >        cp = MIX_CUTOFF_POLICY;
844 >      } else {
845 >        if (myPolicy == "MAX") {
846 >          cp = MAX_CUTOFF_POLICY;
847 >        } else {
848 >          if (myPolicy == "TRADITIONAL") {            
849 >            cp = TRADITIONAL_CUTOFF_POLICY;
850 >          } else {
851 >            // throw error        
852 >            sprintf( painCave.errMsg,
853 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
854 >            painCave.isFatal = 1;
855 >            simError();
856 >          }    
857 >        }          
858 >      }
859 >    }
860 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
861 >    // also send cutoff notification to electrostatics
862 >    setElectrostaticCutoffRadius(&rcut_);
863 >  }
864 >
865 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
866 >    
867 >    int errorOut;
868 >    int esm =  NONE;
869 >    double alphaVal;
870 >    double dielectric;
871 >
872 >    errorOut = isError;
873 >    alphaVal = simParams_->getDampingAlpha();
874 >    dielectric = simParams_->getDielectric();
875 >
876 >    if (simParams_->haveElectrostaticSummationMethod()) {
877 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
878 >      if (myMethod == "NONE") {
879 >        esm = NONE;
880 >      } else {
881 >        if (myMethod == "UNDAMPED_WOLF") {
882 >          esm = UNDAMPED_WOLF;
883 >        } else {
884 >          if (myMethod == "DAMPED_WOLF") {            
885 >            esm = DAMPED_WOLF;
886 >            if (!simParams_->haveDampingAlpha()) {
887 >              //throw error
888 >              sprintf( painCave.errMsg,
889 >                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
890 >              painCave.isFatal = 0;
891 >              simError();
892 >            }
893 >          } else {
894 >            if (myMethod == "REACTION_FIELD") {
895 >              esm = REACTION_FIELD;
896 >            } else {
897 >              // throw error        
898 >              sprintf( painCave.errMsg,
899 >                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
900 >              painCave.isFatal = 1;
901 >              simError();
902 >            }    
903 >          }          
904 >        }
905 >      }
906 >    }
907 >    // let's pass some summation method variables to fortran
908 >    setElectrostaticSummationMethod( &esm );
909 >    setDampedWolfAlpha( &alphaVal );
910 >    setReactionFieldDielectric( &dielectric );
911 >    initFortranFF( &esm, &errorOut );
912 >  }
913 >
914 >  void SimInfo::addProperty(GenericData* genData) {
915 >    properties_.addProperty(genData);  
916 >  }
917 >
918 >  void SimInfo::removeProperty(const std::string& propName) {
919 >    properties_.removeProperty(propName);  
920 >  }
921 >
922 >  void SimInfo::clearProperties() {
923 >    properties_.clearProperties();
924 >  }
925 >
926 >  std::vector<std::string> SimInfo::getPropertyNames() {
927 >    return properties_.getPropertyNames();  
928 >  }
929 >      
930 >  std::vector<GenericData*> SimInfo::getProperties() {
931 >    return properties_.getProperties();
932 >  }
933 >
934 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
935 >    return properties_.getPropertyByName(propName);
936 >  }
937 >
938 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
939 >    if (sman_ == sman) {
940 >      return;
941 >    }    
942 >    delete sman_;
943 >    sman_ = sman;
944 >
945 >    Molecule* mol;
946 >    RigidBody* rb;
947 >    Atom* atom;
948 >    SimInfo::MoleculeIterator mi;
949 >    Molecule::RigidBodyIterator rbIter;
950 >    Molecule::AtomIterator atomIter;;
951 >
952 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
953 >        
954 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
955 >        atom->setSnapshotManager(sman_);
956 >      }
957 >        
958 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
959 >        rb->setSnapshotManager(sman_);
960 >      }
961 >    }    
962 >    
963 >  }
964 >
965 >  Vector3d SimInfo::getComVel(){
966 >    SimInfo::MoleculeIterator i;
967 >    Molecule* mol;
968 >
969 >    Vector3d comVel(0.0);
970 >    double totalMass = 0.0;
971 >    
972 >
973 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
974 >      double mass = mol->getMass();
975 >      totalMass += mass;
976 >      comVel += mass * mol->getComVel();
977 >    }  
978 >
979 > #ifdef IS_MPI
980 >    double tmpMass = totalMass;
981 >    Vector3d tmpComVel(comVel);    
982 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
983 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
984 > #endif
985 >
986 >    comVel /= totalMass;
987 >
988 >    return comVel;
989 >  }
990 >
991 >  Vector3d SimInfo::getCom(){
992 >    SimInfo::MoleculeIterator i;
993 >    Molecule* mol;
994 >
995 >    Vector3d com(0.0);
996 >    double totalMass = 0.0;
997 >    
998 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999 >      double mass = mol->getMass();
1000 >      totalMass += mass;
1001 >      com += mass * mol->getCom();
1002 >    }  
1003 >
1004 > #ifdef IS_MPI
1005 >    double tmpMass = totalMass;
1006 >    Vector3d tmpCom(com);    
1007 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1008 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1009 > #endif
1010 >
1011 >    com /= totalMass;
1012 >
1013 >    return com;
1014 >
1015 >  }        
1016 >
1017 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1018 >
1019 >    return o;
1020 >  }
1021 >  
1022 >  
1023 >   /*
1024 >   Returns center of mass and center of mass velocity in one function call.
1025 >   */
1026 >  
1027 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1028 >      SimInfo::MoleculeIterator i;
1029 >      Molecule* mol;
1030 >      
1031 >    
1032 >      double totalMass = 0.0;
1033 >    
1034 >
1035 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1036 >         double mass = mol->getMass();
1037 >         totalMass += mass;
1038 >         com += mass * mol->getCom();
1039 >         comVel += mass * mol->getComVel();          
1040 >      }  
1041 >      
1042 > #ifdef IS_MPI
1043 >      double tmpMass = totalMass;
1044 >      Vector3d tmpCom(com);  
1045 >      Vector3d tmpComVel(comVel);
1046 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1047 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1048 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1049 > #endif
1050 >      
1051 >      com /= totalMass;
1052 >      comVel /= totalMass;
1053 >   }        
1054 >  
1055 >   /*
1056 >   Return intertia tensor for entire system and angular momentum Vector.
1057 >
1058 >
1059 >       [  Ixx -Ixy  -Ixz ]
1060 >  J =| -Iyx  Iyy  -Iyz |
1061 >       [ -Izx -Iyz   Izz ]
1062 >    */
1063 >
1064 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1065 >      
1066 >
1067 >      double xx = 0.0;
1068 >      double yy = 0.0;
1069 >      double zz = 0.0;
1070 >      double xy = 0.0;
1071 >      double xz = 0.0;
1072 >      double yz = 0.0;
1073 >      Vector3d com(0.0);
1074 >      Vector3d comVel(0.0);
1075 >      
1076 >      getComAll(com, comVel);
1077 >      
1078 >      SimInfo::MoleculeIterator i;
1079 >      Molecule* mol;
1080 >      
1081 >      Vector3d thisq(0.0);
1082 >      Vector3d thisv(0.0);
1083 >
1084 >      double thisMass = 0.0;
1085 >    
1086 >      
1087 >      
1088 >  
1089 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1090 >        
1091 >         thisq = mol->getCom()-com;
1092 >         thisv = mol->getComVel()-comVel;
1093 >         thisMass = mol->getMass();
1094 >         // Compute moment of intertia coefficients.
1095 >         xx += thisq[0]*thisq[0]*thisMass;
1096 >         yy += thisq[1]*thisq[1]*thisMass;
1097 >         zz += thisq[2]*thisq[2]*thisMass;
1098 >        
1099 >         // compute products of intertia
1100 >         xy += thisq[0]*thisq[1]*thisMass;
1101 >         xz += thisq[0]*thisq[2]*thisMass;
1102 >         yz += thisq[1]*thisq[2]*thisMass;
1103 >            
1104 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1105 >            
1106 >      }  
1107 >      
1108 >      
1109 >      inertiaTensor(0,0) = yy + zz;
1110 >      inertiaTensor(0,1) = -xy;
1111 >      inertiaTensor(0,2) = -xz;
1112 >      inertiaTensor(1,0) = -xy;
1113 >      inertiaTensor(1,1) = xx + zz;
1114 >      inertiaTensor(1,2) = -yz;
1115 >      inertiaTensor(2,0) = -xz;
1116 >      inertiaTensor(2,1) = -yz;
1117 >      inertiaTensor(2,2) = xx + yy;
1118 >      
1119 > #ifdef IS_MPI
1120 >      Mat3x3d tmpI(inertiaTensor);
1121 >      Vector3d tmpAngMom;
1122 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1123 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1124 > #endif
1125 >              
1126 >      return;
1127 >   }
1128 >
1129 >   //Returns the angular momentum of the system
1130 >   Vector3d SimInfo::getAngularMomentum(){
1131 >      
1132 >      Vector3d com(0.0);
1133 >      Vector3d comVel(0.0);
1134 >      Vector3d angularMomentum(0.0);
1135 >      
1136 >      getComAll(com,comVel);
1137 >      
1138 >      SimInfo::MoleculeIterator i;
1139 >      Molecule* mol;
1140 >      
1141 >      Vector3d thisr(0.0);
1142 >      Vector3d thisp(0.0);
1143 >      
1144 >      double thisMass;
1145 >      
1146 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1147 >        thisMass = mol->getMass();
1148 >        thisr = mol->getCom()-com;
1149 >        thisp = (mol->getComVel()-comVel)*thisMass;
1150 >        
1151 >        angularMomentum += cross( thisr, thisp );
1152 >        
1153 >      }  
1154 >      
1155 > #ifdef IS_MPI
1156 >      Vector3d tmpAngMom;
1157 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1158 > #endif
1159 >      
1160 >      return angularMomentum;
1161 >   }
1162 >  
1163 >  
1164 > }//end namespace oopse
1165 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines