ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1958 by tim, Tue Jan 25 21:59:18 2005 UTC vs.
Revision 2469 by tim, Fri Dec 2 15:38:03 2005 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "UseTheForce/fCutoffPolicy.h"
57 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60   #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63   #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65 + #include "selection/SelectionManager.hpp"
66  
67   #ifdef IS_MPI
68   #include "UseTheForce/mpiComponentPlan.h"
# Line 63 | Line 70 | namespace oopse {
70   #endif
71  
72   namespace oopse {
73 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
74 +    std::map<int, std::set<int> >::iterator i = container.find(index);
75 +    std::set<int> result;
76 +    if (i != container.end()) {
77 +        result = i->second;
78 +    }
79  
80 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
81 <                                ForceField* ff, Globals* simParams) :
82 <                                forceField_(ff), simParams_(simParams),
83 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
84 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
85 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
86 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
87 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
88 <                                sman_(NULL), fortranInitialized_(false) {
80 >    return result;
81 >  }
82 >  
83 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
84 >    forceField_(ff), simParams_(simParams),
85 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
86 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
87 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
88 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
89 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
90 >    sman_(NULL), fortranInitialized_(false) {
91  
92 <            
93 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
94 <    MoleculeStamp* molStamp;
95 <    int nMolWithSameStamp;
96 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
98 <    CutoffGroupStamp* cgStamp;    
99 <    RigidBodyStamp* rbStamp;
100 <    int nRigidAtoms = 0;
101 <    
102 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
103 <        molStamp = i->first;
89 <        nMolWithSameStamp = i->second;
92 >      MoleculeStamp* molStamp;
93 >      int nMolWithSameStamp;
94 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
95 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
96 >      CutoffGroupStamp* cgStamp;    
97 >      RigidBodyStamp* rbStamp;
98 >      int nRigidAtoms = 0;
99 >      std::vector<Component*> components = simParams->getComponents();
100 >      
101 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
102 >        molStamp = (*i)->getMoleculeStamp();
103 >        nMolWithSameStamp = (*i)->getNMol();
104          
105          addMoleculeStamp(molStamp, nMolWithSameStamp);
106  
107          //calculate atoms in molecules
108          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
109  
96
110          //calculate atoms in cutoff groups
111          int nAtomsInGroups = 0;
112          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
113          
114          for (int j=0; j < nCutoffGroupsInStamp; j++) {
115 <            cgStamp = molStamp->getCutoffGroup(j);
116 <            nAtomsInGroups += cgStamp->getNMembers();
115 >          cgStamp = molStamp->getCutoffGroupStamp(j);
116 >          nAtomsInGroups += cgStamp->getNMembers();
117          }
118  
119          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
120 +
121          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
122  
123          //calculate atoms in rigid bodies
# Line 111 | Line 125 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
125          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
126          
127          for (int j=0; j < nRigidBodiesInStamp; j++) {
128 <            rbStamp = molStamp->getRigidBody(j);
129 <            nAtomsInRigidBodies += rbStamp->getNMembers();
128 >          rbStamp = molStamp->getRigidBodyStamp(j);
129 >          nAtomsInRigidBodies += rbStamp->getNMembers();
130          }
131  
132          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
133          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
134          
135 <    }
135 >      }
136  
137 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
138 <    //therefore the total number of cutoff groups in the system is equal to
139 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
140 <    //file plus the number of cutoff groups defined in meta-data file
141 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
137 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
138 >      //group therefore the total number of cutoff groups in the system is
139 >      //equal to the total number of atoms minus number of atoms belong to
140 >      //cutoff group defined in meta-data file plus the number of cutoff
141 >      //groups defined in meta-data file
142 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
143  
144 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
145 <    //therefore the total number of  integrable objects in the system is equal to
146 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
147 <    //file plus the number of  rigid bodies defined in meta-data file
148 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
144 >      //every free atom (atom does not belong to rigid bodies) is an
145 >      //integrable object therefore the total number of integrable objects
146 >      //in the system is equal to the total number of atoms minus number of
147 >      //atoms belong to rigid body defined in meta-data file plus the number
148 >      //of rigid bodies defined in meta-data file
149 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
150 >                                                + nGlobalRigidBodies_;
151 >  
152 >      nGlobalMols_ = molStampIds_.size();
153  
135    nGlobalMols_ = molStampIds_.size();
136
154   #ifdef IS_MPI    
155 <    molToProcMap_.resize(nGlobalMols_);
155 >      molToProcMap_.resize(nGlobalMols_);
156   #endif
140    
141 }
157  
158 < SimInfo::~SimInfo() {
144 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
158 >    }
159  
160 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
161 <    
160 >  SimInfo::~SimInfo() {
161 >    std::map<int, Molecule*>::iterator i;
162 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
163 >      delete i->second;
164 >    }
165 >    molecules_.clear();
166 >      
167      delete sman_;
168      delete simParams_;
169      delete forceField_;
170 +  }
171  
172 < }
153 <
154 < int SimInfo::getNGlobalConstraints() {
172 >  int SimInfo::getNGlobalConstraints() {
173      int nGlobalConstraints;
174   #ifdef IS_MPI
175      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 160 | Line 178 | int SimInfo::getNGlobalConstraints() {
178      nGlobalConstraints =  nConstraints_;
179   #endif
180      return nGlobalConstraints;
181 < }
181 >  }
182  
183 < bool SimInfo::addMolecule(Molecule* mol) {
183 >  bool SimInfo::addMolecule(Molecule* mol) {
184      MoleculeIterator i;
185  
186      i = molecules_.find(mol->getGlobalIndex());
187      if (i == molecules_.end() ) {
188  
189 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
189 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
190          
191 <        nAtoms_ += mol->getNAtoms();
192 <        nBonds_ += mol->getNBonds();
193 <        nBends_ += mol->getNBends();
194 <        nTorsions_ += mol->getNTorsions();
195 <        nRigidBodies_ += mol->getNRigidBodies();
196 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
197 <        nCutoffGroups_ += mol->getNCutoffGroups();
198 <        nConstraints_ += mol->getNConstraintPairs();
191 >      nAtoms_ += mol->getNAtoms();
192 >      nBonds_ += mol->getNBonds();
193 >      nBends_ += mol->getNBends();
194 >      nTorsions_ += mol->getNTorsions();
195 >      nRigidBodies_ += mol->getNRigidBodies();
196 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
197 >      nCutoffGroups_ += mol->getNCutoffGroups();
198 >      nConstraints_ += mol->getNConstraintPairs();
199  
200 <        addExcludePairs(mol);
200 >      addExcludePairs(mol);
201          
202 <        return true;
202 >      return true;
203      } else {
204 <        return false;
204 >      return false;
205      }
206 < }
206 >  }
207  
208 < bool SimInfo::removeMolecule(Molecule* mol) {
208 >  bool SimInfo::removeMolecule(Molecule* mol) {
209      MoleculeIterator i;
210      i = molecules_.find(mol->getGlobalIndex());
211  
212      if (i != molecules_.end() ) {
213  
214 <        assert(mol == i->second);
214 >      assert(mol == i->second);
215          
216 <        nAtoms_ -= mol->getNAtoms();
217 <        nBonds_ -= mol->getNBonds();
218 <        nBends_ -= mol->getNBends();
219 <        nTorsions_ -= mol->getNTorsions();
220 <        nRigidBodies_ -= mol->getNRigidBodies();
221 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
222 <        nCutoffGroups_ -= mol->getNCutoffGroups();
223 <        nConstraints_ -= mol->getNConstraintPairs();
224 <
225 <        removeExcludePairs(mol);
226 <        molecules_.erase(mol->getGlobalIndex());
227 <
228 <        delete mol;
216 >      nAtoms_ -= mol->getNAtoms();
217 >      nBonds_ -= mol->getNBonds();
218 >      nBends_ -= mol->getNBends();
219 >      nTorsions_ -= mol->getNTorsions();
220 >      nRigidBodies_ -= mol->getNRigidBodies();
221 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
222 >      nCutoffGroups_ -= mol->getNCutoffGroups();
223 >      nConstraints_ -= mol->getNConstraintPairs();
224 >
225 >      removeExcludePairs(mol);
226 >      molecules_.erase(mol->getGlobalIndex());
227 >
228 >      delete mol;
229          
230 <        return true;
230 >      return true;
231      } else {
232 <        return false;
232 >      return false;
233      }
234  
235  
236 < }    
236 >  }    
237  
238          
239 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
239 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
240      i = molecules_.begin();
241      return i == molecules_.end() ? NULL : i->second;
242 < }    
242 >  }    
243  
244 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
244 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
245      ++i;
246      return i == molecules_.end() ? NULL : i->second;    
247 < }
247 >  }
248  
249  
250 < void SimInfo::calcNdf() {
250 >  void SimInfo::calcNdf() {
251      int ndf_local;
252      MoleculeIterator i;
253      std::vector<StuntDouble*>::iterator j;
# Line 239 | Line 257 | void SimInfo::calcNdf() {
257      ndf_local = 0;
258      
259      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
260 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
261 <               integrableObject = mol->nextIntegrableObject(j)) {
260 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
261 >           integrableObject = mol->nextIntegrableObject(j)) {
262  
263 <            ndf_local += 3;
263 >        ndf_local += 3;
264  
265 <            if (integrableObject->isDirectional()) {
266 <                if (integrableObject->isLinear()) {
267 <                    ndf_local += 2;
268 <                } else {
269 <                    ndf_local += 3;
270 <                }
271 <            }
265 >        if (integrableObject->isDirectional()) {
266 >          if (integrableObject->isLinear()) {
267 >            ndf_local += 2;
268 >          } else {
269 >            ndf_local += 3;
270 >          }
271 >        }
272              
273 <        }//end for (integrableObject)
274 <    }// end for (mol)
273 >      }
274 >    }
275      
276      // n_constraints is local, so subtract them on each processor
277      ndf_local -= nConstraints_;
# Line 268 | Line 286 | void SimInfo::calcNdf() {
286      // entire system:
287      ndf_ = ndf_ - 3 - nZconstraint_;
288  
289 < }
289 >  }
290  
291 < void SimInfo::calcNdfRaw() {
291 >  void SimInfo::calcNdfRaw() {
292      int ndfRaw_local;
293  
294      MoleculeIterator i;
# Line 282 | Line 300 | void SimInfo::calcNdfRaw() {
300      ndfRaw_local = 0;
301      
302      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
303 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
304 <               integrableObject = mol->nextIntegrableObject(j)) {
303 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
304 >           integrableObject = mol->nextIntegrableObject(j)) {
305  
306 <            ndfRaw_local += 3;
306 >        ndfRaw_local += 3;
307  
308 <            if (integrableObject->isDirectional()) {
309 <                if (integrableObject->isLinear()) {
310 <                    ndfRaw_local += 2;
311 <                } else {
312 <                    ndfRaw_local += 3;
313 <                }
314 <            }
308 >        if (integrableObject->isDirectional()) {
309 >          if (integrableObject->isLinear()) {
310 >            ndfRaw_local += 2;
311 >          } else {
312 >            ndfRaw_local += 3;
313 >          }
314 >        }
315              
316 <        }
316 >      }
317      }
318      
319   #ifdef IS_MPI
# Line 303 | Line 321 | void SimInfo::calcNdfRaw() {
321   #else
322      ndfRaw_ = ndfRaw_local;
323   #endif
324 < }
324 >  }
325  
326 < void SimInfo::calcNdfTrans() {
326 >  void SimInfo::calcNdfTrans() {
327      int ndfTrans_local;
328  
329      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 319 | Line 337 | void SimInfo::calcNdfTrans() {
337  
338      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
339  
340 < }
340 >  }
341  
342 < void SimInfo::addExcludePairs(Molecule* mol) {
342 >  void SimInfo::addExcludePairs(Molecule* mol) {
343      std::vector<Bond*>::iterator bondIter;
344      std::vector<Bend*>::iterator bendIter;
345      std::vector<Torsion*>::iterator torsionIter;
# Line 332 | Line 350 | void SimInfo::addExcludePairs(Molecule* mol) {
350      int b;
351      int c;
352      int d;
353 +
354 +    std::map<int, std::set<int> > atomGroups;
355 +
356 +    Molecule::RigidBodyIterator rbIter;
357 +    RigidBody* rb;
358 +    Molecule::IntegrableObjectIterator ii;
359 +    StuntDouble* integrableObject;
360      
361 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
362 +           integrableObject = mol->nextIntegrableObject(ii)) {
363 +
364 +      if (integrableObject->isRigidBody()) {
365 +          rb = static_cast<RigidBody*>(integrableObject);
366 +          std::vector<Atom*> atoms = rb->getAtoms();
367 +          std::set<int> rigidAtoms;
368 +          for (int i = 0; i < atoms.size(); ++i) {
369 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
370 +          }
371 +          for (int i = 0; i < atoms.size(); ++i) {
372 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
373 +          }      
374 +      } else {
375 +        std::set<int> oneAtomSet;
376 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
377 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
378 +      }
379 +    }  
380 +
381 +    
382 +    
383      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
384 <        a = bond->getAtomA()->getGlobalIndex();
385 <        b = bond->getAtomB()->getGlobalIndex();        
386 <        exclude_.addPair(a, b);
384 >      a = bond->getAtomA()->getGlobalIndex();
385 >      b = bond->getAtomB()->getGlobalIndex();        
386 >      exclude_.addPair(a, b);
387      }
388  
389      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
390 <        a = bend->getAtomA()->getGlobalIndex();
391 <        b = bend->getAtomB()->getGlobalIndex();        
392 <        c = bend->getAtomC()->getGlobalIndex();
390 >      a = bend->getAtomA()->getGlobalIndex();
391 >      b = bend->getAtomB()->getGlobalIndex();        
392 >      c = bend->getAtomC()->getGlobalIndex();
393 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
394 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
395 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
396  
397 <        exclude_.addPair(a, b);
398 <        exclude_.addPair(a, c);
399 <        exclude_.addPair(b, c);        
397 >      exclude_.addPairs(rigidSetA, rigidSetB);
398 >      exclude_.addPairs(rigidSetA, rigidSetC);
399 >      exclude_.addPairs(rigidSetB, rigidSetC);
400 >      
401 >      //exclude_.addPair(a, b);
402 >      //exclude_.addPair(a, c);
403 >      //exclude_.addPair(b, c);        
404      }
405  
406      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
407 <        a = torsion->getAtomA()->getGlobalIndex();
408 <        b = torsion->getAtomB()->getGlobalIndex();        
409 <        c = torsion->getAtomC()->getGlobalIndex();        
410 <        d = torsion->getAtomD()->getGlobalIndex();        
407 >      a = torsion->getAtomA()->getGlobalIndex();
408 >      b = torsion->getAtomB()->getGlobalIndex();        
409 >      c = torsion->getAtomC()->getGlobalIndex();        
410 >      d = torsion->getAtomD()->getGlobalIndex();        
411 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
412 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
413 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
414 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
415  
416 <        exclude_.addPair(a, b);
417 <        exclude_.addPair(a, c);
418 <        exclude_.addPair(a, d);
419 <        exclude_.addPair(b, c);
420 <        exclude_.addPair(b, d);
421 <        exclude_.addPair(c, d);        
416 >      exclude_.addPairs(rigidSetA, rigidSetB);
417 >      exclude_.addPairs(rigidSetA, rigidSetC);
418 >      exclude_.addPairs(rigidSetA, rigidSetD);
419 >      exclude_.addPairs(rigidSetB, rigidSetC);
420 >      exclude_.addPairs(rigidSetB, rigidSetD);
421 >      exclude_.addPairs(rigidSetC, rigidSetD);
422 >
423 >      /*
424 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
425 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
426 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
427 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
428 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
429 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
430 >        
431 >      
432 >      exclude_.addPair(a, b);
433 >      exclude_.addPair(a, c);
434 >      exclude_.addPair(a, d);
435 >      exclude_.addPair(b, c);
436 >      exclude_.addPair(b, d);
437 >      exclude_.addPair(c, d);        
438 >      */
439      }
440  
441 <    
442 < }
441 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
442 >      std::vector<Atom*> atoms = rb->getAtoms();
443 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
444 >        for (int j = i + 1; j < atoms.size(); ++j) {
445 >          a = atoms[i]->getGlobalIndex();
446 >          b = atoms[j]->getGlobalIndex();
447 >          exclude_.addPair(a, b);
448 >        }
449 >      }
450 >    }        
451  
452 < void SimInfo::removeExcludePairs(Molecule* mol) {
452 >  }
453 >
454 >  void SimInfo::removeExcludePairs(Molecule* mol) {
455      std::vector<Bond*>::iterator bondIter;
456      std::vector<Bend*>::iterator bendIter;
457      std::vector<Torsion*>::iterator torsionIter;
# Line 377 | Line 462 | void SimInfo::removeExcludePairs(Molecule* mol) {
462      int b;
463      int c;
464      int d;
465 +
466 +    std::map<int, std::set<int> > atomGroups;
467 +
468 +    Molecule::RigidBodyIterator rbIter;
469 +    RigidBody* rb;
470 +    Molecule::IntegrableObjectIterator ii;
471 +    StuntDouble* integrableObject;
472      
473 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
474 +           integrableObject = mol->nextIntegrableObject(ii)) {
475 +
476 +      if (integrableObject->isRigidBody()) {
477 +          rb = static_cast<RigidBody*>(integrableObject);
478 +          std::vector<Atom*> atoms = rb->getAtoms();
479 +          std::set<int> rigidAtoms;
480 +          for (int i = 0; i < atoms.size(); ++i) {
481 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
482 +          }
483 +          for (int i = 0; i < atoms.size(); ++i) {
484 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
485 +          }      
486 +      } else {
487 +        std::set<int> oneAtomSet;
488 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
489 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
490 +      }
491 +    }  
492 +
493 +    
494      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
495 <        a = bond->getAtomA()->getGlobalIndex();
496 <        b = bond->getAtomB()->getGlobalIndex();        
497 <        exclude_.removePair(a, b);
495 >      a = bond->getAtomA()->getGlobalIndex();
496 >      b = bond->getAtomB()->getGlobalIndex();        
497 >      exclude_.removePair(a, b);
498      }
499  
500      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
501 <        a = bend->getAtomA()->getGlobalIndex();
502 <        b = bend->getAtomB()->getGlobalIndex();        
503 <        c = bend->getAtomC()->getGlobalIndex();
501 >      a = bend->getAtomA()->getGlobalIndex();
502 >      b = bend->getAtomB()->getGlobalIndex();        
503 >      c = bend->getAtomC()->getGlobalIndex();
504  
505 <        exclude_.removePair(a, b);
506 <        exclude_.removePair(a, c);
507 <        exclude_.removePair(b, c);        
505 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
506 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
507 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
508 >
509 >      exclude_.removePairs(rigidSetA, rigidSetB);
510 >      exclude_.removePairs(rigidSetA, rigidSetC);
511 >      exclude_.removePairs(rigidSetB, rigidSetC);
512 >      
513 >      //exclude_.removePair(a, b);
514 >      //exclude_.removePair(a, c);
515 >      //exclude_.removePair(b, c);        
516      }
517  
518      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
519 <        a = torsion->getAtomA()->getGlobalIndex();
520 <        b = torsion->getAtomB()->getGlobalIndex();        
521 <        c = torsion->getAtomC()->getGlobalIndex();        
522 <        d = torsion->getAtomD()->getGlobalIndex();        
519 >      a = torsion->getAtomA()->getGlobalIndex();
520 >      b = torsion->getAtomB()->getGlobalIndex();        
521 >      c = torsion->getAtomC()->getGlobalIndex();        
522 >      d = torsion->getAtomD()->getGlobalIndex();        
523  
524 <        exclude_.removePair(a, b);
525 <        exclude_.removePair(a, c);
526 <        exclude_.removePair(a, d);
527 <        exclude_.removePair(b, c);
528 <        exclude_.removePair(b, d);
529 <        exclude_.removePair(c, d);        
524 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
525 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
526 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
527 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
528 >
529 >      exclude_.removePairs(rigidSetA, rigidSetB);
530 >      exclude_.removePairs(rigidSetA, rigidSetC);
531 >      exclude_.removePairs(rigidSetA, rigidSetD);
532 >      exclude_.removePairs(rigidSetB, rigidSetC);
533 >      exclude_.removePairs(rigidSetB, rigidSetD);
534 >      exclude_.removePairs(rigidSetC, rigidSetD);
535 >
536 >      /*
537 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
538 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
539 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
540 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
541 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
542 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
543 >
544 >      
545 >      exclude_.removePair(a, b);
546 >      exclude_.removePair(a, c);
547 >      exclude_.removePair(a, d);
548 >      exclude_.removePair(b, c);
549 >      exclude_.removePair(b, d);
550 >      exclude_.removePair(c, d);        
551 >      */
552      }
553  
554 < }
554 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
555 >      std::vector<Atom*> atoms = rb->getAtoms();
556 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
557 >        for (int j = i + 1; j < atoms.size(); ++j) {
558 >          a = atoms[i]->getGlobalIndex();
559 >          b = atoms[j]->getGlobalIndex();
560 >          exclude_.removePair(a, b);
561 >        }
562 >      }
563 >    }        
564  
565 +  }
566  
567 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
567 >
568 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
569      int curStampId;
570  
571      //index from 0
# Line 419 | Line 573 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
573  
574      moleculeStamps_.push_back(molStamp);
575      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
576 < }
576 >  }
577  
578 < void SimInfo::update() {
578 >  void SimInfo::update() {
579  
580      setupSimType();
581  
# Line 434 | Line 588 | void SimInfo::update() {
588      //setup fortran force field
589      /** @deprecate */    
590      int isError = 0;
591 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
591 >    
592 >    setupElectrostaticSummationMethod( isError );
593 >    setupSwitchingFunction();
594 >
595      if(isError){
596 <        sprintf( painCave.errMsg,
597 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
598 <        painCave.isFatal = 1;
599 <        simError();
596 >      sprintf( painCave.errMsg,
597 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
598 >      painCave.isFatal = 1;
599 >      simError();
600      }
601    
602      
# Line 450 | Line 607 | void SimInfo::update() {
607      calcNdfTrans();
608  
609      fortranInitialized_ = true;
610 < }
610 >  }
611  
612 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
612 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
613      SimInfo::MoleculeIterator mi;
614      Molecule* mol;
615      Molecule::AtomIterator ai;
# Line 461 | Line 618 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
618  
619      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
620  
621 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
622 <            atomTypes.insert(atom->getAtomType());
623 <        }
621 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
622 >        atomTypes.insert(atom->getAtomType());
623 >      }
624          
625      }
626  
627      return atomTypes;        
628 < }
628 >  }
629  
630 < void SimInfo::setupSimType() {
630 >  void SimInfo::setupSimType() {
631      std::set<AtomType*>::iterator i;
632      std::set<AtomType*> atomTypes;
633      atomTypes = getUniqueAtomTypes();
# Line 478 | Line 635 | void SimInfo::setupSimType() {
635      int useLennardJones = 0;
636      int useElectrostatic = 0;
637      int useEAM = 0;
638 +    int useSC = 0;
639      int useCharge = 0;
640      int useDirectional = 0;
641      int useDipole = 0;
642      int useGayBerne = 0;
643      int useSticky = 0;
644 +    int useStickyPower = 0;
645      int useShape = 0;
646      int useFLARB = 0; //it is not in AtomType yet
647      int useDirectionalAtom = 0;    
648      int useElectrostatics = 0;
649      //usePBC and useRF are from simParams
650 <    int usePBC = simParams_->getPBC();
651 <    int useRF = simParams_->getUseRF();
650 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
651 >    int useRF;
652 >    int useSF;
653 >    std::string myMethod;
654  
655 +    // set the useRF logical
656 +    useRF = 0;
657 +    useSF = 0;
658 +
659 +
660 +    if (simParams_->haveElectrostaticSummationMethod()) {
661 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
662 +      toUpper(myMethod);
663 +      if (myMethod == "REACTION_FIELD") {
664 +        useRF=1;
665 +      } else {
666 +        if (myMethod == "SHIFTED_FORCE") {
667 +          useSF = 1;
668 +        }
669 +      }
670 +    }
671 +
672      //loop over all of the atom types
673      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
674 <        useLennardJones |= (*i)->isLennardJones();
675 <        useElectrostatic |= (*i)->isElectrostatic();
676 <        useEAM |= (*i)->isEAM();
677 <        useCharge |= (*i)->isCharge();
678 <        useDirectional |= (*i)->isDirectional();
679 <        useDipole |= (*i)->isDipole();
680 <        useGayBerne |= (*i)->isGayBerne();
681 <        useSticky |= (*i)->isSticky();
682 <        useShape |= (*i)->isShape();
674 >      useLennardJones |= (*i)->isLennardJones();
675 >      useElectrostatic |= (*i)->isElectrostatic();
676 >      useEAM |= (*i)->isEAM();
677 >      useSC |= (*i)->isSC();
678 >      useCharge |= (*i)->isCharge();
679 >      useDirectional |= (*i)->isDirectional();
680 >      useDipole |= (*i)->isDipole();
681 >      useGayBerne |= (*i)->isGayBerne();
682 >      useSticky |= (*i)->isSticky();
683 >      useStickyPower |= (*i)->isStickyPower();
684 >      useShape |= (*i)->isShape();
685      }
686  
687 <    if (useSticky || useDipole || useGayBerne || useShape) {
688 <        useDirectionalAtom = 1;
687 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
688 >      useDirectionalAtom = 1;
689      }
690  
691      if (useCharge || useDipole) {
692 <        useElectrostatics = 1;
692 >      useElectrostatics = 1;
693      }
694  
695   #ifdef IS_MPI    
# Line 536 | Line 716 | void SimInfo::setupSimType() {
716      temp = useSticky;
717      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
718  
719 +    temp = useStickyPower;
720 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
721 +    
722      temp = useGayBerne;
723      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724  
725      temp = useEAM;
726      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727  
728 +    temp = useSC;
729 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
730 +    
731      temp = useShape;
732      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
733  
# Line 550 | Line 736 | void SimInfo::setupSimType() {
736  
737      temp = useRF;
738      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739 <    
739 >
740 >    temp = useSF;
741 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 >
743   #endif
744  
745      fInfo_.SIM_uses_PBC = usePBC;    
# Line 560 | Line 749 | void SimInfo::setupSimType() {
749      fInfo_.SIM_uses_Charges = useCharge;
750      fInfo_.SIM_uses_Dipoles = useDipole;
751      fInfo_.SIM_uses_Sticky = useSticky;
752 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
753      fInfo_.SIM_uses_GayBerne = useGayBerne;
754      fInfo_.SIM_uses_EAM = useEAM;
755 +    fInfo_.SIM_uses_SC = useSC;
756      fInfo_.SIM_uses_Shapes = useShape;
757      fInfo_.SIM_uses_FLARB = useFLARB;
758      fInfo_.SIM_uses_RF = useRF;
759 +    fInfo_.SIM_uses_SF = useSF;
760  
761 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
762 <
763 <        if (simParams_->haveDielectric()) {
764 <            fInfo_.dielect = simParams_->getDielectric();
765 <        } else {
766 <            sprintf(painCave.errMsg,
767 <                    "SimSetup Error: No Dielectric constant was set.\n"
768 <                    "\tYou are trying to use Reaction Field without"
769 <                    "\tsetting a dielectric constant!\n");
770 <            painCave.isFatal = 1;
771 <            simError();
772 <        }
581 <        
582 <    } else {
583 <        fInfo_.dielect = 0.0;
761 >    if( myMethod == "REACTION_FIELD") {
762 >      
763 >      if (simParams_->haveDielectric()) {
764 >        fInfo_.dielect = simParams_->getDielectric();
765 >      } else {
766 >        sprintf(painCave.errMsg,
767 >                "SimSetup Error: No Dielectric constant was set.\n"
768 >                "\tYou are trying to use Reaction Field without"
769 >                "\tsetting a dielectric constant!\n");
770 >        painCave.isFatal = 1;
771 >        simError();
772 >      }      
773      }
774  
775 < }
775 >  }
776  
777 < void SimInfo::setupFortranSim() {
777 >  void SimInfo::setupFortranSim() {
778      int isError;
779      int nExclude;
780      std::vector<int> fortranGlobalGroupMembership;
# Line 595 | Line 784 | void SimInfo::setupFortranSim() {
784  
785      //globalGroupMembership_ is filled by SimCreator    
786      for (int i = 0; i < nGlobalAtoms_; i++) {
787 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
787 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
788      }
789  
790      //calculate mass ratio of cutoff group
# Line 612 | Line 801 | void SimInfo::setupFortranSim() {
801      mfact.reserve(getNCutoffGroups());
802      
803      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
804 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
804 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
805  
806 <            totalMass = cg->getMass();
807 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
808 <                        mfact.push_back(atom->getMass()/totalMass);
809 <            }
806 >        totalMass = cg->getMass();
807 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
808 >          // Check for massless groups - set mfact to 1 if true
809 >          if (totalMass != 0)
810 >            mfact.push_back(atom->getMass()/totalMass);
811 >          else
812 >            mfact.push_back( 1.0 );
813 >        }
814  
815 <        }      
815 >      }      
816      }
817  
818      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 629 | Line 822 | void SimInfo::setupFortranSim() {
822      identArray.reserve(getNAtoms());
823      
824      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
825 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
826 <            identArray.push_back(atom->getIdent());
827 <        }
825 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
826 >        identArray.push_back(atom->getIdent());
827 >      }
828      }    
829  
830      //fill molMembershipArray
831      //molMembershipArray is filled by SimCreator    
832      std::vector<int> molMembershipArray(nGlobalAtoms_);
833      for (int i = 0; i < nGlobalAtoms_; i++) {
834 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
834 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
835      }
836      
837      //setup fortran simulation
645    //gloalExcludes and molMembershipArray should go away (They are never used)
646    //why the hell fortran need to know molecule?
647    //OOPSE = Object-Obfuscated Parallel Simulation Engine
838      int nGlobalExcludes = 0;
839      int* globalExcludes = NULL;
840      int* excludeList = exclude_.getExcludeList();
841      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
842 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
843 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
842 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
843 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
844  
845      if( isError ){
846  
847 <        sprintf( painCave.errMsg,
848 <                 "There was an error setting the simulation information in fortran.\n" );
849 <        painCave.isFatal = 1;
850 <        painCave.severity = OOPSE_ERROR;
851 <        simError();
847 >      sprintf( painCave.errMsg,
848 >               "There was an error setting the simulation information in fortran.\n" );
849 >      painCave.isFatal = 1;
850 >      painCave.severity = OOPSE_ERROR;
851 >      simError();
852      }
853  
854   #ifdef IS_MPI
855      sprintf( checkPointMsg,
856 <       "succesfully sent the simulation information to fortran.\n");
856 >             "succesfully sent the simulation information to fortran.\n");
857      MPIcheckPoint();
858   #endif // is_mpi
859 < }
859 >  }
860  
861  
862   #ifdef IS_MPI
863 < void SimInfo::setupFortranParallel() {
863 >  void SimInfo::setupFortranParallel() {
864      
865      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
866      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 686 | Line 876 | void SimInfo::setupFortranParallel() {
876  
877      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
878  
879 <        //local index(index in DataStorge) of atom is important
880 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
881 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
882 <        }
879 >      //local index(index in DataStorge) of atom is important
880 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
881 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
882 >      }
883  
884 <        //local index of cutoff group is trivial, it only depends on the order of travesing
885 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
886 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
887 <        }        
884 >      //local index of cutoff group is trivial, it only depends on the order of travesing
885 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
886 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
887 >      }        
888          
889      }
890  
# Line 714 | Line 904 | void SimInfo::setupFortranParallel() {
904                      &localToGlobalCutoffGroupIndex[0], &isError);
905  
906      if (isError) {
907 <        sprintf(painCave.errMsg,
908 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
909 <        painCave.isFatal = 1;
910 <        simError();
907 >      sprintf(painCave.errMsg,
908 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
909 >      painCave.isFatal = 1;
910 >      simError();
911      }
912  
913      sprintf(checkPointMsg, " mpiRefresh successful.\n");
914      MPIcheckPoint();
915  
916  
917 < }
917 >  }
918  
919   #endif
920  
921 < double SimInfo::calcMaxCutoffRadius() {
732 <
733 <
734 <    std::set<AtomType*> atomTypes;
735 <    std::set<AtomType*>::iterator i;
736 <    std::vector<double> cutoffRadius;
737 <
738 <    //get the unique atom types
739 <    atomTypes = getUniqueAtomTypes();
740 <
741 <    //query the max cutoff radius among these atom types
742 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
743 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
744 <    }
745 <
746 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
747 < #ifdef IS_MPI
748 <    //pick the max cutoff radius among the processors
749 < #endif
750 <
751 <    return maxCutoffRadius;
752 < }
753 <
754 < void SimInfo::setupCutoff() {
755 <    double rcut_;  //cutoff radius
756 <    double rsw_; //switching radius
921 >  void SimInfo::setupCutoff() {          
922      
923 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
923 >    // Check the cutoff policy
924 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
925 >    if (simParams_->haveCutoffPolicy()) {
926 >      std::string myPolicy = simParams_->getCutoffPolicy();
927 >      toUpper(myPolicy);
928 >      if (myPolicy == "MIX") {
929 >        cp = MIX_CUTOFF_POLICY;
930 >      } else {
931 >        if (myPolicy == "MAX") {
932 >          cp = MAX_CUTOFF_POLICY;
933 >        } else {
934 >          if (myPolicy == "TRADITIONAL") {            
935 >            cp = TRADITIONAL_CUTOFF_POLICY;
936 >          } else {
937 >            // throw error        
938 >            sprintf( painCave.errMsg,
939 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
940 >            painCave.isFatal = 1;
941 >            simError();
942 >          }    
943 >        }          
944 >      }
945 >    }          
946 >    notifyFortranCutoffPolicy(&cp);
947 >
948 >    // Check the Skin Thickness for neighborlists
949 >    double skin;
950 >    if (simParams_->haveSkinThickness()) {
951 >      skin = simParams_->getSkinThickness();
952 >      notifyFortranSkinThickness(&skin);
953 >    }            
954          
955 <        if (!simParams_->haveRcut()){
956 <            sprintf(painCave.errMsg,
955 >    // Check if the cutoff was set explicitly:
956 >    if (simParams_->haveCutoffRadius()) {
957 >      rcut_ = simParams_->getCutoffRadius();
958 >      if (simParams_->haveSwitchingRadius()) {
959 >        rsw_  = simParams_->getSwitchingRadius();
960 >      } else {
961 >        rsw_ = rcut_;
962 >      }
963 >      notifyFortranCutoffs(&rcut_, &rsw_);
964 >      
965 >    } else {
966 >      
967 >      // For electrostatic atoms, we'll assume a large safe value:
968 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
969 >        sprintf(painCave.errMsg,
970                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
971                  "\tOOPSE will use a default value of 15.0 angstroms"
972                  "\tfor the cutoffRadius.\n");
973 <            painCave.isFatal = 0;
974 <            simError();
975 <            rcut_ = 15.0;
976 <        } else{
977 <            rcut_ = simParams_->getRcut();
973 >        painCave.isFatal = 0;
974 >        simError();
975 >        rcut_ = 15.0;
976 >      
977 >        if (simParams_->haveElectrostaticSummationMethod()) {
978 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
979 >          toUpper(myMethod);
980 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
981 >            if (simParams_->haveSwitchingRadius()){
982 >              sprintf(painCave.errMsg,
983 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
984 >                      "\teven though the electrostaticSummationMethod was\n"
985 >                      "\tset to %s\n", myMethod.c_str());
986 >              painCave.isFatal = 1;
987 >              simError();            
988 >            }
989 >          }
990          }
991 <
992 <        if (!simParams_->haveRsw()){
993 <            sprintf(painCave.errMsg,
994 <                "SimCreator Warning: No value was set for switchingRadius.\n"
995 <                "\tOOPSE will use a default value of\n"
996 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
997 <            painCave.isFatal = 0;
998 <            simError();
999 <            rsw_ = 0.95 * rcut_;
1000 <        } else{
1001 <            rsw_ = simParams_->getRsw();
991 >      
992 >        if (simParams_->haveSwitchingRadius()){
993 >          rsw_ = simParams_->getSwitchingRadius();
994 >        } else {        
995 >          sprintf(painCave.errMsg,
996 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
997 >                  "\tOOPSE will use a default value of\n"
998 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
999 >          painCave.isFatal = 0;
1000 >          simError();
1001 >          rsw_ = 0.85 * rcut_;
1002          }
1003 <
1004 <    } else {
1005 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1006 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1003 >        notifyFortranCutoffs(&rcut_, &rsw_);
1004 >      } else {
1005 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1006 >        // We'll punt and let fortran figure out the cutoffs later.
1007          
1008 <        if (simParams_->haveRcut()) {
789 <            rcut_ = simParams_->getRcut();
790 <        } else {
791 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
792 <            rcut_ = calcMaxCutoffRadius();
793 <        }
1008 >        notifyFortranYouAreOnYourOwn();
1009  
1010 <        if (simParams_->haveRsw()) {
796 <            rsw_  = simParams_->getRsw();
797 <        } else {
798 <            rsw_ = rcut_;
799 <        }
800 <    
1010 >      }
1011      }
1012 <        
803 <    double rnblist = rcut_ + 1; // skin of neighbor list
1012 >  }
1013  
1014 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1015 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1016 < }
1014 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1015 >    
1016 >    int errorOut;
1017 >    int esm =  NONE;
1018 >    int sm = UNDAMPED;
1019 >    double alphaVal;
1020 >    double dielectric;
1021  
1022 < void SimInfo::addProperty(GenericData* genData) {
1023 <    properties_.addProperty(genData);  
1024 < }
1022 >    errorOut = isError;
1023 >    alphaVal = simParams_->getDampingAlpha();
1024 >    dielectric = simParams_->getDielectric();
1025  
1026 < void SimInfo::removeProperty(const std::string& propName) {
1027 <    properties_.removeProperty(propName);  
1028 < }
1029 <
1030 < void SimInfo::clearProperties() {
1031 <    properties_.clearProperties();
1032 < }
1033 <
1034 < std::vector<std::string> SimInfo::getPropertyNames() {
1035 <    return properties_.getPropertyNames();  
1036 < }
1037 <      
1038 < std::vector<GenericData*> SimInfo::getProperties() {
1039 <    return properties_.getProperties();
1040 < }
1041 <
1042 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1043 <    return properties_.getPropertyByName(propName);
1044 < }
1026 >    if (simParams_->haveElectrostaticSummationMethod()) {
1027 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1028 >      toUpper(myMethod);
1029 >      if (myMethod == "NONE") {
1030 >        esm = NONE;
1031 >      } else {
1032 >        if (myMethod == "SWITCHING_FUNCTION") {
1033 >          esm = SWITCHING_FUNCTION;
1034 >        } else {
1035 >          if (myMethod == "SHIFTED_POTENTIAL") {
1036 >            esm = SHIFTED_POTENTIAL;
1037 >          } else {
1038 >            if (myMethod == "SHIFTED_FORCE") {            
1039 >              esm = SHIFTED_FORCE;
1040 >            } else {
1041 >              if (myMethod == "REACTION_FIELD") {            
1042 >                esm = REACTION_FIELD;
1043 >              } else {
1044 >                // throw error        
1045 >                sprintf( painCave.errMsg,
1046 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1047 >                         "\t(Input file specified %s .)\n"
1048 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1049 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1050 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1051 >                painCave.isFatal = 1;
1052 >                simError();
1053 >              }    
1054 >            }          
1055 >          }
1056 >        }
1057 >      }
1058 >    }
1059 >    
1060 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1061 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1062 >      toUpper(myScreen);
1063 >      if (myScreen == "UNDAMPED") {
1064 >        sm = UNDAMPED;
1065 >      } else {
1066 >        if (myScreen == "DAMPED") {
1067 >          sm = DAMPED;
1068 >          if (!simParams_->haveDampingAlpha()) {
1069 >            //throw error
1070 >            sprintf( painCave.errMsg,
1071 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1072 >                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1073 >            painCave.isFatal = 0;
1074 >            simError();
1075 >          }
1076 >        } else {
1077 >          // throw error        
1078 >          sprintf( painCave.errMsg,
1079 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1080 >                   "\t(Input file specified %s .)\n"
1081 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1082 >                   "or \"damped\".\n", myScreen.c_str() );
1083 >          painCave.isFatal = 1;
1084 >          simError();
1085 >        }
1086 >      }
1087 >    }
1088 >    
1089 >    // let's pass some summation method variables to fortran
1090 >    setElectrostaticSummationMethod( &esm );
1091 >    notifyFortranElectrostaticMethod( &esm );
1092 >    setScreeningMethod( &sm );
1093 >    setDampingAlpha( &alphaVal );
1094 >    setReactionFieldDielectric( &dielectric );
1095 >    initFortranFF( &errorOut );
1096 >  }
1097  
1098 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1098 >  void SimInfo::setupSwitchingFunction() {    
1099 >    int ft = CUBIC;
1100 >
1101 >    if (simParams_->haveSwitchingFunctionType()) {
1102 >      std::string funcType = simParams_->getSwitchingFunctionType();
1103 >      toUpper(funcType);
1104 >      if (funcType == "CUBIC") {
1105 >        ft = CUBIC;
1106 >      } else {
1107 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1108 >          ft = FIFTH_ORDER_POLY;
1109 >        } else {
1110 >          // throw error        
1111 >          sprintf( painCave.errMsg,
1112 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1113 >          painCave.isFatal = 1;
1114 >          simError();
1115 >        }          
1116 >      }
1117 >    }
1118 >
1119 >    // send switching function notification to switcheroo
1120 >    setFunctionType(&ft);
1121 >
1122 >  }
1123 >
1124 >  void SimInfo::addProperty(GenericData* genData) {
1125 >    properties_.addProperty(genData);  
1126 >  }
1127 >
1128 >  void SimInfo::removeProperty(const std::string& propName) {
1129 >    properties_.removeProperty(propName);  
1130 >  }
1131 >
1132 >  void SimInfo::clearProperties() {
1133 >    properties_.clearProperties();
1134 >  }
1135 >
1136 >  std::vector<std::string> SimInfo::getPropertyNames() {
1137 >    return properties_.getPropertyNames();  
1138 >  }
1139 >      
1140 >  std::vector<GenericData*> SimInfo::getProperties() {
1141 >    return properties_.getProperties();
1142 >  }
1143 >
1144 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1145 >    return properties_.getPropertyByName(propName);
1146 >  }
1147 >
1148 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1149 >    if (sman_ == sman) {
1150 >      return;
1151 >    }    
1152 >    delete sman_;
1153      sman_ = sman;
1154  
1155      Molecule* mol;
# Line 842 | Line 1161 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1161  
1162      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1163          
1164 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1165 <            atom->setSnapshotManager(sman_);
1166 <        }
1164 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1165 >        atom->setSnapshotManager(sman_);
1166 >      }
1167          
1168 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1169 <            rb->setSnapshotManager(sman_);
1170 <        }
1168 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1169 >        rb->setSnapshotManager(sman_);
1170 >      }
1171      }    
1172      
1173 < }
1173 >  }
1174  
1175 < Vector3d SimInfo::getComVel(){
1175 >  Vector3d SimInfo::getComVel(){
1176      SimInfo::MoleculeIterator i;
1177      Molecule* mol;
1178  
# Line 862 | Line 1181 | Vector3d SimInfo::getComVel(){
1181      
1182  
1183      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1184 <        double mass = mol->getMass();
1185 <        totalMass += mass;
1186 <        comVel += mass * mol->getComVel();
1184 >      double mass = mol->getMass();
1185 >      totalMass += mass;
1186 >      comVel += mass * mol->getComVel();
1187      }  
1188  
1189   #ifdef IS_MPI
# Line 877 | Line 1196 | Vector3d SimInfo::getComVel(){
1196      comVel /= totalMass;
1197  
1198      return comVel;
1199 < }
1199 >  }
1200  
1201 < Vector3d SimInfo::getCom(){
1201 >  Vector3d SimInfo::getCom(){
1202      SimInfo::MoleculeIterator i;
1203      Molecule* mol;
1204  
# Line 887 | Line 1206 | Vector3d SimInfo::getCom(){
1206      double totalMass = 0.0;
1207      
1208      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1209 <        double mass = mol->getMass();
1210 <        totalMass += mass;
1211 <        com += mass * mol->getCom();
1209 >      double mass = mol->getMass();
1210 >      totalMass += mass;
1211 >      com += mass * mol->getCom();
1212      }  
1213  
1214   #ifdef IS_MPI
# Line 903 | Line 1222 | Vector3d SimInfo::getCom(){
1222  
1223      return com;
1224  
1225 < }        
1225 >  }        
1226  
1227 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1227 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1228  
1229      return o;
1230 < }
1230 >  }
1231 >  
1232 >  
1233 >   /*
1234 >   Returns center of mass and center of mass velocity in one function call.
1235 >   */
1236 >  
1237 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1238 >      SimInfo::MoleculeIterator i;
1239 >      Molecule* mol;
1240 >      
1241 >    
1242 >      double totalMass = 0.0;
1243 >    
1244  
1245 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1246 +         double mass = mol->getMass();
1247 +         totalMass += mass;
1248 +         com += mass * mol->getCom();
1249 +         comVel += mass * mol->getComVel();          
1250 +      }  
1251 +      
1252 + #ifdef IS_MPI
1253 +      double tmpMass = totalMass;
1254 +      Vector3d tmpCom(com);  
1255 +      Vector3d tmpComVel(comVel);
1256 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1257 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1258 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1259 + #endif
1260 +      
1261 +      com /= totalMass;
1262 +      comVel /= totalMass;
1263 +   }        
1264 +  
1265 +   /*
1266 +   Return intertia tensor for entire system and angular momentum Vector.
1267 +
1268 +
1269 +       [  Ixx -Ixy  -Ixz ]
1270 +  J =| -Iyx  Iyy  -Iyz |
1271 +       [ -Izx -Iyz   Izz ]
1272 +    */
1273 +
1274 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1275 +      
1276 +
1277 +      double xx = 0.0;
1278 +      double yy = 0.0;
1279 +      double zz = 0.0;
1280 +      double xy = 0.0;
1281 +      double xz = 0.0;
1282 +      double yz = 0.0;
1283 +      Vector3d com(0.0);
1284 +      Vector3d comVel(0.0);
1285 +      
1286 +      getComAll(com, comVel);
1287 +      
1288 +      SimInfo::MoleculeIterator i;
1289 +      Molecule* mol;
1290 +      
1291 +      Vector3d thisq(0.0);
1292 +      Vector3d thisv(0.0);
1293 +
1294 +      double thisMass = 0.0;
1295 +    
1296 +      
1297 +      
1298 +  
1299 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1300 +        
1301 +         thisq = mol->getCom()-com;
1302 +         thisv = mol->getComVel()-comVel;
1303 +         thisMass = mol->getMass();
1304 +         // Compute moment of intertia coefficients.
1305 +         xx += thisq[0]*thisq[0]*thisMass;
1306 +         yy += thisq[1]*thisq[1]*thisMass;
1307 +         zz += thisq[2]*thisq[2]*thisMass;
1308 +        
1309 +         // compute products of intertia
1310 +         xy += thisq[0]*thisq[1]*thisMass;
1311 +         xz += thisq[0]*thisq[2]*thisMass;
1312 +         yz += thisq[1]*thisq[2]*thisMass;
1313 +            
1314 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1315 +            
1316 +      }  
1317 +      
1318 +      
1319 +      inertiaTensor(0,0) = yy + zz;
1320 +      inertiaTensor(0,1) = -xy;
1321 +      inertiaTensor(0,2) = -xz;
1322 +      inertiaTensor(1,0) = -xy;
1323 +      inertiaTensor(1,1) = xx + zz;
1324 +      inertiaTensor(1,2) = -yz;
1325 +      inertiaTensor(2,0) = -xz;
1326 +      inertiaTensor(2,1) = -yz;
1327 +      inertiaTensor(2,2) = xx + yy;
1328 +      
1329 + #ifdef IS_MPI
1330 +      Mat3x3d tmpI(inertiaTensor);
1331 +      Vector3d tmpAngMom;
1332 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1333 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1334 + #endif
1335 +              
1336 +      return;
1337 +   }
1338 +
1339 +   //Returns the angular momentum of the system
1340 +   Vector3d SimInfo::getAngularMomentum(){
1341 +      
1342 +      Vector3d com(0.0);
1343 +      Vector3d comVel(0.0);
1344 +      Vector3d angularMomentum(0.0);
1345 +      
1346 +      getComAll(com,comVel);
1347 +      
1348 +      SimInfo::MoleculeIterator i;
1349 +      Molecule* mol;
1350 +      
1351 +      Vector3d thisr(0.0);
1352 +      Vector3d thisp(0.0);
1353 +      
1354 +      double thisMass;
1355 +      
1356 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1357 +        thisMass = mol->getMass();
1358 +        thisr = mol->getCom()-com;
1359 +        thisp = (mol->getComVel()-comVel)*thisMass;
1360 +        
1361 +        angularMomentum += cross( thisr, thisp );
1362 +        
1363 +      }  
1364 +      
1365 + #ifdef IS_MPI
1366 +      Vector3d tmpAngMom;
1367 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1368 + #endif
1369 +      
1370 +      return angularMomentum;
1371 +   }
1372 +  
1373 +  
1374   }//end namespace oopse
1375  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines