ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1976 by tim, Fri Feb 4 22:44:15 2005 UTC vs.
Revision 2463 by gezelter, Mon Nov 21 22:59:21 2005 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "UseTheForce/fCutoffPolicy.h"
57 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60   #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63   #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65 + #include "selection/SelectionManager.hpp"
66  
67   #ifdef IS_MPI
68   #include "UseTheForce/mpiComponentPlan.h"
# Line 63 | Line 70 | namespace oopse {
70   #endif
71  
72   namespace oopse {
73 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
74 +    std::map<int, std::set<int> >::iterator i = container.find(index);
75 +    std::set<int> result;
76 +    if (i != container.end()) {
77 +        result = i->second;
78 +    }
79  
80 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
81 <                                ForceField* ff, Globals* simParams) :
82 <                                forceField_(ff), simParams_(simParams),
83 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
84 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
85 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
86 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
87 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
88 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
80 >    return result;
81 >  }
82 >  
83 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
84 >                   ForceField* ff, Globals* simParams) :
85 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
86 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
87 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
88 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
89 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
90 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
91 >    sman_(NULL), fortranInitialized_(false) {
92  
93              
94 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95 <    MoleculeStamp* molStamp;
96 <    int nMolWithSameStamp;
97 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
99 <    CutoffGroupStamp* cgStamp;    
100 <    RigidBodyStamp* rbStamp;
101 <    int nRigidAtoms = 0;
94 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95 >      MoleculeStamp* molStamp;
96 >      int nMolWithSameStamp;
97 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
99 >      CutoffGroupStamp* cgStamp;    
100 >      RigidBodyStamp* rbStamp;
101 >      int nRigidAtoms = 0;
102      
103 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
103 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
104          molStamp = i->first;
105          nMolWithSameStamp = i->second;
106          
# Line 99 | Line 115 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
115          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116          
117          for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 <            cgStamp = molStamp->getCutoffGroup(j);
119 <            nAtomsInGroups += cgStamp->getNMembers();
118 >          cgStamp = molStamp->getCutoffGroup(j);
119 >          nAtomsInGroups += cgStamp->getNMembers();
120          }
121  
122          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123 +
124          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125  
126          //calculate atoms in rigid bodies
# Line 111 | Line 128 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
128          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129          
130          for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <            rbStamp = molStamp->getRigidBody(j);
132 <            nAtomsInRigidBodies += rbStamp->getNMembers();
131 >          rbStamp = molStamp->getRigidBody(j);
132 >          nAtomsInRigidBodies += rbStamp->getNMembers();
133          }
134  
135          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137          
138 <    }
138 >      }
139  
140 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
141 <    //therefore the total number of cutoff groups in the system is equal to
142 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
143 <    //file plus the number of cutoff groups defined in meta-data file
144 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
141 >      //group therefore the total number of cutoff groups in the system is
142 >      //equal to the total number of atoms minus number of atoms belong to
143 >      //cutoff group defined in meta-data file plus the number of cutoff
144 >      //groups defined in meta-data file
145 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
146  
147 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
148 <    //therefore the total number of  integrable objects in the system is equal to
149 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
150 <    //file plus the number of  rigid bodies defined in meta-data file
151 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
147 >      //every free atom (atom does not belong to rigid bodies) is an
148 >      //integrable object therefore the total number of integrable objects
149 >      //in the system is equal to the total number of atoms minus number of
150 >      //atoms belong to rigid body defined in meta-data file plus the number
151 >      //of rigid bodies defined in meta-data file
152 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
153 >                                                + nGlobalRigidBodies_;
154 >  
155 >      nGlobalMols_ = molStampIds_.size();
156  
135    nGlobalMols_ = molStampIds_.size();
136
157   #ifdef IS_MPI    
158 <    molToProcMap_.resize(nGlobalMols_);
158 >      molToProcMap_.resize(nGlobalMols_);
159   #endif
160  
161 <    selectMan_ = new SelectionManager(nGlobalAtoms_ + nGlobalRigidBodies_);
142 <    selectMan_->selectAll();
143 < }
161 >    }
162  
163 < SimInfo::~SimInfo() {
164 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
165 <
166 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
167 <    
163 >  SimInfo::~SimInfo() {
164 >    std::map<int, Molecule*>::iterator i;
165 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166 >      delete i->second;
167 >    }
168 >    molecules_.clear();
169 >      
170 >    delete stamps_;
171      delete sman_;
172      delete simParams_;
173      delete forceField_;
174 <    delete selectMan_;
154 < }
174 >  }
175  
176 < int SimInfo::getNGlobalConstraints() {
176 >  int SimInfo::getNGlobalConstraints() {
177      int nGlobalConstraints;
178   #ifdef IS_MPI
179      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 162 | Line 182 | int SimInfo::getNGlobalConstraints() {
182      nGlobalConstraints =  nConstraints_;
183   #endif
184      return nGlobalConstraints;
185 < }
185 >  }
186  
187 < bool SimInfo::addMolecule(Molecule* mol) {
187 >  bool SimInfo::addMolecule(Molecule* mol) {
188      MoleculeIterator i;
189  
190      i = molecules_.find(mol->getGlobalIndex());
191      if (i == molecules_.end() ) {
192  
193 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
193 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194          
195 <        nAtoms_ += mol->getNAtoms();
196 <        nBonds_ += mol->getNBonds();
197 <        nBends_ += mol->getNBends();
198 <        nTorsions_ += mol->getNTorsions();
199 <        nRigidBodies_ += mol->getNRigidBodies();
200 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
201 <        nCutoffGroups_ += mol->getNCutoffGroups();
202 <        nConstraints_ += mol->getNConstraintPairs();
195 >      nAtoms_ += mol->getNAtoms();
196 >      nBonds_ += mol->getNBonds();
197 >      nBends_ += mol->getNBends();
198 >      nTorsions_ += mol->getNTorsions();
199 >      nRigidBodies_ += mol->getNRigidBodies();
200 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
201 >      nCutoffGroups_ += mol->getNCutoffGroups();
202 >      nConstraints_ += mol->getNConstraintPairs();
203  
204 <        addExcludePairs(mol);
204 >      addExcludePairs(mol);
205          
206 <        return true;
206 >      return true;
207      } else {
208 <        return false;
208 >      return false;
209      }
210 < }
210 >  }
211  
212 < bool SimInfo::removeMolecule(Molecule* mol) {
212 >  bool SimInfo::removeMolecule(Molecule* mol) {
213      MoleculeIterator i;
214      i = molecules_.find(mol->getGlobalIndex());
215  
216      if (i != molecules_.end() ) {
217  
218 <        assert(mol == i->second);
218 >      assert(mol == i->second);
219          
220 <        nAtoms_ -= mol->getNAtoms();
221 <        nBonds_ -= mol->getNBonds();
222 <        nBends_ -= mol->getNBends();
223 <        nTorsions_ -= mol->getNTorsions();
224 <        nRigidBodies_ -= mol->getNRigidBodies();
225 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
226 <        nCutoffGroups_ -= mol->getNCutoffGroups();
227 <        nConstraints_ -= mol->getNConstraintPairs();
220 >      nAtoms_ -= mol->getNAtoms();
221 >      nBonds_ -= mol->getNBonds();
222 >      nBends_ -= mol->getNBends();
223 >      nTorsions_ -= mol->getNTorsions();
224 >      nRigidBodies_ -= mol->getNRigidBodies();
225 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
226 >      nCutoffGroups_ -= mol->getNCutoffGroups();
227 >      nConstraints_ -= mol->getNConstraintPairs();
228  
229 <        removeExcludePairs(mol);
230 <        molecules_.erase(mol->getGlobalIndex());
229 >      removeExcludePairs(mol);
230 >      molecules_.erase(mol->getGlobalIndex());
231  
232 <        delete mol;
232 >      delete mol;
233          
234 <        return true;
234 >      return true;
235      } else {
236 <        return false;
236 >      return false;
237      }
238  
239  
240 < }    
240 >  }    
241  
242          
243 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
243 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
244      i = molecules_.begin();
245      return i == molecules_.end() ? NULL : i->second;
246 < }    
246 >  }    
247  
248 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
248 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
249      ++i;
250      return i == molecules_.end() ? NULL : i->second;    
251 < }
251 >  }
252  
253  
254 < void SimInfo::calcNdf() {
254 >  void SimInfo::calcNdf() {
255      int ndf_local;
256      MoleculeIterator i;
257      std::vector<StuntDouble*>::iterator j;
# Line 241 | Line 261 | void SimInfo::calcNdf() {
261      ndf_local = 0;
262      
263      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
264 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
265 <               integrableObject = mol->nextIntegrableObject(j)) {
264 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
265 >           integrableObject = mol->nextIntegrableObject(j)) {
266  
267 <            ndf_local += 3;
267 >        ndf_local += 3;
268  
269 <            if (integrableObject->isDirectional()) {
270 <                if (integrableObject->isLinear()) {
271 <                    ndf_local += 2;
272 <                } else {
273 <                    ndf_local += 3;
274 <                }
275 <            }
269 >        if (integrableObject->isDirectional()) {
270 >          if (integrableObject->isLinear()) {
271 >            ndf_local += 2;
272 >          } else {
273 >            ndf_local += 3;
274 >          }
275 >        }
276              
277 <        }//end for (integrableObject)
277 >      }//end for (integrableObject)
278      }// end for (mol)
279      
280      // n_constraints is local, so subtract them on each processor
# Line 270 | Line 290 | void SimInfo::calcNdf() {
290      // entire system:
291      ndf_ = ndf_ - 3 - nZconstraint_;
292  
293 < }
293 >  }
294  
295 < void SimInfo::calcNdfRaw() {
295 >  void SimInfo::calcNdfRaw() {
296      int ndfRaw_local;
297  
298      MoleculeIterator i;
# Line 284 | Line 304 | void SimInfo::calcNdfRaw() {
304      ndfRaw_local = 0;
305      
306      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
307 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
308 <               integrableObject = mol->nextIntegrableObject(j)) {
307 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
308 >           integrableObject = mol->nextIntegrableObject(j)) {
309  
310 <            ndfRaw_local += 3;
310 >        ndfRaw_local += 3;
311  
312 <            if (integrableObject->isDirectional()) {
313 <                if (integrableObject->isLinear()) {
314 <                    ndfRaw_local += 2;
315 <                } else {
316 <                    ndfRaw_local += 3;
317 <                }
318 <            }
312 >        if (integrableObject->isDirectional()) {
313 >          if (integrableObject->isLinear()) {
314 >            ndfRaw_local += 2;
315 >          } else {
316 >            ndfRaw_local += 3;
317 >          }
318 >        }
319              
320 <        }
320 >      }
321      }
322      
323   #ifdef IS_MPI
# Line 305 | Line 325 | void SimInfo::calcNdfRaw() {
325   #else
326      ndfRaw_ = ndfRaw_local;
327   #endif
328 < }
328 >  }
329  
330 < void SimInfo::calcNdfTrans() {
330 >  void SimInfo::calcNdfTrans() {
331      int ndfTrans_local;
332  
333      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 321 | Line 341 | void SimInfo::calcNdfTrans() {
341  
342      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
343  
344 < }
344 >  }
345  
346 < void SimInfo::addExcludePairs(Molecule* mol) {
346 >  void SimInfo::addExcludePairs(Molecule* mol) {
347      std::vector<Bond*>::iterator bondIter;
348      std::vector<Bend*>::iterator bendIter;
349      std::vector<Torsion*>::iterator torsionIter;
# Line 334 | Line 354 | void SimInfo::addExcludePairs(Molecule* mol) {
354      int b;
355      int c;
356      int d;
357 +
358 +    std::map<int, std::set<int> > atomGroups;
359 +
360 +    Molecule::RigidBodyIterator rbIter;
361 +    RigidBody* rb;
362 +    Molecule::IntegrableObjectIterator ii;
363 +    StuntDouble* integrableObject;
364      
365 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
366 +           integrableObject = mol->nextIntegrableObject(ii)) {
367 +
368 +      if (integrableObject->isRigidBody()) {
369 +          rb = static_cast<RigidBody*>(integrableObject);
370 +          std::vector<Atom*> atoms = rb->getAtoms();
371 +          std::set<int> rigidAtoms;
372 +          for (int i = 0; i < atoms.size(); ++i) {
373 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
374 +          }
375 +          for (int i = 0; i < atoms.size(); ++i) {
376 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
377 +          }      
378 +      } else {
379 +        std::set<int> oneAtomSet;
380 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
381 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
382 +      }
383 +    }  
384 +
385 +    
386 +    
387      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
388 <        a = bond->getAtomA()->getGlobalIndex();
389 <        b = bond->getAtomB()->getGlobalIndex();        
390 <        exclude_.addPair(a, b);
388 >      a = bond->getAtomA()->getGlobalIndex();
389 >      b = bond->getAtomB()->getGlobalIndex();        
390 >      exclude_.addPair(a, b);
391      }
392  
393      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
394 <        a = bend->getAtomA()->getGlobalIndex();
395 <        b = bend->getAtomB()->getGlobalIndex();        
396 <        c = bend->getAtomC()->getGlobalIndex();
394 >      a = bend->getAtomA()->getGlobalIndex();
395 >      b = bend->getAtomB()->getGlobalIndex();        
396 >      c = bend->getAtomC()->getGlobalIndex();
397 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
398 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
399 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
400  
401 <        exclude_.addPair(a, b);
402 <        exclude_.addPair(a, c);
403 <        exclude_.addPair(b, c);        
401 >      exclude_.addPairs(rigidSetA, rigidSetB);
402 >      exclude_.addPairs(rigidSetA, rigidSetC);
403 >      exclude_.addPairs(rigidSetB, rigidSetC);
404 >      
405 >      //exclude_.addPair(a, b);
406 >      //exclude_.addPair(a, c);
407 >      //exclude_.addPair(b, c);        
408      }
409  
410      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
411 <        a = torsion->getAtomA()->getGlobalIndex();
412 <        b = torsion->getAtomB()->getGlobalIndex();        
413 <        c = torsion->getAtomC()->getGlobalIndex();        
414 <        d = torsion->getAtomD()->getGlobalIndex();        
411 >      a = torsion->getAtomA()->getGlobalIndex();
412 >      b = torsion->getAtomB()->getGlobalIndex();        
413 >      c = torsion->getAtomC()->getGlobalIndex();        
414 >      d = torsion->getAtomD()->getGlobalIndex();        
415 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
416 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
417 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
418 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
419  
420 <        exclude_.addPair(a, b);
421 <        exclude_.addPair(a, c);
422 <        exclude_.addPair(a, d);
423 <        exclude_.addPair(b, c);
424 <        exclude_.addPair(b, d);
425 <        exclude_.addPair(c, d);        
420 >      exclude_.addPairs(rigidSetA, rigidSetB);
421 >      exclude_.addPairs(rigidSetA, rigidSetC);
422 >      exclude_.addPairs(rigidSetA, rigidSetD);
423 >      exclude_.addPairs(rigidSetB, rigidSetC);
424 >      exclude_.addPairs(rigidSetB, rigidSetD);
425 >      exclude_.addPairs(rigidSetC, rigidSetD);
426 >
427 >      /*
428 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
429 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
430 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
431 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
432 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
433 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
434 >        
435 >      
436 >      exclude_.addPair(a, b);
437 >      exclude_.addPair(a, c);
438 >      exclude_.addPair(a, d);
439 >      exclude_.addPair(b, c);
440 >      exclude_.addPair(b, d);
441 >      exclude_.addPair(c, d);        
442 >      */
443      }
444  
445 <    
446 < }
445 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
446 >      std::vector<Atom*> atoms = rb->getAtoms();
447 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
448 >        for (int j = i + 1; j < atoms.size(); ++j) {
449 >          a = atoms[i]->getGlobalIndex();
450 >          b = atoms[j]->getGlobalIndex();
451 >          exclude_.addPair(a, b);
452 >        }
453 >      }
454 >    }        
455  
456 < void SimInfo::removeExcludePairs(Molecule* mol) {
456 >  }
457 >
458 >  void SimInfo::removeExcludePairs(Molecule* mol) {
459      std::vector<Bond*>::iterator bondIter;
460      std::vector<Bend*>::iterator bendIter;
461      std::vector<Torsion*>::iterator torsionIter;
# Line 379 | Line 466 | void SimInfo::removeExcludePairs(Molecule* mol) {
466      int b;
467      int c;
468      int d;
469 +
470 +    std::map<int, std::set<int> > atomGroups;
471 +
472 +    Molecule::RigidBodyIterator rbIter;
473 +    RigidBody* rb;
474 +    Molecule::IntegrableObjectIterator ii;
475 +    StuntDouble* integrableObject;
476      
477 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
478 +           integrableObject = mol->nextIntegrableObject(ii)) {
479 +
480 +      if (integrableObject->isRigidBody()) {
481 +          rb = static_cast<RigidBody*>(integrableObject);
482 +          std::vector<Atom*> atoms = rb->getAtoms();
483 +          std::set<int> rigidAtoms;
484 +          for (int i = 0; i < atoms.size(); ++i) {
485 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
486 +          }
487 +          for (int i = 0; i < atoms.size(); ++i) {
488 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
489 +          }      
490 +      } else {
491 +        std::set<int> oneAtomSet;
492 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
493 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
494 +      }
495 +    }  
496 +
497 +    
498      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
499 <        a = bond->getAtomA()->getGlobalIndex();
500 <        b = bond->getAtomB()->getGlobalIndex();        
501 <        exclude_.removePair(a, b);
499 >      a = bond->getAtomA()->getGlobalIndex();
500 >      b = bond->getAtomB()->getGlobalIndex();        
501 >      exclude_.removePair(a, b);
502      }
503  
504      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
505 <        a = bend->getAtomA()->getGlobalIndex();
506 <        b = bend->getAtomB()->getGlobalIndex();        
507 <        c = bend->getAtomC()->getGlobalIndex();
505 >      a = bend->getAtomA()->getGlobalIndex();
506 >      b = bend->getAtomB()->getGlobalIndex();        
507 >      c = bend->getAtomC()->getGlobalIndex();
508  
509 <        exclude_.removePair(a, b);
510 <        exclude_.removePair(a, c);
511 <        exclude_.removePair(b, c);        
509 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
510 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
511 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
512 >
513 >      exclude_.removePairs(rigidSetA, rigidSetB);
514 >      exclude_.removePairs(rigidSetA, rigidSetC);
515 >      exclude_.removePairs(rigidSetB, rigidSetC);
516 >      
517 >      //exclude_.removePair(a, b);
518 >      //exclude_.removePair(a, c);
519 >      //exclude_.removePair(b, c);        
520      }
521  
522      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
523 <        a = torsion->getAtomA()->getGlobalIndex();
524 <        b = torsion->getAtomB()->getGlobalIndex();        
525 <        c = torsion->getAtomC()->getGlobalIndex();        
526 <        d = torsion->getAtomD()->getGlobalIndex();        
523 >      a = torsion->getAtomA()->getGlobalIndex();
524 >      b = torsion->getAtomB()->getGlobalIndex();        
525 >      c = torsion->getAtomC()->getGlobalIndex();        
526 >      d = torsion->getAtomD()->getGlobalIndex();        
527  
528 <        exclude_.removePair(a, b);
529 <        exclude_.removePair(a, c);
530 <        exclude_.removePair(a, d);
531 <        exclude_.removePair(b, c);
532 <        exclude_.removePair(b, d);
533 <        exclude_.removePair(c, d);        
528 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
529 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
530 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
531 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
532 >
533 >      exclude_.removePairs(rigidSetA, rigidSetB);
534 >      exclude_.removePairs(rigidSetA, rigidSetC);
535 >      exclude_.removePairs(rigidSetA, rigidSetD);
536 >      exclude_.removePairs(rigidSetB, rigidSetC);
537 >      exclude_.removePairs(rigidSetB, rigidSetD);
538 >      exclude_.removePairs(rigidSetC, rigidSetD);
539 >
540 >      /*
541 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
542 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
543 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
544 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
545 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
546 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
547 >
548 >      
549 >      exclude_.removePair(a, b);
550 >      exclude_.removePair(a, c);
551 >      exclude_.removePair(a, d);
552 >      exclude_.removePair(b, c);
553 >      exclude_.removePair(b, d);
554 >      exclude_.removePair(c, d);        
555 >      */
556      }
557  
558 < }
558 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
559 >      std::vector<Atom*> atoms = rb->getAtoms();
560 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
561 >        for (int j = i + 1; j < atoms.size(); ++j) {
562 >          a = atoms[i]->getGlobalIndex();
563 >          b = atoms[j]->getGlobalIndex();
564 >          exclude_.removePair(a, b);
565 >        }
566 >      }
567 >    }        
568  
569 +  }
570  
571 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
571 >
572 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
573      int curStampId;
574  
575      //index from 0
# Line 421 | Line 577 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
577  
578      moleculeStamps_.push_back(molStamp);
579      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
580 < }
580 >  }
581  
582 < void SimInfo::update() {
582 >  void SimInfo::update() {
583  
584      setupSimType();
585  
# Line 436 | Line 592 | void SimInfo::update() {
592      //setup fortran force field
593      /** @deprecate */    
594      int isError = 0;
595 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
595 >    
596 >    setupElectrostaticSummationMethod( isError );
597 >    setupSwitchingFunction();
598 >
599      if(isError){
600 <        sprintf( painCave.errMsg,
601 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
602 <        painCave.isFatal = 1;
603 <        simError();
600 >      sprintf( painCave.errMsg,
601 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
602 >      painCave.isFatal = 1;
603 >      simError();
604      }
605    
606      
# Line 452 | Line 611 | void SimInfo::update() {
611      calcNdfTrans();
612  
613      fortranInitialized_ = true;
614 < }
614 >  }
615  
616 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
616 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
617      SimInfo::MoleculeIterator mi;
618      Molecule* mol;
619      Molecule::AtomIterator ai;
# Line 463 | Line 622 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
622  
623      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
624  
625 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
626 <            atomTypes.insert(atom->getAtomType());
627 <        }
625 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
626 >        atomTypes.insert(atom->getAtomType());
627 >      }
628          
629      }
630  
631      return atomTypes;        
632 < }
632 >  }
633  
634 < void SimInfo::setupSimType() {
634 >  void SimInfo::setupSimType() {
635      std::set<AtomType*>::iterator i;
636      std::set<AtomType*> atomTypes;
637      atomTypes = getUniqueAtomTypes();
# Line 480 | Line 639 | void SimInfo::setupSimType() {
639      int useLennardJones = 0;
640      int useElectrostatic = 0;
641      int useEAM = 0;
642 +    int useSC = 0;
643      int useCharge = 0;
644      int useDirectional = 0;
645      int useDipole = 0;
646      int useGayBerne = 0;
647      int useSticky = 0;
648 +    int useStickyPower = 0;
649      int useShape = 0;
650      int useFLARB = 0; //it is not in AtomType yet
651      int useDirectionalAtom = 0;    
652      int useElectrostatics = 0;
653      //usePBC and useRF are from simParams
654 <    int usePBC = simParams_->getPBC();
655 <    int useRF = simParams_->getUseRF();
654 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
655 >    int useRF;
656 >    int useSF;
657 >    std::string myMethod;
658  
659 +    // set the useRF logical
660 +    useRF = 0;
661 +    useSF = 0;
662 +
663 +
664 +    if (simParams_->haveElectrostaticSummationMethod()) {
665 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
666 +      toUpper(myMethod);
667 +      if (myMethod == "REACTION_FIELD") {
668 +        useRF=1;
669 +      } else {
670 +        if (myMethod == "SHIFTED_FORCE") {
671 +          useSF = 1;
672 +        }
673 +      }
674 +    }
675 +
676      //loop over all of the atom types
677      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
678 <        useLennardJones |= (*i)->isLennardJones();
679 <        useElectrostatic |= (*i)->isElectrostatic();
680 <        useEAM |= (*i)->isEAM();
681 <        useCharge |= (*i)->isCharge();
682 <        useDirectional |= (*i)->isDirectional();
683 <        useDipole |= (*i)->isDipole();
684 <        useGayBerne |= (*i)->isGayBerne();
685 <        useSticky |= (*i)->isSticky();
686 <        useShape |= (*i)->isShape();
678 >      useLennardJones |= (*i)->isLennardJones();
679 >      useElectrostatic |= (*i)->isElectrostatic();
680 >      useEAM |= (*i)->isEAM();
681 >      useSC |= (*i)->isSC();
682 >      useCharge |= (*i)->isCharge();
683 >      useDirectional |= (*i)->isDirectional();
684 >      useDipole |= (*i)->isDipole();
685 >      useGayBerne |= (*i)->isGayBerne();
686 >      useSticky |= (*i)->isSticky();
687 >      useStickyPower |= (*i)->isStickyPower();
688 >      useShape |= (*i)->isShape();
689      }
690  
691 <    if (useSticky || useDipole || useGayBerne || useShape) {
692 <        useDirectionalAtom = 1;
691 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
692 >      useDirectionalAtom = 1;
693      }
694  
695      if (useCharge || useDipole) {
696 <        useElectrostatics = 1;
696 >      useElectrostatics = 1;
697      }
698  
699   #ifdef IS_MPI    
# Line 538 | Line 720 | void SimInfo::setupSimType() {
720      temp = useSticky;
721      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
722  
723 +    temp = useStickyPower;
724 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
725 +    
726      temp = useGayBerne;
727      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
728  
729      temp = useEAM;
730      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
731  
732 +    temp = useSC;
733 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
734 +    
735      temp = useShape;
736      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
737  
# Line 552 | Line 740 | void SimInfo::setupSimType() {
740  
741      temp = useRF;
742      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
743 <    
743 >
744 >    temp = useSF;
745 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
746 >
747   #endif
748  
749      fInfo_.SIM_uses_PBC = usePBC;    
# Line 562 | Line 753 | void SimInfo::setupSimType() {
753      fInfo_.SIM_uses_Charges = useCharge;
754      fInfo_.SIM_uses_Dipoles = useDipole;
755      fInfo_.SIM_uses_Sticky = useSticky;
756 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
757      fInfo_.SIM_uses_GayBerne = useGayBerne;
758      fInfo_.SIM_uses_EAM = useEAM;
759 +    fInfo_.SIM_uses_SC = useSC;
760      fInfo_.SIM_uses_Shapes = useShape;
761      fInfo_.SIM_uses_FLARB = useFLARB;
762      fInfo_.SIM_uses_RF = useRF;
763 +    fInfo_.SIM_uses_SF = useSF;
764  
765 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
766 <
767 <        if (simParams_->haveDielectric()) {
768 <            fInfo_.dielect = simParams_->getDielectric();
769 <        } else {
770 <            sprintf(painCave.errMsg,
771 <                    "SimSetup Error: No Dielectric constant was set.\n"
772 <                    "\tYou are trying to use Reaction Field without"
773 <                    "\tsetting a dielectric constant!\n");
774 <            painCave.isFatal = 1;
775 <            simError();
776 <        }
583 <        
584 <    } else {
585 <        fInfo_.dielect = 0.0;
765 >    if( myMethod == "REACTION_FIELD") {
766 >      
767 >      if (simParams_->haveDielectric()) {
768 >        fInfo_.dielect = simParams_->getDielectric();
769 >      } else {
770 >        sprintf(painCave.errMsg,
771 >                "SimSetup Error: No Dielectric constant was set.\n"
772 >                "\tYou are trying to use Reaction Field without"
773 >                "\tsetting a dielectric constant!\n");
774 >        painCave.isFatal = 1;
775 >        simError();
776 >      }      
777      }
778  
779 < }
779 >  }
780  
781 < void SimInfo::setupFortranSim() {
781 >  void SimInfo::setupFortranSim() {
782      int isError;
783      int nExclude;
784      std::vector<int> fortranGlobalGroupMembership;
# Line 597 | Line 788 | void SimInfo::setupFortranSim() {
788  
789      //globalGroupMembership_ is filled by SimCreator    
790      for (int i = 0; i < nGlobalAtoms_; i++) {
791 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
791 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
792      }
793  
794      //calculate mass ratio of cutoff group
# Line 614 | Line 805 | void SimInfo::setupFortranSim() {
805      mfact.reserve(getNCutoffGroups());
806      
807      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
808 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
808 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
809  
810 <            totalMass = cg->getMass();
811 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
812 <                        mfact.push_back(atom->getMass()/totalMass);
813 <            }
810 >        totalMass = cg->getMass();
811 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
812 >          // Check for massless groups - set mfact to 1 if true
813 >          if (totalMass != 0)
814 >            mfact.push_back(atom->getMass()/totalMass);
815 >          else
816 >            mfact.push_back( 1.0 );
817 >        }
818  
819 <        }      
819 >      }      
820      }
821  
822      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 631 | Line 826 | void SimInfo::setupFortranSim() {
826      identArray.reserve(getNAtoms());
827      
828      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
829 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
830 <            identArray.push_back(atom->getIdent());
831 <        }
829 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
830 >        identArray.push_back(atom->getIdent());
831 >      }
832      }    
833  
834      //fill molMembershipArray
835      //molMembershipArray is filled by SimCreator    
836      std::vector<int> molMembershipArray(nGlobalAtoms_);
837      for (int i = 0; i < nGlobalAtoms_; i++) {
838 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
838 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
839      }
840      
841      //setup fortran simulation
647    //gloalExcludes and molMembershipArray should go away (They are never used)
648    //why the hell fortran need to know molecule?
649    //OOPSE = Object-Obfuscated Parallel Simulation Engine
842      int nGlobalExcludes = 0;
843      int* globalExcludes = NULL;
844      int* excludeList = exclude_.getExcludeList();
845      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
846 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
847 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
846 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
847 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
848  
849      if( isError ){
850  
851 <        sprintf( painCave.errMsg,
852 <                 "There was an error setting the simulation information in fortran.\n" );
853 <        painCave.isFatal = 1;
854 <        painCave.severity = OOPSE_ERROR;
855 <        simError();
851 >      sprintf( painCave.errMsg,
852 >               "There was an error setting the simulation information in fortran.\n" );
853 >      painCave.isFatal = 1;
854 >      painCave.severity = OOPSE_ERROR;
855 >      simError();
856      }
857  
858   #ifdef IS_MPI
859      sprintf( checkPointMsg,
860 <       "succesfully sent the simulation information to fortran.\n");
860 >             "succesfully sent the simulation information to fortran.\n");
861      MPIcheckPoint();
862   #endif // is_mpi
863 < }
863 >  }
864  
865  
866   #ifdef IS_MPI
867 < void SimInfo::setupFortranParallel() {
867 >  void SimInfo::setupFortranParallel() {
868      
869      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
870      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 688 | Line 880 | void SimInfo::setupFortranParallel() {
880  
881      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
882  
883 <        //local index(index in DataStorge) of atom is important
884 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
885 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
886 <        }
883 >      //local index(index in DataStorge) of atom is important
884 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
885 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
886 >      }
887  
888 <        //local index of cutoff group is trivial, it only depends on the order of travesing
889 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
890 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
891 <        }        
888 >      //local index of cutoff group is trivial, it only depends on the order of travesing
889 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
890 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
891 >      }        
892          
893      }
894  
# Line 716 | Line 908 | void SimInfo::setupFortranParallel() {
908                      &localToGlobalCutoffGroupIndex[0], &isError);
909  
910      if (isError) {
911 <        sprintf(painCave.errMsg,
912 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
913 <        painCave.isFatal = 1;
914 <        simError();
911 >      sprintf(painCave.errMsg,
912 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
913 >      painCave.isFatal = 1;
914 >      simError();
915      }
916  
917      sprintf(checkPointMsg, " mpiRefresh successful.\n");
918      MPIcheckPoint();
919  
920  
921 < }
921 >  }
922  
923   #endif
924  
925 < double SimInfo::calcMaxCutoffRadius() {
734 <
735 <
736 <    std::set<AtomType*> atomTypes;
737 <    std::set<AtomType*>::iterator i;
738 <    std::vector<double> cutoffRadius;
739 <
740 <    //get the unique atom types
741 <    atomTypes = getUniqueAtomTypes();
742 <
743 <    //query the max cutoff radius among these atom types
744 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
745 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
746 <    }
747 <
748 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
749 < #ifdef IS_MPI
750 <    //pick the max cutoff radius among the processors
751 < #endif
752 <
753 <    return maxCutoffRadius;
754 < }
755 <
756 < void SimInfo::setupCutoff() {
757 <    double rcut_;  //cutoff radius
758 <    double rsw_; //switching radius
925 >  void SimInfo::setupCutoff() {          
926      
927 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
927 >    // Check the cutoff policy
928 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
929 >    if (simParams_->haveCutoffPolicy()) {
930 >      std::string myPolicy = simParams_->getCutoffPolicy();
931 >      toUpper(myPolicy);
932 >      if (myPolicy == "MIX") {
933 >        cp = MIX_CUTOFF_POLICY;
934 >      } else {
935 >        if (myPolicy == "MAX") {
936 >          cp = MAX_CUTOFF_POLICY;
937 >        } else {
938 >          if (myPolicy == "TRADITIONAL") {            
939 >            cp = TRADITIONAL_CUTOFF_POLICY;
940 >          } else {
941 >            // throw error        
942 >            sprintf( painCave.errMsg,
943 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
944 >            painCave.isFatal = 1;
945 >            simError();
946 >          }    
947 >        }          
948 >      }
949 >    }          
950 >    notifyFortranCutoffPolicy(&cp);
951 >
952 >    // Check the Skin Thickness for neighborlists
953 >    double skin;
954 >    if (simParams_->haveSkinThickness()) {
955 >      skin = simParams_->getSkinThickness();
956 >      notifyFortranSkinThickness(&skin);
957 >    }            
958          
959 <        if (!simParams_->haveRcut()){
960 <            sprintf(painCave.errMsg,
959 >    // Check if the cutoff was set explicitly:
960 >    if (simParams_->haveCutoffRadius()) {
961 >      rcut_ = simParams_->getCutoffRadius();
962 >      if (simParams_->haveSwitchingRadius()) {
963 >        rsw_  = simParams_->getSwitchingRadius();
964 >      } else {
965 >        rsw_ = rcut_;
966 >      }
967 >      notifyFortranCutoffs(&rcut_, &rsw_);
968 >      
969 >    } else {
970 >      
971 >      // For electrostatic atoms, we'll assume a large safe value:
972 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
973 >        sprintf(painCave.errMsg,
974                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
975                  "\tOOPSE will use a default value of 15.0 angstroms"
976                  "\tfor the cutoffRadius.\n");
977 <            painCave.isFatal = 0;
978 <            simError();
979 <            rcut_ = 15.0;
980 <        } else{
981 <            rcut_ = simParams_->getRcut();
977 >        painCave.isFatal = 0;
978 >        simError();
979 >        rcut_ = 15.0;
980 >      
981 >        if (simParams_->haveElectrostaticSummationMethod()) {
982 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
983 >          toUpper(myMethod);
984 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
985 >            if (simParams_->haveSwitchingRadius()){
986 >              sprintf(painCave.errMsg,
987 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
988 >                      "\teven though the electrostaticSummationMethod was\n"
989 >                      "\tset to %s\n", myMethod.c_str());
990 >              painCave.isFatal = 1;
991 >              simError();            
992 >            }
993 >          }
994          }
995 <
996 <        if (!simParams_->haveRsw()){
997 <            sprintf(painCave.errMsg,
998 <                "SimCreator Warning: No value was set for switchingRadius.\n"
999 <                "\tOOPSE will use a default value of\n"
1000 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1001 <            painCave.isFatal = 0;
1002 <            simError();
1003 <            rsw_ = 0.95 * rcut_;
1004 <        } else{
1005 <            rsw_ = simParams_->getRsw();
995 >      
996 >        if (simParams_->haveSwitchingRadius()){
997 >          rsw_ = simParams_->getSwitchingRadius();
998 >        } else {        
999 >          sprintf(painCave.errMsg,
1000 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1001 >                  "\tOOPSE will use a default value of\n"
1002 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1003 >          painCave.isFatal = 0;
1004 >          simError();
1005 >          rsw_ = 0.85 * rcut_;
1006          }
1007 <
1008 <    } else {
1009 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1010 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1007 >        notifyFortranCutoffs(&rcut_, &rsw_);
1008 >      } else {
1009 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1010 >        // We'll punt and let fortran figure out the cutoffs later.
1011          
1012 <        if (simParams_->haveRcut()) {
791 <            rcut_ = simParams_->getRcut();
792 <        } else {
793 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 <            rcut_ = calcMaxCutoffRadius();
795 <        }
1012 >        notifyFortranYouAreOnYourOwn();
1013  
1014 <        if (simParams_->haveRsw()) {
798 <            rsw_  = simParams_->getRsw();
799 <        } else {
800 <            rsw_ = rcut_;
801 <        }
802 <    
1014 >      }
1015      }
1016 <        
805 <    double rnblist = rcut_ + 1; // skin of neighbor list
1016 >  }
1017  
1018 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1019 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1020 < }
1018 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1019 >    
1020 >    int errorOut;
1021 >    int esm =  NONE;
1022 >    int sm = UNDAMPED;
1023 >    double alphaVal;
1024 >    double dielectric;
1025  
1026 < void SimInfo::addProperty(GenericData* genData) {
1027 <    properties_.addProperty(genData);  
1028 < }
1026 >    errorOut = isError;
1027 >    alphaVal = simParams_->getDampingAlpha();
1028 >    dielectric = simParams_->getDielectric();
1029  
1030 < void SimInfo::removeProperty(const std::string& propName) {
1031 <    properties_.removeProperty(propName);  
1032 < }
1033 <
1034 < void SimInfo::clearProperties() {
1035 <    properties_.clearProperties();
1036 < }
1037 <
1038 < std::vector<std::string> SimInfo::getPropertyNames() {
1039 <    return properties_.getPropertyNames();  
1040 < }
1041 <      
1042 < std::vector<GenericData*> SimInfo::getProperties() {
1043 <    return properties_.getProperties();
1044 < }
1045 <
1046 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1047 <    return properties_.getPropertyByName(propName);
1048 < }
1030 >    if (simParams_->haveElectrostaticSummationMethod()) {
1031 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1032 >      toUpper(myMethod);
1033 >      if (myMethod == "NONE") {
1034 >        esm = NONE;
1035 >      } else {
1036 >        if (myMethod == "SWITCHING_FUNCTION") {
1037 >          esm = SWITCHING_FUNCTION;
1038 >        } else {
1039 >          if (myMethod == "SHIFTED_POTENTIAL") {
1040 >            esm = SHIFTED_POTENTIAL;
1041 >          } else {
1042 >            if (myMethod == "SHIFTED_FORCE") {            
1043 >              esm = SHIFTED_FORCE;
1044 >            } else {
1045 >              if (myMethod == "REACTION_FIELD") {            
1046 >                esm = REACTION_FIELD;
1047 >              } else {
1048 >                // throw error        
1049 >                sprintf( painCave.errMsg,
1050 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1051 >                         "\t(Input file specified %s .)\n"
1052 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1053 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1054 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1055 >                painCave.isFatal = 1;
1056 >                simError();
1057 >              }    
1058 >            }          
1059 >          }
1060 >        }
1061 >      }
1062 >    }
1063 >    
1064 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1065 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1066 >      toUpper(myScreen);
1067 >      if (myScreen == "UNDAMPED") {
1068 >        sm = UNDAMPED;
1069 >      } else {
1070 >        if (myScreen == "DAMPED") {
1071 >          sm = DAMPED;
1072 >          if (!simParams_->haveDampingAlpha()) {
1073 >            //throw error
1074 >            sprintf( painCave.errMsg,
1075 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1076 >                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1077 >            painCave.isFatal = 0;
1078 >            simError();
1079 >          }
1080 >        } else {
1081 >          // throw error        
1082 >          sprintf( painCave.errMsg,
1083 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1084 >                   "\t(Input file specified %s .)\n"
1085 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1086 >                   "or \"damped\".\n", myScreen.c_str() );
1087 >          painCave.isFatal = 1;
1088 >          simError();
1089 >        }
1090 >      }
1091 >    }
1092 >    
1093 >    // let's pass some summation method variables to fortran
1094 >    setElectrostaticSummationMethod( &esm );
1095 >    notifyFortranElectrostaticMethod( &esm );
1096 >    setScreeningMethod( &sm );
1097 >    setDampingAlpha( &alphaVal );
1098 >    setReactionFieldDielectric( &dielectric );
1099 >    initFortranFF( &errorOut );
1100 >  }
1101  
1102 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1102 >  void SimInfo::setupSwitchingFunction() {    
1103 >    int ft = CUBIC;
1104 >
1105 >    if (simParams_->haveSwitchingFunctionType()) {
1106 >      std::string funcType = simParams_->getSwitchingFunctionType();
1107 >      toUpper(funcType);
1108 >      if (funcType == "CUBIC") {
1109 >        ft = CUBIC;
1110 >      } else {
1111 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1112 >          ft = FIFTH_ORDER_POLY;
1113 >        } else {
1114 >          // throw error        
1115 >          sprintf( painCave.errMsg,
1116 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1117 >          painCave.isFatal = 1;
1118 >          simError();
1119 >        }          
1120 >      }
1121 >    }
1122 >
1123 >    // send switching function notification to switcheroo
1124 >    setFunctionType(&ft);
1125 >
1126 >  }
1127 >
1128 >  void SimInfo::addProperty(GenericData* genData) {
1129 >    properties_.addProperty(genData);  
1130 >  }
1131 >
1132 >  void SimInfo::removeProperty(const std::string& propName) {
1133 >    properties_.removeProperty(propName);  
1134 >  }
1135 >
1136 >  void SimInfo::clearProperties() {
1137 >    properties_.clearProperties();
1138 >  }
1139 >
1140 >  std::vector<std::string> SimInfo::getPropertyNames() {
1141 >    return properties_.getPropertyNames();  
1142 >  }
1143 >      
1144 >  std::vector<GenericData*> SimInfo::getProperties() {
1145 >    return properties_.getProperties();
1146 >  }
1147 >
1148 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1149 >    return properties_.getPropertyByName(propName);
1150 >  }
1151 >
1152 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1153 >    if (sman_ == sman) {
1154 >      return;
1155 >    }    
1156 >    delete sman_;
1157      sman_ = sman;
1158  
1159      Molecule* mol;
# Line 844 | Line 1165 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1165  
1166      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1167          
1168 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1169 <            atom->setSnapshotManager(sman_);
1170 <        }
1168 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1169 >        atom->setSnapshotManager(sman_);
1170 >      }
1171          
1172 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1173 <            rb->setSnapshotManager(sman_);
1174 <        }
1172 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1173 >        rb->setSnapshotManager(sman_);
1174 >      }
1175      }    
1176      
1177 < }
1177 >  }
1178  
1179 < Vector3d SimInfo::getComVel(){
1179 >  Vector3d SimInfo::getComVel(){
1180      SimInfo::MoleculeIterator i;
1181      Molecule* mol;
1182  
# Line 864 | Line 1185 | Vector3d SimInfo::getComVel(){
1185      
1186  
1187      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 <        double mass = mol->getMass();
1189 <        totalMass += mass;
1190 <        comVel += mass * mol->getComVel();
1188 >      double mass = mol->getMass();
1189 >      totalMass += mass;
1190 >      comVel += mass * mol->getComVel();
1191      }  
1192  
1193   #ifdef IS_MPI
# Line 879 | Line 1200 | Vector3d SimInfo::getComVel(){
1200      comVel /= totalMass;
1201  
1202      return comVel;
1203 < }
1203 >  }
1204  
1205 < Vector3d SimInfo::getCom(){
1205 >  Vector3d SimInfo::getCom(){
1206      SimInfo::MoleculeIterator i;
1207      Molecule* mol;
1208  
# Line 889 | Line 1210 | Vector3d SimInfo::getCom(){
1210      double totalMass = 0.0;
1211      
1212      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1213 <        double mass = mol->getMass();
1214 <        totalMass += mass;
1215 <        com += mass * mol->getCom();
1213 >      double mass = mol->getMass();
1214 >      totalMass += mass;
1215 >      com += mass * mol->getCom();
1216      }  
1217  
1218   #ifdef IS_MPI
# Line 905 | Line 1226 | Vector3d SimInfo::getCom(){
1226  
1227      return com;
1228  
1229 < }        
1229 >  }        
1230  
1231 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1231 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1232  
1233      return o;
1234 < }
1234 >  }
1235 >  
1236 >  
1237 >   /*
1238 >   Returns center of mass and center of mass velocity in one function call.
1239 >   */
1240 >  
1241 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1242 >      SimInfo::MoleculeIterator i;
1243 >      Molecule* mol;
1244 >      
1245 >    
1246 >      double totalMass = 0.0;
1247 >    
1248  
1249 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1250 +         double mass = mol->getMass();
1251 +         totalMass += mass;
1252 +         com += mass * mol->getCom();
1253 +         comVel += mass * mol->getComVel();          
1254 +      }  
1255 +      
1256 + #ifdef IS_MPI
1257 +      double tmpMass = totalMass;
1258 +      Vector3d tmpCom(com);  
1259 +      Vector3d tmpComVel(comVel);
1260 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1261 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1262 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1263 + #endif
1264 +      
1265 +      com /= totalMass;
1266 +      comVel /= totalMass;
1267 +   }        
1268 +  
1269 +   /*
1270 +   Return intertia tensor for entire system and angular momentum Vector.
1271 +
1272 +
1273 +       [  Ixx -Ixy  -Ixz ]
1274 +  J =| -Iyx  Iyy  -Iyz |
1275 +       [ -Izx -Iyz   Izz ]
1276 +    */
1277 +
1278 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1279 +      
1280 +
1281 +      double xx = 0.0;
1282 +      double yy = 0.0;
1283 +      double zz = 0.0;
1284 +      double xy = 0.0;
1285 +      double xz = 0.0;
1286 +      double yz = 0.0;
1287 +      Vector3d com(0.0);
1288 +      Vector3d comVel(0.0);
1289 +      
1290 +      getComAll(com, comVel);
1291 +      
1292 +      SimInfo::MoleculeIterator i;
1293 +      Molecule* mol;
1294 +      
1295 +      Vector3d thisq(0.0);
1296 +      Vector3d thisv(0.0);
1297 +
1298 +      double thisMass = 0.0;
1299 +    
1300 +      
1301 +      
1302 +  
1303 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1304 +        
1305 +         thisq = mol->getCom()-com;
1306 +         thisv = mol->getComVel()-comVel;
1307 +         thisMass = mol->getMass();
1308 +         // Compute moment of intertia coefficients.
1309 +         xx += thisq[0]*thisq[0]*thisMass;
1310 +         yy += thisq[1]*thisq[1]*thisMass;
1311 +         zz += thisq[2]*thisq[2]*thisMass;
1312 +        
1313 +         // compute products of intertia
1314 +         xy += thisq[0]*thisq[1]*thisMass;
1315 +         xz += thisq[0]*thisq[2]*thisMass;
1316 +         yz += thisq[1]*thisq[2]*thisMass;
1317 +            
1318 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1319 +            
1320 +      }  
1321 +      
1322 +      
1323 +      inertiaTensor(0,0) = yy + zz;
1324 +      inertiaTensor(0,1) = -xy;
1325 +      inertiaTensor(0,2) = -xz;
1326 +      inertiaTensor(1,0) = -xy;
1327 +      inertiaTensor(1,1) = xx + zz;
1328 +      inertiaTensor(1,2) = -yz;
1329 +      inertiaTensor(2,0) = -xz;
1330 +      inertiaTensor(2,1) = -yz;
1331 +      inertiaTensor(2,2) = xx + yy;
1332 +      
1333 + #ifdef IS_MPI
1334 +      Mat3x3d tmpI(inertiaTensor);
1335 +      Vector3d tmpAngMom;
1336 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1337 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1338 + #endif
1339 +              
1340 +      return;
1341 +   }
1342 +
1343 +   //Returns the angular momentum of the system
1344 +   Vector3d SimInfo::getAngularMomentum(){
1345 +      
1346 +      Vector3d com(0.0);
1347 +      Vector3d comVel(0.0);
1348 +      Vector3d angularMomentum(0.0);
1349 +      
1350 +      getComAll(com,comVel);
1351 +      
1352 +      SimInfo::MoleculeIterator i;
1353 +      Molecule* mol;
1354 +      
1355 +      Vector3d thisr(0.0);
1356 +      Vector3d thisp(0.0);
1357 +      
1358 +      double thisMass;
1359 +      
1360 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1361 +        thisMass = mol->getMass();
1362 +        thisr = mol->getCom()-com;
1363 +        thisp = (mol->getComVel()-comVel)*thisMass;
1364 +        
1365 +        angularMomentum += cross( thisr, thisp );
1366 +        
1367 +      }  
1368 +      
1369 + #ifdef IS_MPI
1370 +      Vector3d tmpAngMom;
1371 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1372 + #endif
1373 +      
1374 +      return angularMomentum;
1375 +   }
1376 +  
1377 +  
1378   }//end namespace oopse
1379  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines