ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1976 by tim, Fri Feb 4 22:44:15 2005 UTC vs.
Revision 2344 by chrisfen, Tue Oct 4 19:34:03 2005 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 52 | Line 52
52   #include "brains/SimInfo.hpp"
53   #include "math/Vector3.hpp"
54   #include "primitives/Molecule.hpp"
55 + #include "UseTheForce/fCutoffPolicy.h"
56 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57   #include "UseTheForce/doForces_interface.h"
58 + #include "UseTheForce/DarkSide/electrostatic_interface.h"
59   #include "UseTheForce/notifyCutoffs_interface.h"
60   #include "utils/MemoryUtils.hpp"
61   #include "utils/simError.h"
62 + #include "selection/SelectionManager.hpp"
63  
64   #ifdef IS_MPI
65   #include "UseTheForce/mpiComponentPlan.h"
# Line 64 | Line 68 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
68  
69   namespace oopse {
70  
71 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                                ForceField* ff, Globals* simParams) :
73 <                                forceField_(ff), simParams_(simParams),
74 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
78 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
79 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
71 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 >                   ForceField* ff, Globals* simParams) :
73 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
78 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
79 >    sman_(NULL), fortranInitialized_(false) {
80  
81              
82 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 <    MoleculeStamp* molStamp;
84 <    int nMolWithSameStamp;
85 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
87 <    CutoffGroupStamp* cgStamp;    
88 <    RigidBodyStamp* rbStamp;
89 <    int nRigidAtoms = 0;
82 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 >      MoleculeStamp* molStamp;
84 >      int nMolWithSameStamp;
85 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
87 >      CutoffGroupStamp* cgStamp;    
88 >      RigidBodyStamp* rbStamp;
89 >      int nRigidAtoms = 0;
90      
91 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
91 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92          molStamp = i->first;
93          nMolWithSameStamp = i->second;
94          
# Line 99 | Line 103 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
103          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104          
105          for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 <            cgStamp = molStamp->getCutoffGroup(j);
107 <            nAtomsInGroups += cgStamp->getNMembers();
106 >          cgStamp = molStamp->getCutoffGroup(j);
107 >          nAtomsInGroups += cgStamp->getNMembers();
108          }
109  
110          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 +
112          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113  
114          //calculate atoms in rigid bodies
# Line 111 | Line 116 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
116          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117          
118          for (int j=0; j < nRigidBodiesInStamp; j++) {
119 <            rbStamp = molStamp->getRigidBody(j);
120 <            nAtomsInRigidBodies += rbStamp->getNMembers();
119 >          rbStamp = molStamp->getRigidBody(j);
120 >          nAtomsInRigidBodies += rbStamp->getNMembers();
121          }
122  
123          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125          
126 <    }
126 >      }
127  
128 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
129 <    //therefore the total number of cutoff groups in the system is equal to
130 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
131 <    //file plus the number of cutoff groups defined in meta-data file
132 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
128 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
129 >      //group therefore the total number of cutoff groups in the system is
130 >      //equal to the total number of atoms minus number of atoms belong to
131 >      //cutoff group defined in meta-data file plus the number of cutoff
132 >      //groups defined in meta-data file
133 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134  
135 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
136 <    //therefore the total number of  integrable objects in the system is equal to
137 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
138 <    //file plus the number of  rigid bodies defined in meta-data file
139 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135 >      //every free atom (atom does not belong to rigid bodies) is an
136 >      //integrable object therefore the total number of integrable objects
137 >      //in the system is equal to the total number of atoms minus number of
138 >      //atoms belong to rigid body defined in meta-data file plus the number
139 >      //of rigid bodies defined in meta-data file
140 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 >                                                + nGlobalRigidBodies_;
142 >  
143 >      nGlobalMols_ = molStampIds_.size();
144  
135    nGlobalMols_ = molStampIds_.size();
136
145   #ifdef IS_MPI    
146 <    molToProcMap_.resize(nGlobalMols_);
146 >      molToProcMap_.resize(nGlobalMols_);
147   #endif
148  
149 <    selectMan_ = new SelectionManager(nGlobalAtoms_ + nGlobalRigidBodies_);
142 <    selectMan_->selectAll();
143 < }
149 >    }
150  
151 < SimInfo::~SimInfo() {
152 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
153 <
154 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
155 <    
151 >  SimInfo::~SimInfo() {
152 >    std::map<int, Molecule*>::iterator i;
153 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
154 >      delete i->second;
155 >    }
156 >    molecules_.clear();
157 >      
158 >    delete stamps_;
159      delete sman_;
160      delete simParams_;
161      delete forceField_;
162 <    delete selectMan_;
154 < }
162 >  }
163  
164 < int SimInfo::getNGlobalConstraints() {
164 >  int SimInfo::getNGlobalConstraints() {
165      int nGlobalConstraints;
166   #ifdef IS_MPI
167      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 162 | Line 170 | int SimInfo::getNGlobalConstraints() {
170      nGlobalConstraints =  nConstraints_;
171   #endif
172      return nGlobalConstraints;
173 < }
173 >  }
174  
175 < bool SimInfo::addMolecule(Molecule* mol) {
175 >  bool SimInfo::addMolecule(Molecule* mol) {
176      MoleculeIterator i;
177  
178      i = molecules_.find(mol->getGlobalIndex());
179      if (i == molecules_.end() ) {
180  
181 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
181 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
182          
183 <        nAtoms_ += mol->getNAtoms();
184 <        nBonds_ += mol->getNBonds();
185 <        nBends_ += mol->getNBends();
186 <        nTorsions_ += mol->getNTorsions();
187 <        nRigidBodies_ += mol->getNRigidBodies();
188 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
189 <        nCutoffGroups_ += mol->getNCutoffGroups();
190 <        nConstraints_ += mol->getNConstraintPairs();
183 >      nAtoms_ += mol->getNAtoms();
184 >      nBonds_ += mol->getNBonds();
185 >      nBends_ += mol->getNBends();
186 >      nTorsions_ += mol->getNTorsions();
187 >      nRigidBodies_ += mol->getNRigidBodies();
188 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
189 >      nCutoffGroups_ += mol->getNCutoffGroups();
190 >      nConstraints_ += mol->getNConstraintPairs();
191  
192 <        addExcludePairs(mol);
192 >      addExcludePairs(mol);
193          
194 <        return true;
194 >      return true;
195      } else {
196 <        return false;
196 >      return false;
197      }
198 < }
198 >  }
199  
200 < bool SimInfo::removeMolecule(Molecule* mol) {
200 >  bool SimInfo::removeMolecule(Molecule* mol) {
201      MoleculeIterator i;
202      i = molecules_.find(mol->getGlobalIndex());
203  
204      if (i != molecules_.end() ) {
205  
206 <        assert(mol == i->second);
206 >      assert(mol == i->second);
207          
208 <        nAtoms_ -= mol->getNAtoms();
209 <        nBonds_ -= mol->getNBonds();
210 <        nBends_ -= mol->getNBends();
211 <        nTorsions_ -= mol->getNTorsions();
212 <        nRigidBodies_ -= mol->getNRigidBodies();
213 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
214 <        nCutoffGroups_ -= mol->getNCutoffGroups();
215 <        nConstraints_ -= mol->getNConstraintPairs();
208 >      nAtoms_ -= mol->getNAtoms();
209 >      nBonds_ -= mol->getNBonds();
210 >      nBends_ -= mol->getNBends();
211 >      nTorsions_ -= mol->getNTorsions();
212 >      nRigidBodies_ -= mol->getNRigidBodies();
213 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
214 >      nCutoffGroups_ -= mol->getNCutoffGroups();
215 >      nConstraints_ -= mol->getNConstraintPairs();
216  
217 <        removeExcludePairs(mol);
218 <        molecules_.erase(mol->getGlobalIndex());
217 >      removeExcludePairs(mol);
218 >      molecules_.erase(mol->getGlobalIndex());
219  
220 <        delete mol;
220 >      delete mol;
221          
222 <        return true;
222 >      return true;
223      } else {
224 <        return false;
224 >      return false;
225      }
226  
227  
228 < }    
228 >  }    
229  
230          
231 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
231 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
232      i = molecules_.begin();
233      return i == molecules_.end() ? NULL : i->second;
234 < }    
234 >  }    
235  
236 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
236 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
237      ++i;
238      return i == molecules_.end() ? NULL : i->second;    
239 < }
239 >  }
240  
241  
242 < void SimInfo::calcNdf() {
242 >  void SimInfo::calcNdf() {
243      int ndf_local;
244      MoleculeIterator i;
245      std::vector<StuntDouble*>::iterator j;
# Line 241 | Line 249 | void SimInfo::calcNdf() {
249      ndf_local = 0;
250      
251      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
252 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
253 <               integrableObject = mol->nextIntegrableObject(j)) {
252 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
253 >           integrableObject = mol->nextIntegrableObject(j)) {
254  
255 <            ndf_local += 3;
255 >        ndf_local += 3;
256  
257 <            if (integrableObject->isDirectional()) {
258 <                if (integrableObject->isLinear()) {
259 <                    ndf_local += 2;
260 <                } else {
261 <                    ndf_local += 3;
262 <                }
263 <            }
257 >        if (integrableObject->isDirectional()) {
258 >          if (integrableObject->isLinear()) {
259 >            ndf_local += 2;
260 >          } else {
261 >            ndf_local += 3;
262 >          }
263 >        }
264              
265 <        }//end for (integrableObject)
265 >      }//end for (integrableObject)
266      }// end for (mol)
267      
268      // n_constraints is local, so subtract them on each processor
# Line 270 | Line 278 | void SimInfo::calcNdf() {
278      // entire system:
279      ndf_ = ndf_ - 3 - nZconstraint_;
280  
281 < }
281 >  }
282  
283 < void SimInfo::calcNdfRaw() {
283 >  void SimInfo::calcNdfRaw() {
284      int ndfRaw_local;
285  
286      MoleculeIterator i;
# Line 284 | Line 292 | void SimInfo::calcNdfRaw() {
292      ndfRaw_local = 0;
293      
294      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 <               integrableObject = mol->nextIntegrableObject(j)) {
295 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 >           integrableObject = mol->nextIntegrableObject(j)) {
297  
298 <            ndfRaw_local += 3;
298 >        ndfRaw_local += 3;
299  
300 <            if (integrableObject->isDirectional()) {
301 <                if (integrableObject->isLinear()) {
302 <                    ndfRaw_local += 2;
303 <                } else {
304 <                    ndfRaw_local += 3;
305 <                }
306 <            }
300 >        if (integrableObject->isDirectional()) {
301 >          if (integrableObject->isLinear()) {
302 >            ndfRaw_local += 2;
303 >          } else {
304 >            ndfRaw_local += 3;
305 >          }
306 >        }
307              
308 <        }
308 >      }
309      }
310      
311   #ifdef IS_MPI
# Line 305 | Line 313 | void SimInfo::calcNdfRaw() {
313   #else
314      ndfRaw_ = ndfRaw_local;
315   #endif
316 < }
316 >  }
317  
318 < void SimInfo::calcNdfTrans() {
318 >  void SimInfo::calcNdfTrans() {
319      int ndfTrans_local;
320  
321      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 321 | Line 329 | void SimInfo::calcNdfTrans() {
329  
330      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
331  
332 < }
332 >  }
333  
334 < void SimInfo::addExcludePairs(Molecule* mol) {
334 >  void SimInfo::addExcludePairs(Molecule* mol) {
335      std::vector<Bond*>::iterator bondIter;
336      std::vector<Bend*>::iterator bendIter;
337      std::vector<Torsion*>::iterator torsionIter;
# Line 336 | Line 344 | void SimInfo::addExcludePairs(Molecule* mol) {
344      int d;
345      
346      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
347 <        a = bond->getAtomA()->getGlobalIndex();
348 <        b = bond->getAtomB()->getGlobalIndex();        
349 <        exclude_.addPair(a, b);
347 >      a = bond->getAtomA()->getGlobalIndex();
348 >      b = bond->getAtomB()->getGlobalIndex();        
349 >      exclude_.addPair(a, b);
350      }
351  
352      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
353 <        a = bend->getAtomA()->getGlobalIndex();
354 <        b = bend->getAtomB()->getGlobalIndex();        
355 <        c = bend->getAtomC()->getGlobalIndex();
353 >      a = bend->getAtomA()->getGlobalIndex();
354 >      b = bend->getAtomB()->getGlobalIndex();        
355 >      c = bend->getAtomC()->getGlobalIndex();
356  
357 <        exclude_.addPair(a, b);
358 <        exclude_.addPair(a, c);
359 <        exclude_.addPair(b, c);        
360 <    }
353 <
354 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
355 <        a = torsion->getAtomA()->getGlobalIndex();
356 <        b = torsion->getAtomB()->getGlobalIndex();        
357 <        c = torsion->getAtomC()->getGlobalIndex();        
358 <        d = torsion->getAtomD()->getGlobalIndex();        
357 >      exclude_.addPair(a, b);
358 >      exclude_.addPair(a, c);
359 >      exclude_.addPair(b, c);        
360 >    }
361  
362 <        exclude_.addPair(a, b);
363 <        exclude_.addPair(a, c);
364 <        exclude_.addPair(a, d);
365 <        exclude_.addPair(b, c);
366 <        exclude_.addPair(b, d);
367 <        exclude_.addPair(c, d);        
362 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
363 >      a = torsion->getAtomA()->getGlobalIndex();
364 >      b = torsion->getAtomB()->getGlobalIndex();        
365 >      c = torsion->getAtomC()->getGlobalIndex();        
366 >      d = torsion->getAtomD()->getGlobalIndex();        
367 >
368 >      exclude_.addPair(a, b);
369 >      exclude_.addPair(a, c);
370 >      exclude_.addPair(a, d);
371 >      exclude_.addPair(b, c);
372 >      exclude_.addPair(b, d);
373 >      exclude_.addPair(c, d);        
374      }
375  
376 <    
377 < }
376 >    Molecule::RigidBodyIterator rbIter;
377 >    RigidBody* rb;
378 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
379 >      std::vector<Atom*> atoms = rb->getAtoms();
380 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
381 >        for (int j = i + 1; j < atoms.size(); ++j) {
382 >          a = atoms[i]->getGlobalIndex();
383 >          b = atoms[j]->getGlobalIndex();
384 >          exclude_.addPair(a, b);
385 >        }
386 >      }
387 >    }        
388  
389 < void SimInfo::removeExcludePairs(Molecule* mol) {
389 >  }
390 >
391 >  void SimInfo::removeExcludePairs(Molecule* mol) {
392      std::vector<Bond*>::iterator bondIter;
393      std::vector<Bend*>::iterator bendIter;
394      std::vector<Torsion*>::iterator torsionIter;
# Line 381 | Line 401 | void SimInfo::removeExcludePairs(Molecule* mol) {
401      int d;
402      
403      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
404 <        a = bond->getAtomA()->getGlobalIndex();
405 <        b = bond->getAtomB()->getGlobalIndex();        
406 <        exclude_.removePair(a, b);
404 >      a = bond->getAtomA()->getGlobalIndex();
405 >      b = bond->getAtomB()->getGlobalIndex();        
406 >      exclude_.removePair(a, b);
407      }
408  
409      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
410 <        a = bend->getAtomA()->getGlobalIndex();
411 <        b = bend->getAtomB()->getGlobalIndex();        
412 <        c = bend->getAtomC()->getGlobalIndex();
410 >      a = bend->getAtomA()->getGlobalIndex();
411 >      b = bend->getAtomB()->getGlobalIndex();        
412 >      c = bend->getAtomC()->getGlobalIndex();
413  
414 <        exclude_.removePair(a, b);
415 <        exclude_.removePair(a, c);
416 <        exclude_.removePair(b, c);        
414 >      exclude_.removePair(a, b);
415 >      exclude_.removePair(a, c);
416 >      exclude_.removePair(b, c);        
417      }
418  
419      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
420 <        a = torsion->getAtomA()->getGlobalIndex();
421 <        b = torsion->getAtomB()->getGlobalIndex();        
422 <        c = torsion->getAtomC()->getGlobalIndex();        
423 <        d = torsion->getAtomD()->getGlobalIndex();        
420 >      a = torsion->getAtomA()->getGlobalIndex();
421 >      b = torsion->getAtomB()->getGlobalIndex();        
422 >      c = torsion->getAtomC()->getGlobalIndex();        
423 >      d = torsion->getAtomD()->getGlobalIndex();        
424  
425 <        exclude_.removePair(a, b);
426 <        exclude_.removePair(a, c);
427 <        exclude_.removePair(a, d);
428 <        exclude_.removePair(b, c);
429 <        exclude_.removePair(b, d);
430 <        exclude_.removePair(c, d);        
425 >      exclude_.removePair(a, b);
426 >      exclude_.removePair(a, c);
427 >      exclude_.removePair(a, d);
428 >      exclude_.removePair(b, c);
429 >      exclude_.removePair(b, d);
430 >      exclude_.removePair(c, d);        
431      }
432  
433 < }
433 >    Molecule::RigidBodyIterator rbIter;
434 >    RigidBody* rb;
435 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
436 >      std::vector<Atom*> atoms = rb->getAtoms();
437 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
438 >        for (int j = i + 1; j < atoms.size(); ++j) {
439 >          a = atoms[i]->getGlobalIndex();
440 >          b = atoms[j]->getGlobalIndex();
441 >          exclude_.removePair(a, b);
442 >        }
443 >      }
444 >    }        
445  
446 +  }
447  
448 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
448 >
449 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
450      int curStampId;
451  
452      //index from 0
# Line 421 | Line 454 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
454  
455      moleculeStamps_.push_back(molStamp);
456      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
457 < }
457 >  }
458  
459 < void SimInfo::update() {
459 >  void SimInfo::update() {
460  
461      setupSimType();
462  
# Line 436 | Line 469 | void SimInfo::update() {
469      //setup fortran force field
470      /** @deprecate */    
471      int isError = 0;
472 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
472 >    
473 >    setupElectrostaticSummationMethod( isError );
474 >
475      if(isError){
476 <        sprintf( painCave.errMsg,
477 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
478 <        painCave.isFatal = 1;
479 <        simError();
476 >      sprintf( painCave.errMsg,
477 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
478 >      painCave.isFatal = 1;
479 >      simError();
480      }
481    
482      
# Line 452 | Line 487 | void SimInfo::update() {
487      calcNdfTrans();
488  
489      fortranInitialized_ = true;
490 < }
490 >  }
491  
492 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
492 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
493      SimInfo::MoleculeIterator mi;
494      Molecule* mol;
495      Molecule::AtomIterator ai;
# Line 463 | Line 498 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
498  
499      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
500  
501 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
502 <            atomTypes.insert(atom->getAtomType());
503 <        }
501 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
502 >        atomTypes.insert(atom->getAtomType());
503 >      }
504          
505      }
506  
507      return atomTypes;        
508 < }
508 >  }
509  
510 < void SimInfo::setupSimType() {
510 >  void SimInfo::setupSimType() {
511      std::set<AtomType*>::iterator i;
512      std::set<AtomType*> atomTypes;
513      atomTypes = getUniqueAtomTypes();
# Line 485 | Line 520 | void SimInfo::setupSimType() {
520      int useDipole = 0;
521      int useGayBerne = 0;
522      int useSticky = 0;
523 +    int useStickyPower = 0;
524      int useShape = 0;
525      int useFLARB = 0; //it is not in AtomType yet
526      int useDirectionalAtom = 0;    
527      int useElectrostatics = 0;
528      //usePBC and useRF are from simParams
529      int usePBC = simParams_->getPBC();
530 <    int useRF = simParams_->getUseRF();
530 >    int useRF;
531  
532 +    // set the useRF logical
533 +    std::string myMethod = simParams_->getElectrostaticSummationMethod();
534 +    if (myMethod == "REACTION_FIELD")
535 +      useRF = 1;
536 +    else
537 +      useRF = 0;
538 +
539      //loop over all of the atom types
540      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
541 <        useLennardJones |= (*i)->isLennardJones();
542 <        useElectrostatic |= (*i)->isElectrostatic();
543 <        useEAM |= (*i)->isEAM();
544 <        useCharge |= (*i)->isCharge();
545 <        useDirectional |= (*i)->isDirectional();
546 <        useDipole |= (*i)->isDipole();
547 <        useGayBerne |= (*i)->isGayBerne();
548 <        useSticky |= (*i)->isSticky();
549 <        useShape |= (*i)->isShape();
541 >      useLennardJones |= (*i)->isLennardJones();
542 >      useElectrostatic |= (*i)->isElectrostatic();
543 >      useEAM |= (*i)->isEAM();
544 >      useCharge |= (*i)->isCharge();
545 >      useDirectional |= (*i)->isDirectional();
546 >      useDipole |= (*i)->isDipole();
547 >      useGayBerne |= (*i)->isGayBerne();
548 >      useSticky |= (*i)->isSticky();
549 >      useStickyPower |= (*i)->isStickyPower();
550 >      useShape |= (*i)->isShape();
551      }
552  
553 <    if (useSticky || useDipole || useGayBerne || useShape) {
554 <        useDirectionalAtom = 1;
553 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
554 >      useDirectionalAtom = 1;
555      }
556  
557      if (useCharge || useDipole) {
558 <        useElectrostatics = 1;
558 >      useElectrostatics = 1;
559      }
560  
561   #ifdef IS_MPI    
# Line 538 | Line 582 | void SimInfo::setupSimType() {
582      temp = useSticky;
583      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
584  
585 +    temp = useStickyPower;
586 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
587 +    
588      temp = useGayBerne;
589      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
590  
# Line 552 | Line 599 | void SimInfo::setupSimType() {
599  
600      temp = useRF;
601      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
602 <    
602 >
603   #endif
604  
605      fInfo_.SIM_uses_PBC = usePBC;    
# Line 562 | Line 609 | void SimInfo::setupSimType() {
609      fInfo_.SIM_uses_Charges = useCharge;
610      fInfo_.SIM_uses_Dipoles = useDipole;
611      fInfo_.SIM_uses_Sticky = useSticky;
612 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
613      fInfo_.SIM_uses_GayBerne = useGayBerne;
614      fInfo_.SIM_uses_EAM = useEAM;
615      fInfo_.SIM_uses_Shapes = useShape;
616      fInfo_.SIM_uses_FLARB = useFLARB;
617      fInfo_.SIM_uses_RF = useRF;
618  
619 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
619 >    if( fInfo_.SIM_uses_Dipoles && myMethod == "REACTION_FIELD") {
620  
621 <        if (simParams_->haveDielectric()) {
622 <            fInfo_.dielect = simParams_->getDielectric();
623 <        } else {
624 <            sprintf(painCave.errMsg,
625 <                    "SimSetup Error: No Dielectric constant was set.\n"
626 <                    "\tYou are trying to use Reaction Field without"
627 <                    "\tsetting a dielectric constant!\n");
628 <            painCave.isFatal = 1;
629 <            simError();
630 <        }
621 >      if (simParams_->haveDielectric()) {
622 >        fInfo_.dielect = simParams_->getDielectric();
623 >      } else {
624 >        sprintf(painCave.errMsg,
625 >                "SimSetup Error: No Dielectric constant was set.\n"
626 >                "\tYou are trying to use Reaction Field without"
627 >                "\tsetting a dielectric constant!\n");
628 >        painCave.isFatal = 1;
629 >        simError();
630 >      }
631          
632      } else {
633 <        fInfo_.dielect = 0.0;
633 >      fInfo_.dielect = 0.0;
634      }
635  
636 < }
636 >  }
637  
638 < void SimInfo::setupFortranSim() {
638 >  void SimInfo::setupFortranSim() {
639      int isError;
640      int nExclude;
641      std::vector<int> fortranGlobalGroupMembership;
# Line 597 | Line 645 | void SimInfo::setupFortranSim() {
645  
646      //globalGroupMembership_ is filled by SimCreator    
647      for (int i = 0; i < nGlobalAtoms_; i++) {
648 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
648 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
649      }
650  
651      //calculate mass ratio of cutoff group
# Line 614 | Line 662 | void SimInfo::setupFortranSim() {
662      mfact.reserve(getNCutoffGroups());
663      
664      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
665 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
665 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
666  
667 <            totalMass = cg->getMass();
668 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
669 <                        mfact.push_back(atom->getMass()/totalMass);
670 <            }
667 >        totalMass = cg->getMass();
668 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
669 >          // Check for massless groups - set mfact to 1 if true
670 >          if (totalMass != 0)
671 >            mfact.push_back(atom->getMass()/totalMass);
672 >          else
673 >            mfact.push_back( 1.0 );
674 >        }
675  
676 <        }      
676 >      }      
677      }
678  
679      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 631 | Line 683 | void SimInfo::setupFortranSim() {
683      identArray.reserve(getNAtoms());
684      
685      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
686 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
687 <            identArray.push_back(atom->getIdent());
688 <        }
686 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
687 >        identArray.push_back(atom->getIdent());
688 >      }
689      }    
690  
691      //fill molMembershipArray
692      //molMembershipArray is filled by SimCreator    
693      std::vector<int> molMembershipArray(nGlobalAtoms_);
694      for (int i = 0; i < nGlobalAtoms_; i++) {
695 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
695 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
696      }
697      
698      //setup fortran simulation
647    //gloalExcludes and molMembershipArray should go away (They are never used)
648    //why the hell fortran need to know molecule?
649    //OOPSE = Object-Obfuscated Parallel Simulation Engine
699      int nGlobalExcludes = 0;
700      int* globalExcludes = NULL;
701      int* excludeList = exclude_.getExcludeList();
702      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
703 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
704 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
703 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
704 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
705  
706      if( isError ){
707  
708 <        sprintf( painCave.errMsg,
709 <                 "There was an error setting the simulation information in fortran.\n" );
710 <        painCave.isFatal = 1;
711 <        painCave.severity = OOPSE_ERROR;
712 <        simError();
708 >      sprintf( painCave.errMsg,
709 >               "There was an error setting the simulation information in fortran.\n" );
710 >      painCave.isFatal = 1;
711 >      painCave.severity = OOPSE_ERROR;
712 >      simError();
713      }
714  
715   #ifdef IS_MPI
716      sprintf( checkPointMsg,
717 <       "succesfully sent the simulation information to fortran.\n");
717 >             "succesfully sent the simulation information to fortran.\n");
718      MPIcheckPoint();
719   #endif // is_mpi
720 < }
720 >  }
721  
722  
723   #ifdef IS_MPI
724 < void SimInfo::setupFortranParallel() {
724 >  void SimInfo::setupFortranParallel() {
725      
726      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
727      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 688 | Line 737 | void SimInfo::setupFortranParallel() {
737  
738      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
739  
740 <        //local index(index in DataStorge) of atom is important
741 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
742 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
743 <        }
740 >      //local index(index in DataStorge) of atom is important
741 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
742 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
743 >      }
744  
745 <        //local index of cutoff group is trivial, it only depends on the order of travesing
746 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
747 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
748 <        }        
745 >      //local index of cutoff group is trivial, it only depends on the order of travesing
746 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
747 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
748 >      }        
749          
750      }
751  
# Line 716 | Line 765 | void SimInfo::setupFortranParallel() {
765                      &localToGlobalCutoffGroupIndex[0], &isError);
766  
767      if (isError) {
768 <        sprintf(painCave.errMsg,
769 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
770 <        painCave.isFatal = 1;
771 <        simError();
768 >      sprintf(painCave.errMsg,
769 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
770 >      painCave.isFatal = 1;
771 >      simError();
772      }
773  
774      sprintf(checkPointMsg, " mpiRefresh successful.\n");
775      MPIcheckPoint();
776  
777  
778 < }
778 >  }
779  
780   #endif
781  
782 < double SimInfo::calcMaxCutoffRadius() {
782 >  double SimInfo::calcMaxCutoffRadius() {
783  
784  
785      std::set<AtomType*> atomTypes;
# Line 742 | Line 791 | double SimInfo::calcMaxCutoffRadius() {
791  
792      //query the max cutoff radius among these atom types
793      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
794 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
794 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
795      }
796  
797      double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
# Line 751 | Line 800 | double SimInfo::calcMaxCutoffRadius() {
800   #endif
801  
802      return maxCutoffRadius;
803 < }
803 >  }
804  
805 < void SimInfo::setupCutoff() {
757 <    double rcut_;  //cutoff radius
758 <    double rsw_; //switching radius
805 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
806      
807      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
808          
809 <        if (!simParams_->haveRcut()){
810 <            sprintf(painCave.errMsg,
809 >      if (!simParams_->haveRcut()){
810 >        sprintf(painCave.errMsg,
811                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
812                  "\tOOPSE will use a default value of 15.0 angstroms"
813                  "\tfor the cutoffRadius.\n");
814 <            painCave.isFatal = 0;
815 <            simError();
816 <            rcut_ = 15.0;
817 <        } else{
818 <            rcut_ = simParams_->getRcut();
819 <        }
814 >        painCave.isFatal = 0;
815 >        simError();
816 >        rcut = 15.0;
817 >      } else{
818 >        rcut = simParams_->getRcut();
819 >      }
820  
821 <        if (!simParams_->haveRsw()){
822 <            sprintf(painCave.errMsg,
821 >      if (!simParams_->haveRsw()){
822 >        sprintf(painCave.errMsg,
823                  "SimCreator Warning: No value was set for switchingRadius.\n"
824                  "\tOOPSE will use a default value of\n"
825                  "\t0.95 * cutoffRadius for the switchingRadius\n");
826 <            painCave.isFatal = 0;
827 <            simError();
828 <            rsw_ = 0.95 * rcut_;
829 <        } else{
830 <            rsw_ = simParams_->getRsw();
831 <        }
826 >        painCave.isFatal = 0;
827 >        simError();
828 >        rsw = 0.95 * rcut;
829 >      } else{
830 >        rsw = simParams_->getRsw();
831 >      }
832  
833      } else {
834 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
835 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
834 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
835 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
836          
837 <        if (simParams_->haveRcut()) {
838 <            rcut_ = simParams_->getRcut();
839 <        } else {
840 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
841 <            rcut_ = calcMaxCutoffRadius();
842 <        }
837 >      if (simParams_->haveRcut()) {
838 >        rcut = simParams_->getRcut();
839 >      } else {
840 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
841 >        rcut = calcMaxCutoffRadius();
842 >      }
843  
844 <        if (simParams_->haveRsw()) {
845 <            rsw_  = simParams_->getRsw();
846 <        } else {
847 <            rsw_ = rcut_;
848 <        }
844 >      if (simParams_->haveRsw()) {
845 >        rsw  = simParams_->getRsw();
846 >      } else {
847 >        rsw = rcut;
848 >      }
849      
850      }
851 <        
851 >  }
852 >
853 >  void SimInfo::setupCutoff() {    
854 >    getCutoff(rcut_, rsw_);    
855      double rnblist = rcut_ + 1; // skin of neighbor list
856  
857      //Pass these cutoff radius etc. to fortran. This function should be called once and only once
858 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
859 < }
858 >    
859 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
860 >    if (simParams_->haveCutoffPolicy()) {
861 >      std::string myPolicy = simParams_->getCutoffPolicy();
862 >      if (myPolicy == "MIX") {
863 >        cp = MIX_CUTOFF_POLICY;
864 >      } else {
865 >        if (myPolicy == "MAX") {
866 >          cp = MAX_CUTOFF_POLICY;
867 >        } else {
868 >          if (myPolicy == "TRADITIONAL") {            
869 >            cp = TRADITIONAL_CUTOFF_POLICY;
870 >          } else {
871 >            // throw error        
872 >            sprintf( painCave.errMsg,
873 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
874 >            painCave.isFatal = 1;
875 >            simError();
876 >          }    
877 >        }          
878 >      }
879 >    }
880  
881 < void SimInfo::addProperty(GenericData* genData) {
881 >
882 >    if (simParams_->haveSkinThickness()) {
883 >      double skinThickness = simParams_->getSkinThickness();
884 >    }
885 >
886 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
887 >    // also send cutoff notification to electrostatics
888 >    setElectrostaticCutoffRadius(&rcut_);
889 >  }
890 >
891 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
892 >    
893 >    int errorOut;
894 >    int esm =  NONE;
895 >    double alphaVal;
896 >    double dielectric;
897 >
898 >    errorOut = isError;
899 >    alphaVal = simParams_->getDampingAlpha();
900 >    dielectric = simParams_->getDielectric();
901 >
902 >    if (simParams_->haveElectrostaticSummationMethod()) {
903 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
904 >      if (myMethod == "NONE") {
905 >        esm = NONE;
906 >      } else {
907 >        if (myMethod == "UNDAMPED_WOLF") {
908 >          esm = UNDAMPED_WOLF;
909 >        } else {
910 >          if (myMethod == "DAMPED_WOLF") {            
911 >            esm = DAMPED_WOLF;
912 >            if (!simParams_->haveDampingAlpha()) {
913 >              //throw error
914 >              sprintf( painCave.errMsg,
915 >                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
916 >              painCave.isFatal = 0;
917 >              simError();
918 >            }
919 >          } else {
920 >            if (myMethod == "REACTION_FIELD") {
921 >              esm = REACTION_FIELD;
922 >            } else {
923 >              // throw error        
924 >              sprintf( painCave.errMsg,
925 >                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
926 >              painCave.isFatal = 1;
927 >              simError();
928 >            }    
929 >          }          
930 >        }
931 >      }
932 >    }
933 >    // let's pass some summation method variables to fortran
934 >    setElectrostaticSummationMethod( &esm );
935 >    setDampedWolfAlpha( &alphaVal );
936 >    setReactionFieldDielectric( &dielectric );
937 >    initFortranFF( &esm, &errorOut );
938 >  }
939 >
940 >  void SimInfo::addProperty(GenericData* genData) {
941      properties_.addProperty(genData);  
942 < }
942 >  }
943  
944 < void SimInfo::removeProperty(const std::string& propName) {
944 >  void SimInfo::removeProperty(const std::string& propName) {
945      properties_.removeProperty(propName);  
946 < }
946 >  }
947  
948 < void SimInfo::clearProperties() {
948 >  void SimInfo::clearProperties() {
949      properties_.clearProperties();
950 < }
950 >  }
951  
952 < std::vector<std::string> SimInfo::getPropertyNames() {
953 <    return properties_.getPropertyNames();  
954 < }
952 >  std::vector<std::string> SimInfo::getPropertyNames() {
953 >    return properties_.getPropertyNames();  
954 >  }
955        
956 < std::vector<GenericData*> SimInfo::getProperties() {
956 >  std::vector<GenericData*> SimInfo::getProperties() {
957      return properties_.getProperties();
958 < }
958 >  }
959  
960 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
960 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
961      return properties_.getPropertyByName(propName);
962 < }
962 >  }
963  
964 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
964 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
965 >    if (sman_ == sman) {
966 >      return;
967 >    }    
968 >    delete sman_;
969      sman_ = sman;
970  
971      Molecule* mol;
# Line 844 | Line 977 | void SimInfo::setSnapshotManager(SnapshotManager* sman
977  
978      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
979          
980 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
981 <            atom->setSnapshotManager(sman_);
982 <        }
980 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
981 >        atom->setSnapshotManager(sman_);
982 >      }
983          
984 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
985 <            rb->setSnapshotManager(sman_);
986 <        }
984 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
985 >        rb->setSnapshotManager(sman_);
986 >      }
987      }    
988      
989 < }
989 >  }
990  
991 < Vector3d SimInfo::getComVel(){
991 >  Vector3d SimInfo::getComVel(){
992      SimInfo::MoleculeIterator i;
993      Molecule* mol;
994  
# Line 864 | Line 997 | Vector3d SimInfo::getComVel(){
997      
998  
999      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1000 <        double mass = mol->getMass();
1001 <        totalMass += mass;
1002 <        comVel += mass * mol->getComVel();
1000 >      double mass = mol->getMass();
1001 >      totalMass += mass;
1002 >      comVel += mass * mol->getComVel();
1003      }  
1004  
1005   #ifdef IS_MPI
# Line 879 | Line 1012 | Vector3d SimInfo::getComVel(){
1012      comVel /= totalMass;
1013  
1014      return comVel;
1015 < }
1015 >  }
1016  
1017 < Vector3d SimInfo::getCom(){
1017 >  Vector3d SimInfo::getCom(){
1018      SimInfo::MoleculeIterator i;
1019      Molecule* mol;
1020  
# Line 889 | Line 1022 | Vector3d SimInfo::getCom(){
1022      double totalMass = 0.0;
1023      
1024      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1025 <        double mass = mol->getMass();
1026 <        totalMass += mass;
1027 <        com += mass * mol->getCom();
1025 >      double mass = mol->getMass();
1026 >      totalMass += mass;
1027 >      com += mass * mol->getCom();
1028      }  
1029  
1030   #ifdef IS_MPI
# Line 905 | Line 1038 | Vector3d SimInfo::getCom(){
1038  
1039      return com;
1040  
1041 < }        
1041 >  }        
1042  
1043 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1043 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1044  
1045      return o;
1046 < }
1046 >  }
1047 >  
1048 >  
1049 >   /*
1050 >   Returns center of mass and center of mass velocity in one function call.
1051 >   */
1052 >  
1053 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1054 >      SimInfo::MoleculeIterator i;
1055 >      Molecule* mol;
1056 >      
1057 >    
1058 >      double totalMass = 0.0;
1059 >    
1060  
1061 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1062 +         double mass = mol->getMass();
1063 +         totalMass += mass;
1064 +         com += mass * mol->getCom();
1065 +         comVel += mass * mol->getComVel();          
1066 +      }  
1067 +      
1068 + #ifdef IS_MPI
1069 +      double tmpMass = totalMass;
1070 +      Vector3d tmpCom(com);  
1071 +      Vector3d tmpComVel(comVel);
1072 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1073 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1074 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1075 + #endif
1076 +      
1077 +      com /= totalMass;
1078 +      comVel /= totalMass;
1079 +   }        
1080 +  
1081 +   /*
1082 +   Return intertia tensor for entire system and angular momentum Vector.
1083 +
1084 +
1085 +       [  Ixx -Ixy  -Ixz ]
1086 +  J =| -Iyx  Iyy  -Iyz |
1087 +       [ -Izx -Iyz   Izz ]
1088 +    */
1089 +
1090 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1091 +      
1092 +
1093 +      double xx = 0.0;
1094 +      double yy = 0.0;
1095 +      double zz = 0.0;
1096 +      double xy = 0.0;
1097 +      double xz = 0.0;
1098 +      double yz = 0.0;
1099 +      Vector3d com(0.0);
1100 +      Vector3d comVel(0.0);
1101 +      
1102 +      getComAll(com, comVel);
1103 +      
1104 +      SimInfo::MoleculeIterator i;
1105 +      Molecule* mol;
1106 +      
1107 +      Vector3d thisq(0.0);
1108 +      Vector3d thisv(0.0);
1109 +
1110 +      double thisMass = 0.0;
1111 +    
1112 +      
1113 +      
1114 +  
1115 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1116 +        
1117 +         thisq = mol->getCom()-com;
1118 +         thisv = mol->getComVel()-comVel;
1119 +         thisMass = mol->getMass();
1120 +         // Compute moment of intertia coefficients.
1121 +         xx += thisq[0]*thisq[0]*thisMass;
1122 +         yy += thisq[1]*thisq[1]*thisMass;
1123 +         zz += thisq[2]*thisq[2]*thisMass;
1124 +        
1125 +         // compute products of intertia
1126 +         xy += thisq[0]*thisq[1]*thisMass;
1127 +         xz += thisq[0]*thisq[2]*thisMass;
1128 +         yz += thisq[1]*thisq[2]*thisMass;
1129 +            
1130 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1131 +            
1132 +      }  
1133 +      
1134 +      
1135 +      inertiaTensor(0,0) = yy + zz;
1136 +      inertiaTensor(0,1) = -xy;
1137 +      inertiaTensor(0,2) = -xz;
1138 +      inertiaTensor(1,0) = -xy;
1139 +      inertiaTensor(1,1) = xx + zz;
1140 +      inertiaTensor(1,2) = -yz;
1141 +      inertiaTensor(2,0) = -xz;
1142 +      inertiaTensor(2,1) = -yz;
1143 +      inertiaTensor(2,2) = xx + yy;
1144 +      
1145 + #ifdef IS_MPI
1146 +      Mat3x3d tmpI(inertiaTensor);
1147 +      Vector3d tmpAngMom;
1148 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1149 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1150 + #endif
1151 +              
1152 +      return;
1153 +   }
1154 +
1155 +   //Returns the angular momentum of the system
1156 +   Vector3d SimInfo::getAngularMomentum(){
1157 +      
1158 +      Vector3d com(0.0);
1159 +      Vector3d comVel(0.0);
1160 +      Vector3d angularMomentum(0.0);
1161 +      
1162 +      getComAll(com,comVel);
1163 +      
1164 +      SimInfo::MoleculeIterator i;
1165 +      Molecule* mol;
1166 +      
1167 +      Vector3d thisr(0.0);
1168 +      Vector3d thisp(0.0);
1169 +      
1170 +      double thisMass;
1171 +      
1172 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1173 +        thisMass = mol->getMass();
1174 +        thisr = mol->getCom()-com;
1175 +        thisp = (mol->getComVel()-comVel)*thisMass;
1176 +        
1177 +        angularMomentum += cross( thisr, thisp );
1178 +        
1179 +      }  
1180 +      
1181 + #ifdef IS_MPI
1182 +      Vector3d tmpAngMom;
1183 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1184 + #endif
1185 +      
1186 +      return angularMomentum;
1187 +   }
1188 +  
1189 +  
1190   }//end namespace oopse
1191  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines