ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1958 by tim, Tue Jan 25 21:59:18 2005 UTC vs.
Revision 2415 by chrisfen, Thu Nov 3 23:12:27 2005 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 52 | Line 52
52   #include "brains/SimInfo.hpp"
53   #include "math/Vector3.hpp"
54   #include "primitives/Molecule.hpp"
55 + #include "UseTheForce/fCutoffPolicy.h"
56 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58   #include "UseTheForce/doForces_interface.h"
59 + #include "UseTheForce/DarkSide/electrostatic_interface.h"
60   #include "UseTheForce/notifyCutoffs_interface.h"
61   #include "utils/MemoryUtils.hpp"
62   #include "utils/simError.h"
63 + #include "selection/SelectionManager.hpp"
64  
65   #ifdef IS_MPI
66   #include "UseTheForce/mpiComponentPlan.h"
# Line 64 | Line 69 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
69  
70   namespace oopse {
71  
72 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
73 <                                ForceField* ff, Globals* simParams) :
74 <                                forceField_(ff), simParams_(simParams),
75 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
76 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
79 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
80 <                                sman_(NULL), fortranInitialized_(false) {
72 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
73 >                   ForceField* ff, Globals* simParams) :
74 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
75 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
76 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
79 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
80 >    sman_(NULL), fortranInitialized_(false) {
81  
82              
83 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
84 <    MoleculeStamp* molStamp;
85 <    int nMolWithSameStamp;
86 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
88 <    CutoffGroupStamp* cgStamp;    
89 <    RigidBodyStamp* rbStamp;
90 <    int nRigidAtoms = 0;
83 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
84 >      MoleculeStamp* molStamp;
85 >      int nMolWithSameStamp;
86 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
88 >      CutoffGroupStamp* cgStamp;    
89 >      RigidBodyStamp* rbStamp;
90 >      int nRigidAtoms = 0;
91      
92 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
93          molStamp = i->first;
94          nMolWithSameStamp = i->second;
95          
# Line 99 | Line 104 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
104          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
105          
106          for (int j=0; j < nCutoffGroupsInStamp; j++) {
107 <            cgStamp = molStamp->getCutoffGroup(j);
108 <            nAtomsInGroups += cgStamp->getNMembers();
107 >          cgStamp = molStamp->getCutoffGroup(j);
108 >          nAtomsInGroups += cgStamp->getNMembers();
109          }
110  
111          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112 +
113          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
114  
115          //calculate atoms in rigid bodies
# Line 111 | Line 117 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
117          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
118          
119          for (int j=0; j < nRigidBodiesInStamp; j++) {
120 <            rbStamp = molStamp->getRigidBody(j);
121 <            nAtomsInRigidBodies += rbStamp->getNMembers();
120 >          rbStamp = molStamp->getRigidBody(j);
121 >          nAtomsInRigidBodies += rbStamp->getNMembers();
122          }
123  
124          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
125          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
126          
127 <    }
127 >      }
128  
129 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
130 <    //therefore the total number of cutoff groups in the system is equal to
131 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
132 <    //file plus the number of cutoff groups defined in meta-data file
133 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
130 >      //group therefore the total number of cutoff groups in the system is
131 >      //equal to the total number of atoms minus number of atoms belong to
132 >      //cutoff group defined in meta-data file plus the number of cutoff
133 >      //groups defined in meta-data file
134 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135  
136 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
137 <    //therefore the total number of  integrable objects in the system is equal to
138 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
139 <    //file plus the number of  rigid bodies defined in meta-data file
140 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
136 >      //every free atom (atom does not belong to rigid bodies) is an
137 >      //integrable object therefore the total number of integrable objects
138 >      //in the system is equal to the total number of atoms minus number of
139 >      //atoms belong to rigid body defined in meta-data file plus the number
140 >      //of rigid bodies defined in meta-data file
141 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >                                                + nGlobalRigidBodies_;
143 >  
144 >      nGlobalMols_ = molStampIds_.size();
145  
135    nGlobalMols_ = molStampIds_.size();
136
146   #ifdef IS_MPI    
147 <    molToProcMap_.resize(nGlobalMols_);
147 >      molToProcMap_.resize(nGlobalMols_);
148   #endif
140    
141 }
149  
150 < SimInfo::~SimInfo() {
144 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
150 >    }
151  
152 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
153 <    
152 >  SimInfo::~SimInfo() {
153 >    std::map<int, Molecule*>::iterator i;
154 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
155 >      delete i->second;
156 >    }
157 >    molecules_.clear();
158 >      
159 >    delete stamps_;
160      delete sman_;
161      delete simParams_;
162      delete forceField_;
163 +  }
164  
165 < }
153 <
154 < int SimInfo::getNGlobalConstraints() {
165 >  int SimInfo::getNGlobalConstraints() {
166      int nGlobalConstraints;
167   #ifdef IS_MPI
168      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 160 | Line 171 | int SimInfo::getNGlobalConstraints() {
171      nGlobalConstraints =  nConstraints_;
172   #endif
173      return nGlobalConstraints;
174 < }
174 >  }
175  
176 < bool SimInfo::addMolecule(Molecule* mol) {
176 >  bool SimInfo::addMolecule(Molecule* mol) {
177      MoleculeIterator i;
178  
179      i = molecules_.find(mol->getGlobalIndex());
180      if (i == molecules_.end() ) {
181  
182 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
182 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
183          
184 <        nAtoms_ += mol->getNAtoms();
185 <        nBonds_ += mol->getNBonds();
186 <        nBends_ += mol->getNBends();
187 <        nTorsions_ += mol->getNTorsions();
188 <        nRigidBodies_ += mol->getNRigidBodies();
189 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
190 <        nCutoffGroups_ += mol->getNCutoffGroups();
191 <        nConstraints_ += mol->getNConstraintPairs();
184 >      nAtoms_ += mol->getNAtoms();
185 >      nBonds_ += mol->getNBonds();
186 >      nBends_ += mol->getNBends();
187 >      nTorsions_ += mol->getNTorsions();
188 >      nRigidBodies_ += mol->getNRigidBodies();
189 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
190 >      nCutoffGroups_ += mol->getNCutoffGroups();
191 >      nConstraints_ += mol->getNConstraintPairs();
192  
193 <        addExcludePairs(mol);
193 >      addExcludePairs(mol);
194          
195 <        return true;
195 >      return true;
196      } else {
197 <        return false;
197 >      return false;
198      }
199 < }
199 >  }
200  
201 < bool SimInfo::removeMolecule(Molecule* mol) {
201 >  bool SimInfo::removeMolecule(Molecule* mol) {
202      MoleculeIterator i;
203      i = molecules_.find(mol->getGlobalIndex());
204  
205      if (i != molecules_.end() ) {
206  
207 <        assert(mol == i->second);
207 >      assert(mol == i->second);
208          
209 <        nAtoms_ -= mol->getNAtoms();
210 <        nBonds_ -= mol->getNBonds();
211 <        nBends_ -= mol->getNBends();
212 <        nTorsions_ -= mol->getNTorsions();
213 <        nRigidBodies_ -= mol->getNRigidBodies();
214 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
215 <        nCutoffGroups_ -= mol->getNCutoffGroups();
216 <        nConstraints_ -= mol->getNConstraintPairs();
206 <
207 <        removeExcludePairs(mol);
208 <        molecules_.erase(mol->getGlobalIndex());
209 >      nAtoms_ -= mol->getNAtoms();
210 >      nBonds_ -= mol->getNBonds();
211 >      nBends_ -= mol->getNBends();
212 >      nTorsions_ -= mol->getNTorsions();
213 >      nRigidBodies_ -= mol->getNRigidBodies();
214 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
215 >      nCutoffGroups_ -= mol->getNCutoffGroups();
216 >      nConstraints_ -= mol->getNConstraintPairs();
217  
218 <        delete mol;
218 >      removeExcludePairs(mol);
219 >      molecules_.erase(mol->getGlobalIndex());
220 >
221 >      delete mol;
222          
223 <        return true;
223 >      return true;
224      } else {
225 <        return false;
225 >      return false;
226      }
227  
228  
229 < }    
229 >  }    
230  
231          
232 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
232 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
233      i = molecules_.begin();
234      return i == molecules_.end() ? NULL : i->second;
235 < }    
235 >  }    
236  
237 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
237 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
238      ++i;
239      return i == molecules_.end() ? NULL : i->second;    
240 < }
240 >  }
241  
242  
243 < void SimInfo::calcNdf() {
243 >  void SimInfo::calcNdf() {
244      int ndf_local;
245      MoleculeIterator i;
246      std::vector<StuntDouble*>::iterator j;
# Line 239 | Line 250 | void SimInfo::calcNdf() {
250      ndf_local = 0;
251      
252      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
253 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
254 <               integrableObject = mol->nextIntegrableObject(j)) {
253 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
254 >           integrableObject = mol->nextIntegrableObject(j)) {
255  
256 <            ndf_local += 3;
256 >        ndf_local += 3;
257  
258 <            if (integrableObject->isDirectional()) {
259 <                if (integrableObject->isLinear()) {
260 <                    ndf_local += 2;
261 <                } else {
262 <                    ndf_local += 3;
263 <                }
264 <            }
258 >        if (integrableObject->isDirectional()) {
259 >          if (integrableObject->isLinear()) {
260 >            ndf_local += 2;
261 >          } else {
262 >            ndf_local += 3;
263 >          }
264 >        }
265              
266 <        }//end for (integrableObject)
266 >      }//end for (integrableObject)
267      }// end for (mol)
268      
269      // n_constraints is local, so subtract them on each processor
# Line 268 | Line 279 | void SimInfo::calcNdf() {
279      // entire system:
280      ndf_ = ndf_ - 3 - nZconstraint_;
281  
282 < }
282 >  }
283  
284 < void SimInfo::calcNdfRaw() {
284 >  void SimInfo::calcNdfRaw() {
285      int ndfRaw_local;
286  
287      MoleculeIterator i;
# Line 282 | Line 293 | void SimInfo::calcNdfRaw() {
293      ndfRaw_local = 0;
294      
295      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
296 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
297 <               integrableObject = mol->nextIntegrableObject(j)) {
296 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
297 >           integrableObject = mol->nextIntegrableObject(j)) {
298  
299 <            ndfRaw_local += 3;
299 >        ndfRaw_local += 3;
300  
301 <            if (integrableObject->isDirectional()) {
302 <                if (integrableObject->isLinear()) {
303 <                    ndfRaw_local += 2;
304 <                } else {
305 <                    ndfRaw_local += 3;
306 <                }
307 <            }
301 >        if (integrableObject->isDirectional()) {
302 >          if (integrableObject->isLinear()) {
303 >            ndfRaw_local += 2;
304 >          } else {
305 >            ndfRaw_local += 3;
306 >          }
307 >        }
308              
309 <        }
309 >      }
310      }
311      
312   #ifdef IS_MPI
# Line 303 | Line 314 | void SimInfo::calcNdfRaw() {
314   #else
315      ndfRaw_ = ndfRaw_local;
316   #endif
317 < }
317 >  }
318  
319 < void SimInfo::calcNdfTrans() {
319 >  void SimInfo::calcNdfTrans() {
320      int ndfTrans_local;
321  
322      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 319 | Line 330 | void SimInfo::calcNdfTrans() {
330  
331      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
332  
333 < }
333 >  }
334  
335 < void SimInfo::addExcludePairs(Molecule* mol) {
335 >  void SimInfo::addExcludePairs(Molecule* mol) {
336      std::vector<Bond*>::iterator bondIter;
337      std::vector<Bend*>::iterator bendIter;
338      std::vector<Torsion*>::iterator torsionIter;
# Line 334 | Line 345 | void SimInfo::addExcludePairs(Molecule* mol) {
345      int d;
346      
347      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
348 <        a = bond->getAtomA()->getGlobalIndex();
349 <        b = bond->getAtomB()->getGlobalIndex();        
350 <        exclude_.addPair(a, b);
348 >      a = bond->getAtomA()->getGlobalIndex();
349 >      b = bond->getAtomB()->getGlobalIndex();        
350 >      exclude_.addPair(a, b);
351      }
352  
353      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
354 <        a = bend->getAtomA()->getGlobalIndex();
355 <        b = bend->getAtomB()->getGlobalIndex();        
356 <        c = bend->getAtomC()->getGlobalIndex();
354 >      a = bend->getAtomA()->getGlobalIndex();
355 >      b = bend->getAtomB()->getGlobalIndex();        
356 >      c = bend->getAtomC()->getGlobalIndex();
357  
358 <        exclude_.addPair(a, b);
359 <        exclude_.addPair(a, c);
360 <        exclude_.addPair(b, c);        
358 >      exclude_.addPair(a, b);
359 >      exclude_.addPair(a, c);
360 >      exclude_.addPair(b, c);        
361      }
362  
363      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
364 <        a = torsion->getAtomA()->getGlobalIndex();
365 <        b = torsion->getAtomB()->getGlobalIndex();        
366 <        c = torsion->getAtomC()->getGlobalIndex();        
367 <        d = torsion->getAtomD()->getGlobalIndex();        
364 >      a = torsion->getAtomA()->getGlobalIndex();
365 >      b = torsion->getAtomB()->getGlobalIndex();        
366 >      c = torsion->getAtomC()->getGlobalIndex();        
367 >      d = torsion->getAtomD()->getGlobalIndex();        
368  
369 <        exclude_.addPair(a, b);
370 <        exclude_.addPair(a, c);
371 <        exclude_.addPair(a, d);
372 <        exclude_.addPair(b, c);
373 <        exclude_.addPair(b, d);
374 <        exclude_.addPair(c, d);        
369 >      exclude_.addPair(a, b);
370 >      exclude_.addPair(a, c);
371 >      exclude_.addPair(a, d);
372 >      exclude_.addPair(b, c);
373 >      exclude_.addPair(b, d);
374 >      exclude_.addPair(c, d);        
375      }
376  
377 <    
378 < }
377 >    Molecule::RigidBodyIterator rbIter;
378 >    RigidBody* rb;
379 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
380 >      std::vector<Atom*> atoms = rb->getAtoms();
381 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
382 >        for (int j = i + 1; j < atoms.size(); ++j) {
383 >          a = atoms[i]->getGlobalIndex();
384 >          b = atoms[j]->getGlobalIndex();
385 >          exclude_.addPair(a, b);
386 >        }
387 >      }
388 >    }        
389  
390 < void SimInfo::removeExcludePairs(Molecule* mol) {
390 >  }
391 >
392 >  void SimInfo::removeExcludePairs(Molecule* mol) {
393      std::vector<Bond*>::iterator bondIter;
394      std::vector<Bend*>::iterator bendIter;
395      std::vector<Torsion*>::iterator torsionIter;
# Line 379 | Line 402 | void SimInfo::removeExcludePairs(Molecule* mol) {
402      int d;
403      
404      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
405 <        a = bond->getAtomA()->getGlobalIndex();
406 <        b = bond->getAtomB()->getGlobalIndex();        
407 <        exclude_.removePair(a, b);
405 >      a = bond->getAtomA()->getGlobalIndex();
406 >      b = bond->getAtomB()->getGlobalIndex();        
407 >      exclude_.removePair(a, b);
408      }
409  
410      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
411 <        a = bend->getAtomA()->getGlobalIndex();
412 <        b = bend->getAtomB()->getGlobalIndex();        
413 <        c = bend->getAtomC()->getGlobalIndex();
411 >      a = bend->getAtomA()->getGlobalIndex();
412 >      b = bend->getAtomB()->getGlobalIndex();        
413 >      c = bend->getAtomC()->getGlobalIndex();
414  
415 <        exclude_.removePair(a, b);
416 <        exclude_.removePair(a, c);
417 <        exclude_.removePair(b, c);        
415 >      exclude_.removePair(a, b);
416 >      exclude_.removePair(a, c);
417 >      exclude_.removePair(b, c);        
418      }
419  
420      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
421 <        a = torsion->getAtomA()->getGlobalIndex();
422 <        b = torsion->getAtomB()->getGlobalIndex();        
423 <        c = torsion->getAtomC()->getGlobalIndex();        
424 <        d = torsion->getAtomD()->getGlobalIndex();        
421 >      a = torsion->getAtomA()->getGlobalIndex();
422 >      b = torsion->getAtomB()->getGlobalIndex();        
423 >      c = torsion->getAtomC()->getGlobalIndex();        
424 >      d = torsion->getAtomD()->getGlobalIndex();        
425  
426 <        exclude_.removePair(a, b);
427 <        exclude_.removePair(a, c);
428 <        exclude_.removePair(a, d);
429 <        exclude_.removePair(b, c);
430 <        exclude_.removePair(b, d);
431 <        exclude_.removePair(c, d);        
426 >      exclude_.removePair(a, b);
427 >      exclude_.removePair(a, c);
428 >      exclude_.removePair(a, d);
429 >      exclude_.removePair(b, c);
430 >      exclude_.removePair(b, d);
431 >      exclude_.removePair(c, d);        
432      }
433  
434 < }
434 >    Molecule::RigidBodyIterator rbIter;
435 >    RigidBody* rb;
436 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
437 >      std::vector<Atom*> atoms = rb->getAtoms();
438 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
439 >        for (int j = i + 1; j < atoms.size(); ++j) {
440 >          a = atoms[i]->getGlobalIndex();
441 >          b = atoms[j]->getGlobalIndex();
442 >          exclude_.removePair(a, b);
443 >        }
444 >      }
445 >    }        
446  
447 +  }
448  
449 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
449 >
450 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
451      int curStampId;
452  
453      //index from 0
# Line 419 | Line 455 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
455  
456      moleculeStamps_.push_back(molStamp);
457      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
458 < }
458 >  }
459  
460 < void SimInfo::update() {
460 >  void SimInfo::update() {
461  
462      setupSimType();
463  
# Line 434 | Line 470 | void SimInfo::update() {
470      //setup fortran force field
471      /** @deprecate */    
472      int isError = 0;
473 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
473 >    
474 >    setupElectrostaticSummationMethod( isError );
475 >
476      if(isError){
477 <        sprintf( painCave.errMsg,
478 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
479 <        painCave.isFatal = 1;
480 <        simError();
477 >      sprintf( painCave.errMsg,
478 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
479 >      painCave.isFatal = 1;
480 >      simError();
481      }
482    
483      
# Line 450 | Line 488 | void SimInfo::update() {
488      calcNdfTrans();
489  
490      fortranInitialized_ = true;
491 < }
491 >  }
492  
493 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
493 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
494      SimInfo::MoleculeIterator mi;
495      Molecule* mol;
496      Molecule::AtomIterator ai;
# Line 461 | Line 499 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
499  
500      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
501  
502 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
503 <            atomTypes.insert(atom->getAtomType());
504 <        }
502 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
503 >        atomTypes.insert(atom->getAtomType());
504 >      }
505          
506      }
507  
508      return atomTypes;        
509 < }
509 >  }
510  
511 < void SimInfo::setupSimType() {
511 >  void SimInfo::setupSimType() {
512      std::set<AtomType*>::iterator i;
513      std::set<AtomType*> atomTypes;
514      atomTypes = getUniqueAtomTypes();
# Line 483 | Line 521 | void SimInfo::setupSimType() {
521      int useDipole = 0;
522      int useGayBerne = 0;
523      int useSticky = 0;
524 +    int useStickyPower = 0;
525      int useShape = 0;
526      int useFLARB = 0; //it is not in AtomType yet
527      int useDirectionalAtom = 0;    
528      int useElectrostatics = 0;
529      //usePBC and useRF are from simParams
530 <    int usePBC = simParams_->getPBC();
531 <    int useRF = simParams_->getUseRF();
530 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
531 >    int useRF;
532 >    int useDW;
533 >    std::string myMethod;
534  
535 +    // set the useRF logical
536 +    useRF = 0;
537 +    useDW = 0;
538 +
539 +
540 +    if (simParams_->haveElectrostaticSummationMethod()) {
541 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
542 +      toUpper(myMethod);
543 +      if (myMethod == "REACTION_FIELD") {
544 +        useRF=1;
545 +      } else {
546 +        if (myMethod == "SHIFTED_POTENTIAL") {
547 +          useDW = 1;
548 +        }
549 +      }
550 +    }
551 +
552      //loop over all of the atom types
553      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
554 <        useLennardJones |= (*i)->isLennardJones();
555 <        useElectrostatic |= (*i)->isElectrostatic();
556 <        useEAM |= (*i)->isEAM();
557 <        useCharge |= (*i)->isCharge();
558 <        useDirectional |= (*i)->isDirectional();
559 <        useDipole |= (*i)->isDipole();
560 <        useGayBerne |= (*i)->isGayBerne();
561 <        useSticky |= (*i)->isSticky();
562 <        useShape |= (*i)->isShape();
554 >      useLennardJones |= (*i)->isLennardJones();
555 >      useElectrostatic |= (*i)->isElectrostatic();
556 >      useEAM |= (*i)->isEAM();
557 >      useCharge |= (*i)->isCharge();
558 >      useDirectional |= (*i)->isDirectional();
559 >      useDipole |= (*i)->isDipole();
560 >      useGayBerne |= (*i)->isGayBerne();
561 >      useSticky |= (*i)->isSticky();
562 >      useStickyPower |= (*i)->isStickyPower();
563 >      useShape |= (*i)->isShape();
564      }
565  
566 <    if (useSticky || useDipole || useGayBerne || useShape) {
567 <        useDirectionalAtom = 1;
566 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
567 >      useDirectionalAtom = 1;
568      }
569  
570      if (useCharge || useDipole) {
571 <        useElectrostatics = 1;
571 >      useElectrostatics = 1;
572      }
573  
574   #ifdef IS_MPI    
# Line 536 | Line 595 | void SimInfo::setupSimType() {
595      temp = useSticky;
596      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
597  
598 +    temp = useStickyPower;
599 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
600 +    
601      temp = useGayBerne;
602      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
603  
# Line 550 | Line 612 | void SimInfo::setupSimType() {
612  
613      temp = useRF;
614      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
615 <    
615 >
616 >    temp = useDW;
617 >    MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
618 >
619   #endif
620  
621      fInfo_.SIM_uses_PBC = usePBC;    
# Line 560 | Line 625 | void SimInfo::setupSimType() {
625      fInfo_.SIM_uses_Charges = useCharge;
626      fInfo_.SIM_uses_Dipoles = useDipole;
627      fInfo_.SIM_uses_Sticky = useSticky;
628 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
629      fInfo_.SIM_uses_GayBerne = useGayBerne;
630      fInfo_.SIM_uses_EAM = useEAM;
631      fInfo_.SIM_uses_Shapes = useShape;
632      fInfo_.SIM_uses_FLARB = useFLARB;
633      fInfo_.SIM_uses_RF = useRF;
634 +    fInfo_.SIM_uses_DampedWolf = useDW;
635  
636 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
637 <
638 <        if (simParams_->haveDielectric()) {
639 <            fInfo_.dielect = simParams_->getDielectric();
640 <        } else {
641 <            sprintf(painCave.errMsg,
642 <                    "SimSetup Error: No Dielectric constant was set.\n"
643 <                    "\tYou are trying to use Reaction Field without"
644 <                    "\tsetting a dielectric constant!\n");
645 <            painCave.isFatal = 1;
646 <            simError();
647 <        }
581 <        
582 <    } else {
583 <        fInfo_.dielect = 0.0;
636 >    if( myMethod == "REACTION_FIELD") {
637 >      
638 >      if (simParams_->haveDielectric()) {
639 >        fInfo_.dielect = simParams_->getDielectric();
640 >      } else {
641 >        sprintf(painCave.errMsg,
642 >                "SimSetup Error: No Dielectric constant was set.\n"
643 >                "\tYou are trying to use Reaction Field without"
644 >                "\tsetting a dielectric constant!\n");
645 >        painCave.isFatal = 1;
646 >        simError();
647 >      }      
648      }
649  
650 < }
650 >  }
651  
652 < void SimInfo::setupFortranSim() {
652 >  void SimInfo::setupFortranSim() {
653      int isError;
654      int nExclude;
655      std::vector<int> fortranGlobalGroupMembership;
# Line 595 | Line 659 | void SimInfo::setupFortranSim() {
659  
660      //globalGroupMembership_ is filled by SimCreator    
661      for (int i = 0; i < nGlobalAtoms_; i++) {
662 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
662 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
663      }
664  
665      //calculate mass ratio of cutoff group
# Line 612 | Line 676 | void SimInfo::setupFortranSim() {
676      mfact.reserve(getNCutoffGroups());
677      
678      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
679 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
679 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
680  
681 <            totalMass = cg->getMass();
682 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
683 <                        mfact.push_back(atom->getMass()/totalMass);
684 <            }
681 >        totalMass = cg->getMass();
682 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
683 >          // Check for massless groups - set mfact to 1 if true
684 >          if (totalMass != 0)
685 >            mfact.push_back(atom->getMass()/totalMass);
686 >          else
687 >            mfact.push_back( 1.0 );
688 >        }
689  
690 <        }      
690 >      }      
691      }
692  
693      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 629 | Line 697 | void SimInfo::setupFortranSim() {
697      identArray.reserve(getNAtoms());
698      
699      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
700 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
701 <            identArray.push_back(atom->getIdent());
702 <        }
700 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
701 >        identArray.push_back(atom->getIdent());
702 >      }
703      }    
704  
705      //fill molMembershipArray
706      //molMembershipArray is filled by SimCreator    
707      std::vector<int> molMembershipArray(nGlobalAtoms_);
708      for (int i = 0; i < nGlobalAtoms_; i++) {
709 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
709 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
710      }
711      
712      //setup fortran simulation
645    //gloalExcludes and molMembershipArray should go away (They are never used)
646    //why the hell fortran need to know molecule?
647    //OOPSE = Object-Obfuscated Parallel Simulation Engine
713      int nGlobalExcludes = 0;
714      int* globalExcludes = NULL;
715      int* excludeList = exclude_.getExcludeList();
716      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
717 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
718 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
717 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
718 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
719  
720      if( isError ){
721  
722 <        sprintf( painCave.errMsg,
723 <                 "There was an error setting the simulation information in fortran.\n" );
724 <        painCave.isFatal = 1;
725 <        painCave.severity = OOPSE_ERROR;
726 <        simError();
722 >      sprintf( painCave.errMsg,
723 >               "There was an error setting the simulation information in fortran.\n" );
724 >      painCave.isFatal = 1;
725 >      painCave.severity = OOPSE_ERROR;
726 >      simError();
727      }
728  
729   #ifdef IS_MPI
730      sprintf( checkPointMsg,
731 <       "succesfully sent the simulation information to fortran.\n");
731 >             "succesfully sent the simulation information to fortran.\n");
732      MPIcheckPoint();
733   #endif // is_mpi
734 < }
734 >  }
735  
736  
737   #ifdef IS_MPI
738 < void SimInfo::setupFortranParallel() {
738 >  void SimInfo::setupFortranParallel() {
739      
740      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
741      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 686 | Line 751 | void SimInfo::setupFortranParallel() {
751  
752      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
753  
754 <        //local index(index in DataStorge) of atom is important
755 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
756 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
757 <        }
754 >      //local index(index in DataStorge) of atom is important
755 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
756 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
757 >      }
758  
759 <        //local index of cutoff group is trivial, it only depends on the order of travesing
760 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
761 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
762 <        }        
759 >      //local index of cutoff group is trivial, it only depends on the order of travesing
760 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
761 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
762 >      }        
763          
764      }
765  
# Line 714 | Line 779 | void SimInfo::setupFortranParallel() {
779                      &localToGlobalCutoffGroupIndex[0], &isError);
780  
781      if (isError) {
782 <        sprintf(painCave.errMsg,
783 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
784 <        painCave.isFatal = 1;
785 <        simError();
782 >      sprintf(painCave.errMsg,
783 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
784 >      painCave.isFatal = 1;
785 >      simError();
786      }
787  
788      sprintf(checkPointMsg, " mpiRefresh successful.\n");
789      MPIcheckPoint();
790  
791  
792 < }
792 >  }
793  
794   #endif
795  
796 < double SimInfo::calcMaxCutoffRadius() {
796 >  double SimInfo::calcMaxCutoffRadius() {
797  
798  
799      std::set<AtomType*> atomTypes;
# Line 740 | Line 805 | double SimInfo::calcMaxCutoffRadius() {
805  
806      //query the max cutoff radius among these atom types
807      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
808 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
808 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
809      }
810  
811      double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
# Line 749 | Line 814 | double SimInfo::calcMaxCutoffRadius() {
814   #endif
815  
816      return maxCutoffRadius;
817 < }
817 >  }
818  
819 < void SimInfo::setupCutoff() {
755 <    double rcut_;  //cutoff radius
756 <    double rsw_; //switching radius
819 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
820      
821      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
822          
823 <        if (!simParams_->haveRcut()){
824 <            sprintf(painCave.errMsg,
823 >      if (!simParams_->haveCutoffRadius()){
824 >        sprintf(painCave.errMsg,
825                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
826                  "\tOOPSE will use a default value of 15.0 angstroms"
827                  "\tfor the cutoffRadius.\n");
828 <            painCave.isFatal = 0;
829 <            simError();
830 <            rcut_ = 15.0;
831 <        } else{
832 <            rcut_ = simParams_->getRcut();
833 <        }
828 >        painCave.isFatal = 0;
829 >        simError();
830 >        rcut = 15.0;
831 >      } else{
832 >        rcut = simParams_->getCutoffRadius();
833 >      }
834  
835 <        if (!simParams_->haveRsw()){
836 <            sprintf(painCave.errMsg,
835 >      if (!simParams_->haveSwitchingRadius()){
836 >        sprintf(painCave.errMsg,
837                  "SimCreator Warning: No value was set for switchingRadius.\n"
838                  "\tOOPSE will use a default value of\n"
839 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
840 <            painCave.isFatal = 0;
841 <            simError();
842 <            rsw_ = 0.95 * rcut_;
843 <        } else{
844 <            rsw_ = simParams_->getRsw();
845 <        }
839 >                "\t0.85 * cutoffRadius for the switchingRadius\n");
840 >        painCave.isFatal = 0;
841 >        simError();
842 >        rsw = 0.85 * rcut;
843 >      } else{
844 >        rsw = simParams_->getSwitchingRadius();
845 >      }
846  
847      } else {
848 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
849 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
848 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
849 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
850          
851 <        if (simParams_->haveRcut()) {
852 <            rcut_ = simParams_->getRcut();
853 <        } else {
854 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
855 <            rcut_ = calcMaxCutoffRadius();
856 <        }
851 >      if (simParams_->haveCutoffRadius()) {
852 >        rcut = simParams_->getCutoffRadius();
853 >      } else {
854 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
855 >        rcut = calcMaxCutoffRadius();
856 >      }
857  
858 <        if (simParams_->haveRsw()) {
859 <            rsw_  = simParams_->getRsw();
860 <        } else {
861 <            rsw_ = rcut_;
862 <        }
858 >      if (simParams_->haveSwitchingRadius()) {
859 >        rsw  = simParams_->getSwitchingRadius();
860 >      } else {
861 >        rsw = rcut;
862 >      }
863      
864      }
865 <        
865 >  }
866 >
867 >  void SimInfo::setupCutoff() {    
868 >    getCutoff(rcut_, rsw_);    
869      double rnblist = rcut_ + 1; // skin of neighbor list
870  
871      //Pass these cutoff radius etc. to fortran. This function should be called once and only once
872 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
873 < }
872 >    
873 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
874 >    if (simParams_->haveCutoffPolicy()) {
875 >      std::string myPolicy = simParams_->getCutoffPolicy();
876 >      toUpper(myPolicy);
877 >      if (myPolicy == "MIX") {
878 >        cp = MIX_CUTOFF_POLICY;
879 >      } else {
880 >        if (myPolicy == "MAX") {
881 >          cp = MAX_CUTOFF_POLICY;
882 >        } else {
883 >          if (myPolicy == "TRADITIONAL") {            
884 >            cp = TRADITIONAL_CUTOFF_POLICY;
885 >          } else {
886 >            // throw error        
887 >            sprintf( painCave.errMsg,
888 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
889 >            painCave.isFatal = 1;
890 >            simError();
891 >          }    
892 >        }          
893 >      }
894 >    }
895  
809 void SimInfo::addProperty(GenericData* genData) {
810    properties_.addProperty(genData);  
811 }
896  
897 < void SimInfo::removeProperty(const std::string& propName) {
898 <    properties_.removeProperty(propName);  
899 < }
897 >    if (simParams_->haveSkinThickness()) {
898 >      double skinThickness = simParams_->getSkinThickness();
899 >    }
900  
901 < void SimInfo::clearProperties() {
902 <    properties_.clearProperties();
903 < }
901 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
902 >    // also send cutoff notification to electrostatics
903 >    setElectrostaticCutoffRadius(&rcut_, &rsw_);
904 >  }
905  
906 < std::vector<std::string> SimInfo::getPropertyNames() {
907 <    return properties_.getPropertyNames();  
908 < }
909 <      
910 < std::vector<GenericData*> SimInfo::getProperties() {
911 <    return properties_.getProperties();
912 < }
906 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
907 >    
908 >    int errorOut;
909 >    int esm =  NONE;
910 >    int sm = UNDAMPED;
911 >    double alphaVal;
912 >    double dielectric;
913  
914 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
915 <    return properties_.getPropertyByName(propName);
916 < }
914 >    errorOut = isError;
915 >    alphaVal = simParams_->getDampingAlpha();
916 >    dielectric = simParams_->getDielectric();
917  
918 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
918 >    if (simParams_->haveElectrostaticSummationMethod()) {
919 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
920 >      toUpper(myMethod);
921 >      if (myMethod == "NONE") {
922 >        esm = NONE;
923 >      } else {
924 >        if (myMethod == "SWITCHING_FUNCTION") {
925 >          esm = SWITCHING_FUNCTION;
926 >        } else {
927 >          if (myMethod == "SHIFTED_POTENTIAL") {
928 >            esm = SHIFTED_POTENTIAL;
929 >          } else {
930 >            if (myMethod == "SHIFTED_FORCE") {            
931 >              esm = SHIFTED_FORCE;
932 >            } else {
933 >              if (myMethod == "REACTION_FIELD") {            
934 >                esm = REACTION_FIELD;
935 >              } else {
936 >                // throw error        
937 >                sprintf( painCave.errMsg,
938 >                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
939 >                painCave.isFatal = 1;
940 >                simError();
941 >              }    
942 >            }          
943 >          }
944 >        }
945 >      }
946 >    }
947 >    
948 >    if (simParams_->haveElectrostaticScreeningMethod()) {
949 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
950 >      toUpper(myScreen);
951 >      if (myScreen == "UNDAMPED") {
952 >        sm = UNDAMPED;
953 >      } else {
954 >        if (myScreen == "DAMPED") {
955 >          sm = DAMPED;
956 >          if (!simParams_->haveDampingAlpha()) {
957 >            //throw error
958 >            sprintf( painCave.errMsg,
959 >                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
960 >            painCave.isFatal = 0;
961 >            simError();
962 >          }
963 >        } else {
964 >          // throw error        
965 >          sprintf( painCave.errMsg,
966 >                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
967 >          painCave.isFatal = 1;
968 >          simError();
969 >        }
970 >      }
971 >    }
972 >    
973 >    // let's pass some summation method variables to fortran
974 >    setElectrostaticSummationMethod( &esm );
975 >    setScreeningMethod( &sm );
976 >    setDampingAlpha( &alphaVal );
977 >    setReactionFieldDielectric( &dielectric );
978 >    initFortranFF( &esm, &errorOut );
979 >  }
980 >
981 >  void SimInfo::addProperty(GenericData* genData) {
982 >    properties_.addProperty(genData);  
983 >  }
984 >
985 >  void SimInfo::removeProperty(const std::string& propName) {
986 >    properties_.removeProperty(propName);  
987 >  }
988 >
989 >  void SimInfo::clearProperties() {
990 >    properties_.clearProperties();
991 >  }
992 >
993 >  std::vector<std::string> SimInfo::getPropertyNames() {
994 >    return properties_.getPropertyNames();  
995 >  }
996 >      
997 >  std::vector<GenericData*> SimInfo::getProperties() {
998 >    return properties_.getProperties();
999 >  }
1000 >
1001 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1002 >    return properties_.getPropertyByName(propName);
1003 >  }
1004 >
1005 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1006 >    if (sman_ == sman) {
1007 >      return;
1008 >    }    
1009 >    delete sman_;
1010      sman_ = sman;
1011  
1012      Molecule* mol;
# Line 842 | Line 1018 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1018  
1019      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1020          
1021 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1022 <            atom->setSnapshotManager(sman_);
1023 <        }
1021 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1022 >        atom->setSnapshotManager(sman_);
1023 >      }
1024          
1025 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1026 <            rb->setSnapshotManager(sman_);
1027 <        }
1025 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1026 >        rb->setSnapshotManager(sman_);
1027 >      }
1028      }    
1029      
1030 < }
1030 >  }
1031  
1032 < Vector3d SimInfo::getComVel(){
1032 >  Vector3d SimInfo::getComVel(){
1033      SimInfo::MoleculeIterator i;
1034      Molecule* mol;
1035  
# Line 862 | Line 1038 | Vector3d SimInfo::getComVel(){
1038      
1039  
1040      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1041 <        double mass = mol->getMass();
1042 <        totalMass += mass;
1043 <        comVel += mass * mol->getComVel();
1041 >      double mass = mol->getMass();
1042 >      totalMass += mass;
1043 >      comVel += mass * mol->getComVel();
1044      }  
1045  
1046   #ifdef IS_MPI
# Line 877 | Line 1053 | Vector3d SimInfo::getComVel(){
1053      comVel /= totalMass;
1054  
1055      return comVel;
1056 < }
1056 >  }
1057  
1058 < Vector3d SimInfo::getCom(){
1058 >  Vector3d SimInfo::getCom(){
1059      SimInfo::MoleculeIterator i;
1060      Molecule* mol;
1061  
# Line 887 | Line 1063 | Vector3d SimInfo::getCom(){
1063      double totalMass = 0.0;
1064      
1065      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1066 <        double mass = mol->getMass();
1067 <        totalMass += mass;
1068 <        com += mass * mol->getCom();
1066 >      double mass = mol->getMass();
1067 >      totalMass += mass;
1068 >      com += mass * mol->getCom();
1069      }  
1070  
1071   #ifdef IS_MPI
# Line 903 | Line 1079 | Vector3d SimInfo::getCom(){
1079  
1080      return com;
1081  
1082 < }        
1082 >  }        
1083  
1084 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1084 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1085  
1086      return o;
1087 < }
1087 >  }
1088 >  
1089 >  
1090 >   /*
1091 >   Returns center of mass and center of mass velocity in one function call.
1092 >   */
1093 >  
1094 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1095 >      SimInfo::MoleculeIterator i;
1096 >      Molecule* mol;
1097 >      
1098 >    
1099 >      double totalMass = 0.0;
1100 >    
1101  
1102 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1103 +         double mass = mol->getMass();
1104 +         totalMass += mass;
1105 +         com += mass * mol->getCom();
1106 +         comVel += mass * mol->getComVel();          
1107 +      }  
1108 +      
1109 + #ifdef IS_MPI
1110 +      double tmpMass = totalMass;
1111 +      Vector3d tmpCom(com);  
1112 +      Vector3d tmpComVel(comVel);
1113 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1114 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1115 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1116 + #endif
1117 +      
1118 +      com /= totalMass;
1119 +      comVel /= totalMass;
1120 +   }        
1121 +  
1122 +   /*
1123 +   Return intertia tensor for entire system and angular momentum Vector.
1124 +
1125 +
1126 +       [  Ixx -Ixy  -Ixz ]
1127 +  J =| -Iyx  Iyy  -Iyz |
1128 +       [ -Izx -Iyz   Izz ]
1129 +    */
1130 +
1131 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1132 +      
1133 +
1134 +      double xx = 0.0;
1135 +      double yy = 0.0;
1136 +      double zz = 0.0;
1137 +      double xy = 0.0;
1138 +      double xz = 0.0;
1139 +      double yz = 0.0;
1140 +      Vector3d com(0.0);
1141 +      Vector3d comVel(0.0);
1142 +      
1143 +      getComAll(com, comVel);
1144 +      
1145 +      SimInfo::MoleculeIterator i;
1146 +      Molecule* mol;
1147 +      
1148 +      Vector3d thisq(0.0);
1149 +      Vector3d thisv(0.0);
1150 +
1151 +      double thisMass = 0.0;
1152 +    
1153 +      
1154 +      
1155 +  
1156 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1157 +        
1158 +         thisq = mol->getCom()-com;
1159 +         thisv = mol->getComVel()-comVel;
1160 +         thisMass = mol->getMass();
1161 +         // Compute moment of intertia coefficients.
1162 +         xx += thisq[0]*thisq[0]*thisMass;
1163 +         yy += thisq[1]*thisq[1]*thisMass;
1164 +         zz += thisq[2]*thisq[2]*thisMass;
1165 +        
1166 +         // compute products of intertia
1167 +         xy += thisq[0]*thisq[1]*thisMass;
1168 +         xz += thisq[0]*thisq[2]*thisMass;
1169 +         yz += thisq[1]*thisq[2]*thisMass;
1170 +            
1171 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1172 +            
1173 +      }  
1174 +      
1175 +      
1176 +      inertiaTensor(0,0) = yy + zz;
1177 +      inertiaTensor(0,1) = -xy;
1178 +      inertiaTensor(0,2) = -xz;
1179 +      inertiaTensor(1,0) = -xy;
1180 +      inertiaTensor(1,1) = xx + zz;
1181 +      inertiaTensor(1,2) = -yz;
1182 +      inertiaTensor(2,0) = -xz;
1183 +      inertiaTensor(2,1) = -yz;
1184 +      inertiaTensor(2,2) = xx + yy;
1185 +      
1186 + #ifdef IS_MPI
1187 +      Mat3x3d tmpI(inertiaTensor);
1188 +      Vector3d tmpAngMom;
1189 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1190 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1191 + #endif
1192 +              
1193 +      return;
1194 +   }
1195 +
1196 +   //Returns the angular momentum of the system
1197 +   Vector3d SimInfo::getAngularMomentum(){
1198 +      
1199 +      Vector3d com(0.0);
1200 +      Vector3d comVel(0.0);
1201 +      Vector3d angularMomentum(0.0);
1202 +      
1203 +      getComAll(com,comVel);
1204 +      
1205 +      SimInfo::MoleculeIterator i;
1206 +      Molecule* mol;
1207 +      
1208 +      Vector3d thisr(0.0);
1209 +      Vector3d thisp(0.0);
1210 +      
1211 +      double thisMass;
1212 +      
1213 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1214 +        thisMass = mol->getMass();
1215 +        thisr = mol->getCom()-com;
1216 +        thisp = (mol->getComVel()-comVel)*thisMass;
1217 +        
1218 +        angularMomentum += cross( thisr, thisp );
1219 +        
1220 +      }  
1221 +      
1222 + #ifdef IS_MPI
1223 +      Vector3d tmpAngMom;
1224 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1225 + #endif
1226 +      
1227 +      return angularMomentum;
1228 +   }
1229 +  
1230 +  
1231   }//end namespace oopse
1232  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines